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The entanglement entropy between quantum fields inside and outside a black hole horizon is a

promising candidate for the microscopic origin of black hole entropy. We show that the entanglement

entropy may be defined in loop quantum gravity, and compute its value for spin network states. The

entanglement entropy for an arbitrary region of space is expressed as a sum over punctures where the spin

network intersects the region’s boundary. Our result agrees asymptotically with results previously

obtained from the isolated horizon framework, and we give a justification for this agreement. We conclude

by proposing a new method for studying corrections to the area law and its implications for quantum

corrections to the gravitational action.
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I. INTRODUCTION

Quantum field theory in curved space indicates that
black holes radiate thermally with an entropy given by
the Bekenstein-Hawking formula

SBH ¼ A

4

kBc
3

G@
(1)

where A is the area of the black hole event horizon [1,2]. A
similar entropy is present for acceleration horizons in flat
space [3] and cosmological event horizons in de Sitter
space [4]. It has therefore been suggested that every causal
horizon possesses an entropy proportional to its area, so
that (1) represents a universal horizon entropy density [5].

Although there is no universally agreed-upon source of
black hole entropy, a strong candidate is the entanglement
entropy of quantum fields inside and outside the black hole
horizon [6]. This approach is based on the observation that
entanglement between fields inside and outside the horizon
causes any globally pure state to become mixed when
restricted to the exterior of the black hole. The entangle-
ment entropy has the main features expected from a statis-
tical description of black hole entropy: it scales like the
area of the horizon in the presence of a Planck-scale cutoff
[6,7], and under the assumption of causality it satisfies the
generalized second law of thermodynamics [8].

In the previously studied case of a scalar field on a flat
background, the entanglement entropy of a spherical re-
gion diverges in the absence of an ultraviolet cutoff. It has
been suggested that quantum gravity could act as an ultra-
violet cutoff, rendering the entanglement entropy finite.
Moreover, if the gravitational field is quantized it will
also contribute to the entanglement entropy. Therefore
any investigation of the relation between entanglement
entropy and the Bekenstein-Hawking entropy must be
done in a theory of quantum gravity.

The goal of this paper is to study the entanglement
entropy of the gravitational field within the framework of
loop quantum gravity. The state of the gravitational field
will be described by a spin network state [9,10]. The spin
network states are chosen because of their interpretation as
states of discrete geometry. In particular, spin network
states are eigenstates of the area operator, allowing a
comparison between the entanglement entropy and the
horizon area.
Entanglement entropy has previously been computed in

loop quantum gravity for black hole coherent states in
spherically symmetric spacetimes with apparent horizons
[11]. In contrast with previous work the present result is
obtained without assumption of symmetry or of particular
boundary conditions at the horizon.

II. ENTANGLEMENT ENTROPYAND THE
SCHMIDT DECOMPOSITION

We first define the entanglement entropy and review
some of its well-known properties, including its relation
to the Schmidt decomposition.
Let M be a spacetime manifold decomposed as M ¼

R� � into time and space. Let H � denote the space of
wave functionals  : �� ! C where �� is a suitably
defined space of field configurations. A partition of space

� ¼ � [ �� gives a tensor product decomposition of the
Hilbert space

H � ¼ H� �H ��: (2)

Let j i 2 H � be a pure state. For each region � there
is an associated mixed state in H� given by tracing over

degrees of freedom in ��,

�ð�Þ ¼ TrH ��
ðj ih jÞ: (3)

This state encodes all information that can be obtained
about j i by performing measurements localized in �.*wdonnelly@math.uwaterloo.ca
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The entanglement entropy of the region � is defined as

SEð�Þ � Sð�ð�ÞÞ (4)

where Sð�Þ ¼ �Trð� log�Þ is the von Neumann entropy.
Definition (The Schmidt Decomposition). Let j i 2

H� �H ��. Then there exist orthonormal sets fj �
i ig �

H� and fj ��
i ig � H �� and positive real numbers f�ig

such that

j i ¼ X
i2I

ffiffiffiffiffi
�i

p j �
i i � j ��

i i: (5)

The numbers f ffiffiffiffiffi
�i

p g are called the Schmidt coefficients, and
the number of terms in the sum is the Schmidt rank.

From the Schmidt decomposition, we can compute the
diagonal form of the reduced density matrices

�ð�Þ ¼ X
i2I
�ij �

i ih �
i j (6)

�ð ��Þ ¼ X
i2I
�ij ��

i ih ��
i j: (7)

This shows that the two reduced density matrices have the
same nonzero spectrum. It follows, as is well known, that
the entanglement entropy is symmetric and can be com-
puted from the Schmidt coefficients

SEð�Þ ¼ SEð ��Þ ¼ �X
i2I
�i log�i: (8)

In order to compute the entanglement entropy of a spin
network state, it is therefore sufficient to compute its
Schmidt decomposition.

III. ENTANGLEMENT ENTROPY OF SPIN
NETWORK STATES

In loop quantum gravity, the space of fields is the space
�A of generalized connections on �. We will consider the
Hilbert space H 0

�
of cylindrical functions, which is

spanned by the extended spin network states [9].

An extended spin network is a tuple S ¼ ð�; ~|; ~J; ~{; ~mÞ
where

(i) � is a graph in � consisting of nodes v1; . . . ; vN and
links �1; . . . ; �L,

(ii) ~| ¼ ðj1; . . . ; jLÞ where j‘ 2 f12 ; 1; 32 ; . . .g labels a
nontrivial irreducible representation of SU(2),

(iii) ~J ¼ ðJ1; . . . ; JNÞ where JN 2 f0; 12 ; 1; 32 ; . . .g labels a
possibly trivial irreducible representation of SU(2),

(iv) ~{ ¼ ði1; . . . ; iNÞ where in is an intertwining operator
from the representations of all incoming edges and
the spin Jn representation to the representations of all
outgoing edges, and

(v) ~m ¼ ðm1; . . . ; mNÞ where mn is a vector in the spin
Jn representation space VJn ffi C2Jnþ1.

Let A 2 �A be a generalized connection, Að�Þ the hol-
onomy along curve � and RjðAð�ÞÞ its spin j representa-

tion. Then the extended spin network state jSi is defined by

hAjSi ¼
�OL
‘¼1

Rj‘ðAð�‘ÞÞ �
ON
n¼1

mn

�
�
�ON
n¼1

in

�
: (9)

Throughout we will assume that all intertwiners in are
normalized so that Trði�ninÞ ¼ 1 and vectors mn are nor-
malized so that kmnk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Jn þ 1
p

.
An important property of these states that we will use is

their orthogonality. Suppose that S ¼ ð�; ~|; ~J; ~{; ~mÞ and

S0 ¼ ð�; ~|; ~J; ~{; ~m0Þ so that S and S0 differ only by their set
of vectors. Then

hSjS0i ¼ YN
n¼1

hmnjm0
ni

2Jn þ 1
: (10)

The second important property of the extended spin
network states we will use is the freedom to insert vertices.
Let S be an extended spin network. Given an arbitrary point
v on the curve �L, we can split �L into �L ¼ �0

L � �00
L so

that �0
L and �00

L meet at v. Let �0 be the graph with links
�1; . . . ; �L�1; �

0
L; �

00
L and vertices v1; . . . ; vN; v. Let S

0 be
the extended spin network ð�0; ~|0; ~J0; ~{0; ~m0Þ where ~|0 ¼
ðj1; . . . ; jL; jLÞ, ~J0 ¼ ðJ1; . . . ; Jn; 0Þ, ~{0 ¼ ði1; . . . ; in;

1ffiffiffiffiffiffiffiffi
2jþ1

p IÞ, ~m0 ¼ ðm1; . . . ; mn; 1Þ. Then the resulting state

jS0i is equivalent to jSi, jS0i ¼ jSi.

A. Spin network states

We now consider the entanglement entropy of a general
spin network state. A spin network is an extended spin
network for which the representation attached to each node
is trivial, in other words Jn ¼ 0, mn ¼ 1.
Suppose that � is a subset of � whose boundary @�

intersects � only at links. We can insert nodes with inter-
twiners at all points where the graph � intersects the
boundary @�. Let P be the number of points where �
intersects @�, N� the number of vertices of � in �, and

N �� the number of vertices in ��. We can partition the nodes
v1; . . . ; vN so that vn 2 @� for n ¼ 1; . . . ; P, vn 2 � for

n ¼ Pþ 1; . . . ; Pþ N�, vn 2 �� for n ¼ Pþ N� þ
1; . . . ; N. Similarly, the links �1; . . . ; �L can be partitioned

so that �‘ 2 � for ‘ ¼ 1; . . . ; L� and �‘ 2 �� for ‘ ¼
L� þ 1; . . . ; L.
By the construction for inserting vertices, S has ip ¼
1ffiffiffiffiffiffiffiffiffiffi

2~|pþ1
p I for p ¼ 1; . . . ; P where ~|p denotes the spin of the

edges incident to node p. Each of these intertwiners ip may

be expanded in an orthogonal basis of V~|p , fe1; . . . ; e2~|pþ1g.

ip ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~|p þ 1

p X2~|pþ1

ap¼1

jeapiheap j: (11)

We can apply this decomposition to each of the inter-
twiners on the boundary. Letting ~a ¼ ða1; . . . ; aPÞ,

WILLIAM DONNELLY PHYSICAL REVIEW D 77, 104006 (2008)

104006-2



jSi ¼
�YP
p¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~|p þ 1

p
�X

~a

jS�; ~ai � jS ��; ~ai (12)

where the sum over ~a means to sum over all n-tuples
ða1; . . . ; aPÞ with ap ¼ 1; . . . ; 2~|p þ 1.

The state jS�; ~ai is an extended spin network state with
graph �� consisting of the links �‘; ‘ ¼ 1; . . . ; L� and
vertices vn; n ¼ 1; . . . ; Pþ N�. The labels on the links
are unchanged, j0‘ ¼ j‘ for ‘ ¼ 1; . . . ; L�. The existing

nodes are also unchanged J0n ¼ Jn, i
0
n ¼ in and m0

n ¼ mn

for n ¼ Pþ 1; . . . ; Pþ N�. The inserted vertices on the

boundary have J0p ¼ ~|p, i0p ¼ 1ffiffiffiffiffiffiffiffiffiffi
2~|pþ1

p I and m0
p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2~|p þ 1
p

eap for p ¼ 1; . . . ; P.

By the orthogonality relation (10), these states form an
orthonormal set. Therefore (12) is a Schmidt decomposi-
tion of jSi. The Schmidt rank is

N ¼ YP
p¼1

ð2~|p þ 1Þ: (13)

From (8) the entanglement entropy of jSi is

SEð�Þ ¼ XP
p¼1

logð2~|p þ 1Þ: (14)

The Schmidt decomposition also allows us to compute
the reduced density matrix corresponding to the region �,

�ð�Þ ¼ 1

N

X
~a

jS�; ~aihS�; ~aj: (15)

Note that although the individual states jS�; ~ai trans-
form nontrivially under a gauge transformation, the linear
combination (15) is gauge-invariant.

B. Intertwiner on the boundary

So far it has been assumed that no nodes of the spin
network S lie on the boundary of �, in which case the
entanglement entropy depends only the edges of S that
intersect the boundary. In the case where a node lies on the
boundary, the entanglement entropy depends on the inter-
twiner assigned to the boundary node.

In this case we can let P be the number of intertwiners on
the boundary

jSi ¼ X
~a; ~b

�OP
p¼1

ip

�
~a

~b
jS�; ~ai � jS ��;

~bi: (16)

Here the superscript ~a and the subscript ~b index the matrix
elements of the intertwiner. Because the set of states

jS�; ~ai and jS ��;
~bi are orthogonal, this formula reduces

to the entanglement entropy of the tensor product of all
boundary intertwiners.

By additivity of the von Neumann entropy across tensor
products, the entanglement entropy is

SEð�Þ ¼ XP
p¼1

SEðipÞ: (17)

In this equation ip is viewed as an entangled state between

the representations of edges incident from � and those

incident from �.
Note that in the case where ip is a multiple of the identity

this formula reduces to SEðipÞ ¼ logð2~|p þ 1Þ as in

Eq. (14).

IV. RELATION TO THE ISOLATED HORIZON
FRAMEWORK

The expression (13) for the Schmidt rank of the spin
network state coincides with the dimension of the bound-
ary Hilbert spaces defined in the isolated horizon frame-
work [12,13]. The analogy between the isolated horizon
framework and entanglement entropy was first suggested
by Husain, who showed that the calculation of black hole
entropy in the isolated horizon framework does not depend
on the details of the boundary conditions [14]. To elucidate
the relationship between these two theories it is necessary
to first introduce the relevant aspects of the isolated hori-
zon framework.
In the isolated horizon framework, the horizon is treated

as an inner boundary of space obeying the isolated horizon
boundary conditions. The gravitational action acquires a
surface term proportional to the action of Chern-Simons
theory. The states are therefore elements of H� �H @�

whereH� is the ‘‘bulk space’’ of cylindrical functions on
� and H @� is the ‘‘boundary space’’ of U(1) Chern-
Simons theory on @�.
The isolated horizon boundary conditions are imple-

mented as an operator equation onH� �H @� restricting
states to a subspace

H IH ¼ M
P

HP
� �HP

@�=Gauge: (18)

Where P runs over all finite sets of punctures labeled by

spins ~|p. The space HP
� is spanned by the open spin

network states jS�; ~ai, where S� runs over all extended
spin networks intersecting @� in the set of labeled punc-

tures P . HP
@� is the space of Chern-Simons states on the

punctured surface @�� P .
A partial trace over the bulk space H� is performed,

yielding a maximally mixed state on HP
@�. The entangle-

ment entropy is therefore given by logdimHP
@�, where in

the limit of a large number of punctures logdimHP
@� is

given by

dimHP
@� 	 YP

p¼1

ð2~|p þ 1Þ (19)

which is the same as the Schmidt rank of a spin network
that intersects @� at the points P .
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To see why these quantities should agree, consider an
arbitrary boundary theory with Hilbert space H� �
H @�. We will make the assumption that the boundary
conditions should not affect physics in �. Therefore for
each spin network state jSi 2 H� �H �� there should
exist a state jS0i 2 H� �H @� that describes the same
physics on the exterior

TrH ��
ðjSihSjÞ ¼ TrH @�

ðjS0ihS0jÞ: (20)

Now consider the mixed state of the boundary �@� ¼
TrH�

ðjS0ihS0jÞ. By Eq. (3), �@� has the same nonzero

spectrum as ��. Therefore the range of �@� is a subspace
whose dimension is given by the Schmidt rank (13). Thus
Eq. (19) is a consequence of the fact that the rank of �� is
the same as the rank of �@�.

By imposing the requirement that the boundary condi-
tions should not restrict the exterior Hilbert space, we have
derived the relationship between the Schmidt rank of a spin
network state and the dimension of the boundary Hilbert
space. However Eq. (19) only holds asymptotically; the

dimension of HP
@� is less than the Schmidt rank.

To understand the reason for disagreement, we note that

a basis of the space HP
@� is labeled by sequences of half-

integers fmpgPp¼1 satisfying mp 2 f�~|p;�~|p þ 1; . . . ; ~|pg
and the additional spin projection constraint

XP
p¼1

mp ¼ 0: (21)

Therefore the difference between the dimension and the
Schmidt rank is entirely due to the spin projection
constraint.

V. OUTLOOK

We have computed the entanglement entropy of the
gravitational field in loop quantum gravity for an arbitrary

region of space � and spin network state jSi. The entan-
glement entropy is a finite and extensive quantity that
depends linearly on the number of punctures of the hori-
zon. No assumptions have been made about the region �,
so our result applies to all causal horizons.
We have found an interesting relation between the en-

tanglement entropy and the isolated horizon framework.
What remains to be understood is the mismatch between
the two theories due to the spin projection constraint. It
would therefore be of interest to see whether this constraint
is necessary, or whether it can be relaxed by a less restric-
tive choice of boundary conditions. Of particular interest is
the relation between the spin projection constraint and the
requirement that @� have spherical topology.
Finally, the fact that the entropy is extensive over the

horizon allows thermodynamics to be applied locally to
horizons in loop quantum gravity [15,16]. It has been
shown that under the assumption that the horizon entropy
is extensive, properties of the effective action for gravity
can be computed from the entropy density. However, in
order to apply these arguments it is necessary to express the
entropy as a function of geometric variables instead of spin
networks. This suggests the question of whether there
exists a geometric quantity Q such that

� dI
@�
Q

�
jSi ¼ XP

p¼1

logð2~|p þ 1ÞjSi: (22)

Results in the context of classical general relativity suggest
that Q is related to a Noether charge of the gravitational
effective action [17]. Together, these results suggest that
horizon thermodynamics could be a powerful tool for
studying quantum corrections to the gravitational action
in loop quantum gravity.
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