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Stability of an isotropic cosmological singularity in higher-order gravity
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We study the stability of the isotropic vacuum Friedmann universe in gravity theories with higher-order
curvature terms of the form (R,,R%’)" added to the Einstein-Hilbert Lagrangian of general relativity on
approach to an initial cosmological singularity. Earlier, we had shown that, when n = 1, a special
isotropic vacuum solution exists which behaves like the radiation-dominated Friedmann universe and is
stable to anisotropic and small inhomogeneous perturbations of scalar, vector, and tensor type. This is
completely different to the situation that holds in general relativity, where an isotropic initial cosmological
singularity is unstable in vacuum and under a wide range of nonvacuum conditions. We show that when
n # 1, although a special isotropic vacuum solution found by Clifton and Barrow always exists, it is no
longer stable when the initial singularity is approached. We find the particular stability conditions under
the influence of tensor, vector, and scalar perturbations for general n for both solution branches. On
approach to the initial singularity, the isotropic vacuum solution with scale factor a(f) = ©-/3 is found to
be stable to tensor perturbations for 0.5 < n < 1.1309 and stable to vector perturbations for 0.861425 <
n < 1, but is unstable as 7 — 0 otherwise. The solution with scale factor a(z) = £+/3 is not relevant to the
case of an initial singularity for n > 1 and is unstable as t — 0 for all n for each type of perturbation.
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L. INTRODUCTION

The study of the very early universe leads us to inves-
tigate what happens to our assumptions about the truth of
Einstein’s general theory of relativity when the curvature
of space and the density of matter and radiation approach
the fundamental Planck values defined by the constants of
nature, G, ¢, and h. The most natural extensions to explore
as generalizations of general relativity are the higher-order
theories of gravity that arise when the Einstein-Hilbert
Lagrangian is extended by adding powers of the scalar
curvature or the square of the Ricci tensor. As the Planck
epoch is reached, or passed, on approach to a cosmological
singularity, these higher-order terms are expected to domi-
nate the behavior of simple cosmological models. Any
evaluation of what are likely initial conditions during the
preinflationary era of a cosmological model should there-
fore be based on a full understanding of the general be-
havior of cosmological models in the presence of higher-
order gravity terms.

Contributions to the Lagrangian from powers of the
scalar curvature, R", are conformally equivalent to the
presence of a self-interacting scalar field and are under-
stood [1]. In an earlier paper [2], we considered the effect
on cosmological singularities of adding the quadratic Ricci
invariant R,,R? to the Einstein-Hilbert action of general
relativity. The purely quadratic Lagrangian gravity theories
that contain this invariant, but not the Einstein-Hilbert (R)
term, possess an isotropic vacuum cosmological solution,
in which the expansion scale factor, a(f), behaves as in the
flat Friedmann-Robertson-Walker (FRW) radiation-
dominated universe of general relativity, with a(r) = '/
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[3,4]. In the case of zero spatial curvature,' this vacuum
solution of the pure R,,R? theory therefore has the exact
metric:

ds? = —dr* + t(dx® + dy* + dz?). (1)

Thus, we see that the higher-order Ricci stresses induce a
behavior that mimics the effect of an isotropic blackbody
radiation stress, even though no physical stress of this sort
is present. Earlier studies of anisotropic, spatially homoge-
neous universes of Bianchi types I, II [4], and IX [5]
showed that this special isotropic solution is stable against
homogeneous anisotropic distortions as ¢ — 0. This sur-
prising situation is completely different to that encountered
in general relativity (GR), when the R,,R“® term is absent
from the action. In GR, the expansion and 3-curvature
anisotropies dominate the vacuum dynamics as ¢t — 0 so
as to produce anisotropic [6,7], and even chaotic [8],
dynamics. For all perfect fluids with pressure, p, and
density, p, satisfying —p/3 < p < p, the isotropic solu-
tion is unstable as  — 0 and hence such isotropic solutions
are special in GR [9]. This instability does not occur when
the R,, R term is present. On approach to the cosmologi-
cal singularity, the higher-order curvature terms render the
isotropic solution stable. This has all sorts of consequences
for physical cosmology. For example, it ensures that a
preinflationary state will likely be isotropic and it removes
the need for the introduction of an extra physical principle,

'The Friedmann radiation solutions are also exact solutions of
the pure R,,R? theory in the cases of nonzero spatial curvature

[4].
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like the minimization of a *““gravitational entropy” [10,11],
in order to enforce a special isotropic initial state.
However, it does suggest that a stable state of isotropic
contraction will be produced on approach to any future
singularity in a closed universe and that may be an awk-
ward conclusion for any theory of a gravitational entropy
governed by its own gravitational “Second Law”.

The addition of quadratic Ricci terms can also create
unusual evolutionary behavior, not seen in general relativ-
ity. Barrow and Hervik found exact solutions which display
anisotropic inflation [4,11]. These solutions do not have a
general-relativistic limit and are intrinsically nonlinear
with respect to the space-time curvature.

In our first paper [2], we extended the study of the effects
of an R,,,R* addition to the Einstein-Hilbert action to the
situation of anisotropic and inhomogeneous cosmologies.
Specifically, we investigated the behavior of small scalar,
vector, and tensor perturbations to the metric (1) as r — 0.
We found that there were no growing metric perturbation
modes of scalar, vector, or tensor sorts as t — 0. Thus, a
small perturbation of the isotropic cosmological solution
forms part of the general solution of the gravitational field
equations when the R,,R term is present: it is an open
property of the initial data space of the quadratic theory.

These results immediately suggest that we should inves-
tigate whether or not the stability of isotropic singularities
is maintained to higher order when we introduce additions
to the Einstein-Hilbert action of the form (R,,R*)". We
expect the situation for n # 1 to be more complicated
because there will no longer be a simple Gauss-Bonnet
invariant underlying the field equations. This question of
the stability of the n # 1 theories is the subject of this
paper. In the absence of the Einstein-Hilbert term, there is a
counterpart to the simple isotropic vacuum solution of
equation (1) in the case of general n, which was found
|

PHYSICAL REVIEW D 77, 103523 (2008)

by Clifton and Barrow [12]. This reduces to the solution (1)
as n— 1. It is the stability of this isotropic power-law
solution for general n that we shall investigate.

In Sec. I we give the field equations for the gravity
theory with an R + A(R,,R’)" Lagrangian and give the
exact isotropic vacuum solutions. These solutions have two
branches. We identify the physically interesting one that
describes an expanding universe and show that as n — oo
the exact vacuum solution approaches that of a dust-filled
general relativity solution with a(r) = */3.

In Sec. 111, we present the formalism for studying small
tensor, vector, and scalar perturbations of this special
vacuum solution in order to determine the conditions on
n for which it is stable as t — 0 and the initial singularity is
approached. In Secs. IV, V, and VI these stability analyses
are carried out for tensor, vector, and scalar perturbation
modes, respectively. The results are summarized and dis-
cussed in Sec. VII. A collection of useful quantities is
derived in the Appendices.

II. FIELD EQUATIONS

Consider a higher-order gravity theory with action
1
S = fd4x1 /“‘—g[—(R + A(R,,R)") + L, ]
X

where y, A, and n are constants. The field equations are
obtained using the general formula from Clifton and
Barrow [12] which expresses the higher-order contribu-
tions as an additional effective stress tensor:

Gy + 4Py =21}, @)

where

P¢ = —1y"gd + nRO(Y"™") + nY" 'ORY + 2ng°(Y"™") Ry, + ngg(Y"™' R+ 2(y"™Y) R, + 1y""'O0R)
— n((yn—l);bcR? + (Yn_l);caRZ + (Yn—l);bRca;C + gad(Yn_l);dRZ;c + (Yn—l)’CRca;b + (Yn_l),cgadRZ;d

+ Y"_l(g“dR;d;, + 2RacdbRCd))’

with ¥ = R*’R,;,, and G,, = R,, — $Rg,p is the usual
Einstein tensor.

We consider perturbations about a spatially flat, homo-
geneous and isotropic FRW spacetime with metric

ds®> = —dt* + a*(1)(dx? + dy* + d?), 3)

with aforementioned scale factor a(f) and associated
Hubble expansion rate H = %

In the limit where the Ricci term dominates, A — oo,
which we expect to be appropriate in the neighborhood of
the cosmological singularity where a — 0, provided n > 1,
the vacuum field equations reduce to P§ = 0. To back-
ground order, we have

Py = —Y""2{lY* + 6nY(2HH — 2H*> + 3H?H — 3H*)
+6n(n — 1)Y(QQHH + 3H?)}, @)

PY =0=pg, 5)

Pg=—Y"36403Y? + nY?(4H + 24HH + 12H*
+ 18H?H — 18H*) + n(n — 1)YY(8H + 36 HH
+ 12H3) + 2n(n — 1)(2H + 3H?)((n — 2)Y? + YY)}
(6)

Substituting for ¥ and Y in terms of H, H, ... gives
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P) = —72(12H? + 36H*H + 36H*)""X{H* + 6H*H> + 15H*H? + 18H°H + 9H® + n(—2HH?H — 6H>H H —3H°H
— 2H* — 15H?H® — 42H*H? — 36H°H — 9H®) + n>(4HH*H + 12H°H H +9HH + 12H*H’> + 42H*H*

+ 36H°H))}.

Hence, the Friedmann-like equation for this theory in vacuum is
0= HHOn% — 3n) + H3H H(12n? — 6n) + HH*H(4n* — 2n) + H*(1 — 2n) + H*H3*(6 — 151 + 12n?)
+ H*H?(15 — 42n + 42n%) + HOH(18 — 36n + 36n2) + H3(9 — 9n). @)

For power-law scale factors, a = ¥, and general values of n # 1, this implies

] p
\/gy Ork:_y

3

where the possible values of P are given by the two roots of a quadratic:

[)=PiE

The variation with 7 is displayed in Figs. 1 and 2. In the
limit n — 1, P_ — 3, and we obtain the special a = 112
vacuum solution of the quadratic (n = 1) case studied in
Ref. [2]. Note also that P_ rapidly asymptotes towards 2 as

n— 0o,

11 13
P.—2——— ———+0n™*), 9
3 182 216w T O

and the vacuum solution rapidly approaches the behavior
of the GR dust solution with a = 2/3, see Eq. (9). P (or its
real part) is greater than 3 only for the range —1 <n <

2

—0.390 388. For the choices k= Q, k= % + é\/g, we must
have n > 0, since 12H? + 36H*H + 36H* also vanishes.

The physically interesting cases relevant to an initial sin-

100

3(1 — 3n + 4n?) = 4/3(—1 + 10n — 5n% — 40n° + 48n*)
2(1 — n) '

50

®)

f
For comparison, in a perfect fluid-filled universe with

equation of state p = wpu, there is a flat FRW exact solu-
tion of the (R,,R?’)" theory where the scale factor is given
by

a(t) — t4n/[3(w+1)]. (10)

III. INHOMOGENEOUS PERTURBATIONS

We will now develop the formalism for studying small
perturbations of the spatially flat isotropic FRW solutions
of the (R,,R*)" theory, which generalizes the formalism
developed by Noh and Hwang for the quadratic (n = 1)
theory [13—15]. We are interested in the stability of the
spatially flat isotropic background FRW solution

gularity are those with k>0, i.e. solutions which are _ ,P/3
. . a(t) = 1777, (11)
expanding to the future. Finally, we note that an exponen-
tial scale factor with H = constant is possible iff n = 1. where
3.5
P, —
3
2.5
2 =
L5+
1 -
05
0
V
0.5

-100

FIG. 1. The variation of P, with n.

FIG. 2. The variation of P_ with n.
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_3(1 =3n+4n?) % V3(—1+ 10n — 5n% — 40n° + 48n*)

The general perturbed metric may be written as
ds> = —a*(1 + 2a)dn® — a®B,dndx®
+a2(8,p + Cop)dxdxP, (13)

where 7 is a conformal time coordinate that is related to
the comoving proper time, ¢, by dt = adn. We can decom-
pose the perturbation variables into their scalar, vector, and
tensor parts in the standard way, as in [2], by writing

B, =28, +2B,,

Ca,B = 2¢6aﬁ + 2’)/’0[’3 + 2C(a‘B) + 2C01,3

There are four scalar perturbation variables, «, B8, ¢, and
v, two vector variables, B, and C,, and one tensor, CaB.
The quantities B, and C, are divergence-free, i.e. B¢ , =
0=C%,, and C,p is transverse and trace-free. These
three types of perturbation evolve independently of each
other at linear order. We will determine the equations
which describe their time evolution and then solve each

of them to determine whether the metric perturbations to
|

P:P+

2(1 — n)

12)

[
the special solution are stable as t — 0. In the n = 1 case
the problem, the equations, and their solutions will reduce
to those of [2]. In this way we establish the ranges of n
values for which the special isotropic vacuum solution is a
stable initial condition for the higher-order theory.

IV. TENSOR (GRAVITATIONAL-WAVE)
PERTURBATIONS

The expansion of the metric around the spatially flat
Friedmann solution now takes the form

ds? = —di* + a*(8,p + 2C,p)dx“dxP.
The tensor C, g is trace-free and transverse, i.e.
a=0=0Cz, (14)

and C = C(x, 1).

The n = 1 case was solved exactly in [2] for perturba-
tions about a(f) = ¢'/2. Here, we want to perturb an iso-
tropic background solution which has a(r) = /3 with

_3(1-3n+4n?) % V3(48n* — 40n° — 5% + 101 — 1)

2(1 — n)

(15)

The important quantities to linear order in the perturbation are given in Appendix A. In the limit where the higher-order

terms dominate, the perturbed field equation is

s o . ) . o A o
8P% = —nY I(CB + 6HE + 3HC — 3H + 21HH + 18H*)CY — 25 C5—2H—Cp

A

: A\ A " : A A
2 a) _ n—1). a a 20a _ a a
+ (4H + 8H” + ) 5 CB) n(Y )(2C,3 +OHCE +3HCE —25Ch+ H; CB)

aza

. A
- n(Y”")"(C% +3HCG - —zcg)
a

(16)

A. Large scales

In the long-wavelength limit, on superhorizon scales, we can neglect terms involving AC, A2C, and AC.
For a(f) = /3, we have H = £ and Y() o 1, so the equation for the perturbations becomes

c4 P2\ C4
0=58P§ = —nY'H{cg +(—8n+8+ 2P)TB + (16n2 —28n + 12+ 12P — 12Pn + ?)l—f

+ (16Pn2 — 28Pn + 10P + 3

and so

11P2 4P°n 2P3> C;g}

(17)

3)7
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P2
0= A()@ +(—8n+2+2P)A% + (—4n — 1+ 16n%* +6P(1 —2n) + ?)/\ — 2+ 12n — 16n% + P2 — 16n + 16n3)

10 4n\ 2
+ P —— ——P3). 18
(3 3 ) 3 (18)
The four roots of this are
A=0, A Ay, (19)
where
A =14 £y, (20)
AM=—-1—P+4n 2D
1, )
)\ZE?P — 14P +8Pn + 9 — 24n + 16n
_ 464n* — 392n% + 9n® + 64n — 13 = (36n> — 11n — 3)y/3(48n* — 40n° — 5n®> + 10n — 1) (22)
2(1 — n)? '
I
Ay and A, are real whenever P is real, ie. had

n & (—0.47942,0.110873).% For A. to be real, we need
A, = 0.

We are interested in the signs of the possible values of A
in order to determine the behavior of gravitational-wave
perturbations of the isotropic solution as t — 0. If any
N(A;) <0, the solution is unstable as t — 0. Otherwise,
we need to look at the stability problem to second order,
due to the presence of the zero eigenvalue. For reference,

we recall that for the n = 1 theory, studied earlier [2], we
|

C(x,1) « a+ Bt'/2 + yt + 62

and there were no diverging metric perturbation modes as
t — 0. Let us now analyze the situation in the more com-
plicated n # 1 case.

B. Solutions with P = P,

First consider the case P = P, so that

P

_ 301 -3n+ 4n?) + J3(—1 + 10n — 5n% — 40n° + 48n*)

2(1 —n)

for which the stability is decided by the quantities

_ =20n% + 197 — 5 — /3(=1 + 10n — 5n> — 40n° + 48n*)

A= 2(1 — n)

A

>

_464n* — 3921 + 9n® + 64n — 13 + (36n* — 11n — 3IWV3(—=1 + 10n — 5n% — 401> + 48n?)

2(1 — n)?

The values here and in the tables that follow are approximate numerical roots of the appropriate polynomials.
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Values of A; for different values of n # 1, taking P = P

P, Ay Ay A Remarks
n < —1.30084 R>0 R<0 R>0 R>0 R<0 Unstable as ¢t — 0.
—1.30084 <n< —047942 R>0 R<0 R>0 R<O0 R<0 Unstable as t — 0.
—0.47942 <n<0.110873 C, R(P,)>0 C, R(A)<0 C C C Unstable as t — 0.
0.110873 <n<0.452692 R>0 R<0 R<0 C R(A;)<0 C, R(A_)<0 Unstable as t — 0.
0.452692 <n<0.5 R>0 R<0 R>0 R<O0 R<0 Unstable as t — 0.
0.5<n<1 R>0 R<O0 R>0 R>0 R<O0 Unstable as t — 0.
n>1 R<0 R>0 R>0 R>0 R<0 Universe contracts. P, <0

From the above table and Fig. 3 we note that, for the
solutions with a(r) = ¢7+/3, there is always a negative
eigenvalue, so are unstable for any n as t — 0. For n > 1,
P, <0, so this corresponds to a contracting universe, in
which we are not interested here. However, we have
NR(Py)>3 for 1>n>1and n <%ﬁ, so we need to
be careful that the instability for these #n is not arising from
the negative curvature contribution characteristic of the
Milne universe. We expect the overall assumption that
the higher-order Ricci terms dominate the GR terms in

J

|
the neighborhood of the initial cosmological singularity to
hold so long as n > 1/2.

C. Solutions with P = P_

Now consider the second case, with P = P_, which
turns out to be the most physically relevant for considera-
tion of the effects of higher-order (n > 1) corrections. We
have

P

_ 30 -3n+ 4n?) — J3(—1 + 10n — 5n% — 40n° + 48n*)

2(1 —n)

with the stability decided by

_ —=20n% + 197 — 5 + /3(—1 + 10n — 5n> — 40n° + 48n*)

Al 2(1 = n) ’
464n* — 392n% + 9n? + 64n — 13 — (3602 — 11n — 3)W3(—1 + 10n — 5n% — 401> + 48n%)
/\2 = .
2(1 — n)?
Values of A; for different values of n # 1, taking P = P_
P_ Ay Ay Ay A_ Remarks

n<-—0.47942 R>0 R<0 R>0 R<O0 R<0 Unstable as ¢t — 0.
—0.47942 <n<0.110873 C, R(P_)>0 C, R(A))<0 C C C Unstable as t — 0.
0.110873 <n <0.159452 R>0 R<0 R<0 C R(AL.)<0 C,R(A_) <0 Unstable as t — 0.
0.159452 <n<0.169938 R >0 R<0 R>0 R<O0 R<0 Unstable as t — 0.
0.169938 <n <0.25 R>0 R<0 R>0 R>0 R<0 Unstable as t — 0.
0.25<n<0.5 R<0 R>0 R>0 R>0 R<0 Universe contracts. P_ <0
0.5 <n<0.520752 R>0 R>0 R>0 R>0 R>0 Stable as t — 0.
0.520752 <n<0.989666 R>0 R>0 R<0 C, R(AL)>0 C, R(A_)>0 Stable as t — 0.
0.989 666 < n < 1.1309 R>0 R>0 R>0 R>0 R>0 Stable as t — 0.
n>1.1309 R>0 R>0 R>0 R>0 R<0 Unstable as t — 0.

We saw that for n > 1, P, <0, so for an expanding
universe, the only relevant value for P with n > 1is P =
P_. As shown in Fig. 4 and the above table, this solution
can only be stable as r — 0 if

1 2
% <n< \/Ecos[g arccos( ):I =~ 1.1309. (23)

I
In particular, for all integers n > 1, the exact isotropic

solution with a(r) = 1-/3 is not a past attractor as 1 — 0.
Thus, it appears that the quadratic (n = 1) case studied
earlier was exceptional and the stability of the isotropic
singularity found for that case does not extend to higher-
order corrections to general relativity with n > 1.
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FIG. 3. Power-law exponents, A;, A., versus n for tensor
perturbations with P = P,.

V. VECTOR (VORTICAL) PERTURBATIONS

‘We have shown that for gravitational-wave perturbations
there is a very small range of values of n, given in Eq. (23),
for which the perturbations are stable as t — 0. We now
consider the vortical perturbations, which are of vector-
type. The metric is

ds? = —di* = 2aB,dtdx® + a*(8,p + 2C(4 p))dx*dxP,

where B¢ , =0 = C“,.
The energy-momentum tensor is decomposed as usual
(161,

Tab = MU Uy + phab + 9alp + drUa + Tabs (24)

where h,, = g, + Uiy, qu’ =0= m7,,ub, and 7¢ =
0. The fluid four-velocity u, and the energy flux ¢, are
decomposed as (using ¢ as the time variable, index “0”
denotes 1)

-10

FIG. 4. Power-law exponents, A,
perturbations with P = P_.

A, versus n for tensor

PHYSICAL REVIEW D 77, 103523 (2008)

u =1, uyg = —1, u® =alve,
(25)
Ug = a(va - Ba)’ q0 =0, Go = aQq.
The energy-momentum tensor is then
79 =(u+ p)|V, + Ou - B 8T% =114
a M~ p a M + p a ) B B
(26)
We can also decompose the perturbation variables as
B, (x, 1) = b(1)Y,(x), C, =cY,,
AY, = —kY,  V,=vY,, @7)
Qa = qu H% = pWTYE
and introduce the gauge-invariant variables [14]:
K1+4£é¥~—3a=:(v+ 1 —b)xxzzbyw
mtp mtp
(28)
Qa /A / =
Vo, + +C,=|v+ + )Y, =v,Y,,
M+ p mt+p
(29)
B, +Co= (v, = v,)Y, = VY, (30)

where a prime denotes a derivative with respect to the
conformal time variable 1; v, and v, may be interpreted
as the velocity variables related to the vorticity and the
shear, respectively.

We will work in the ““ C-gauge’ i.e. we set C, = 0,
which completely fixes the gauge condition. Then, using
the quantities presented in Appendix B, we find that the
perturbed parts of the tensor P}, are

B

5P) =0, 31)

A. HA. . A
Pg=nW”{—Ba+——Ba—QH+4H5—Ba
2a 2 a a
2

A A A
———&4+mw ﬂ—3a+H—m} (32)
243 2a a
1[5 " :
a — _ n—1 (a a _ 2
8P% = —nY Zpym+ymﬁw @H+6H

(a _ 3\ pla
+ az)B B 4(H + 6HH + 4H*)B »B)}

1. .. . .
—nOm_W—{ZBWBy+5HBWB)—<2H¥+4H2
p : :

A .
_ (CY — —1).. _ (a (a
+ﬁﬁ’d P (B B )

(33)
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Combining the equations (26)—(33), we have A. The A — oo limit
AB A 1 Y In the limit A — oo, where the GR term can be neglected
0 — _ a n—1}] = _ _ — ?
Ta 2a + A[nY {2a Bo + 2 ((n Dy ™+ H) and the higher-order Ricci terms dominate, we have
A . Y ) A
X =B, + ((n ~DH, - (H+ 4H2))—Ba Qn=4=CPR) = + - (4 4n + )\If + };(9 — 6n
a a of
AZ k2
_271330‘}] —2Pb + 2P/3\I}
=alp + pv,Y,, (34) (37)
1 . where we have defined the constant
- zpﬂ-T - kz 3 [a (M + P)U ] (35)
~ 20 9 n—1
and so for vanishing anisotropic pressure of the matter part, Q=- k2 \4P%(3 — 3P + P?) :

pmy = 0, angular momentum is conserved exactly as in
the quadratic case and a’T% = QVY,(x) is a constant in  If we take the long-wavelength limit, i.e. we drop the last

time. term on the right-hand side, then we have to solve
For a=1"3 H=2% and Y =45 (3 -3P + P?) i i N
t~*, so we have therefore Qrn=27CPR) = 2 + t<—4(n -+ g)‘I’
AT, 1 P 2
0 — n—1 _ 2 4p
R L (R S #3(cemnror =)

1 8P? 8Pn A : i '
+ = (4P B T)Ba - TBBQ}. (36) The complementary function (left-hand side = 0) is
t ! solved by W = ¢¢, where

2
O=§2+<3—4n+ )§+ (4Pn+6P—4§)

1 P
—¢=f.=(9-P+ 120 %+ 4[3(27 — 72n + 48n% — 42P + 24nP + 11P2)) = A, e

where the A; were defined in (21) and (22), and for stability as r — 0, we need 0(£;) = 0. The additional mode from the
particular solutlon has W ~ &1, where ¢, = 4n — 2 — % = A+ P — 1. The signs of these exponents for different values

of n are summarized in the tables which follow and their values are plotted in Figs. 5 and 6 for P, and P_ respectively.

1. Solutions with P = P,

For P = P, ,wehave R(¢,) = Oforn = landn = — 3, while 2(£_) < 0 for all . Finally, for the particular solution,
the exponent ¢, is positive for n > 1 and negative (and hence unstable as t — 0) for n < 1. Thus, for the solution branch

P = P, the vector modes are unstable as t — 0 for all values of n.

Values of ¢; for different values of n # 1, taking P = P

P, &L & & Remarks
n<-1 R>0 R>0 R<0 R<0 Unstable as t — 0.
—%<n<—0.47942 R>0 R<0 R<O0 R<0 Unstable as r — 0.
—0.47942 <n<0.110873 C, R(Py)>0 C, R(£,)<0 C R(£)<0 C R(£)<0 Unstable as r — 0.
0.110873 <n < 0.452692 R>0 C R(£)<0 CR(E)<O0 R<O Unstable as t — 0.
0.452692 <n<0.5 R>0 R<0 R<0 R<O0 Unstable as t — 0.
0.5<n<1 R>0 R>0 R<O0 R<0 Unstable as t — 0.
1<n R<0 R>0 R<0 R>0 Universe contracts. P, <0
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FIG. 5. Power-law exponents, ¢&;, &, versus n for vector

perturbations with P = P,.
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FIG. 6. Power-law exponents, &,
perturbations with P = P_.

&+, versus n for vector

2. Solutions with P = P_

For P=P_,N(¢,) = 0fory =n =Jandn = 0.861425, N(£-) = 0 for 0.861425 = n = 1, while &, is positive for
n > 0.5 and negative for n << (0.5. For this branch, the vector perturbations are stable to linear order as t — 0 for

1 1 316
l=n= —(25 + 2+/23 sinh[—arcsinh(—)]) =~ (.861 425
3 23+/23

36

and are unstable for all other n.

(38)

Values of ¢; for different values of n # 1, taking P = P_

P_ & & & Remarks

n < —0.47942 R>0 R<O0 R<0 R<O0 Unstable as t — 0.
—0.47942<n<0.110873 C, R(P_)>0 C, R(£,)<0 C R(£)<0 C,R(£2)<0  Unstable as t — 0.
0.110873 < n <0.159452 R>0 C, R(E£H)<0O C R(EH<O R<O Unstable as t — 0.
0.159452 < n <0.25 R>0 R<0 R<0 R<0 Unstable as t — 0.
0.25<n <05 R<0 R>0 R<0 R<0 Universe contracts. P_ <0
0.5<n<0.520752 R>0 R<0 R<0 R>0 Unstable as t — 0.
0.520752 < n < 0.861 425 R>0 C R(E£H<O0 CR(EH<O R>0 Unstable as t — 0.
0.861425 < n < 0.989 666 R>0 C,R(£)>0 C R(EH)>0 R>0 Stable as t — 0.
0.989666 <n <1 R>0 R>0 R>0 R>0 Stable as t — 0.
1<n R>0 R>0 R<0 R>0 Unstable as t — 0.

VI. SCALAR PERTURBATIONS

We will now consider scalar perturbations. The metric
for the general scalar-type perturbation takes the form

ds® = —(1 + 2a)dr> — 2ap, o dtdx® + a*(8,5(1 + 2¢)
+ 2y 4p)dx“dxP. (39)

We use the proper time, ¢, as the time variable and also
define the quantities, y =a(B+ay), f=Y"'=
(R,,R™)"~1. We use overbars and deltas to denote back-
ground and perturbed quantities, so that in general, A =
A + 8A, and in particular f = Y"1, §f =(n—1)Y""268Y.
The important quantities to linear order in the perturbation
are given in Appendix C.

In the unperturbed background metric, we use a syn-
chronous time coordinate, i.e. we relate time to the world-
lines of fictitious freely falling dust particles, and so we are,
in effect, referring our results for the perturbations to them.
Under gauge transformations, the perturbed order variables
a(x, 1), ¢(x, 1), and x(x, t) depend only on the temporal
gauge transformation; they are spatially gauge invariant
[15]. Using the gravitational field equations, we obtain the
complete set of equations for the perturbed variables which
are presented here without imposing the temporal gauge
condition, i.e. the equations are presented in a gauge-ready
form. In the discussion that follows, we will take advantage
of the right to impose the temporal gauge condition to
make a useful simplification, in so doing completely fixing
the temporal gauge degree of freedom.
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Energy:
2

I 1 . .. ) ) . A A
SPY = nf[— §8Y + 12H%@ + 6(2HH + 3H?)& + 242HH — 2H? + 3H?H — 3H*)a — 2(8H + 17TH*) S a — 2—
a

a
Cl4

: . " : . A . A : A A?
— 12H¢ + 6(4H — 3H*) ¢ — 12(H + 3HH — 6H)p + 4= ¢ +24H— ¢ — 4(H + 5H?) = ¢ —2— ¢
a a a a
A : WA " : 5 A A% A? N .
—4H — x + 2(4H + 5H*) — x — 4(H + 5HH — 5H —2X+2—4X+2H—4X]+nf[12H & +24HQ2H
a a a a a

A

A . . . A . A ]
+3HY)a + 4H S — 12H$ — 6(2H + 9HY)p + 4H = ¢p — 4H— y — 22H + SHZ)—ZX] + n[6(—2HH
a a a a

+ 2H? — 3H?H + 3H")6f — 6H(2H + 3H?*)Sf + 22H + 3H2)A26f]
a

Momentum:

_ . . . A A . . A
P = nf[—4Hd —12(H + H)a — 12(H + 4HH)a —2—a + 4H S a +4¢ + 12Hp + 24H ¢ —2— ¢
a a a

A A A : A - . A . ,
+8H—=¢ +2— i —2H—x +2(H —4H2)—2)(] + nf[—4Hd —6(2H +3H)a —2—a +4¢ + 12H
a a a a L a

A A A i . .. )
- 2?¢> + 2?)'( + ZH?)(] +2n(2H + 3H?)8f , + 2n(2H + 6HH — 3H?)8f ,

a

Trace:

= . A ) A A A - .
SPe = nf[lZHd +24QH +3H)a + 45 a — 124 —36H) + 45 — 45§ — 4H—2)(] + nf[24Hd +4202H
a a a a

. . A A . ) . A .
+3H?*) & + 48(2H + 9HH + 3H*)a + 8 & — 12H— a — 24¢ — 108H¢ — 108(H + H*)p + 16— ¢
a a a

A A A i A — . .. )

— 16H?q§ - 8?)(—4H;X — 4(5H — Hz)?x] + nf[le'd +24(2H + 3H?)a + 36(2H + 9HH
. . . . A A . S A A2
+ 3H’)a + 24(2H + 12HH + 9H* + 18H°H)a + 4—a — 16H - & — 4(5SH + TH*) s a —2— a — 12¢
a a a a

) " .. o A A . A A? A
— 72H¢ — 108(H + H?*)¢p — 72(H + 3HH) ¢ + 16?¢’> + 16H;d) — 8(2H + Hz);gb - 6?¢> - 4?)2

. A .. A A2 AZ . ) . )
—12(H-H)—x—8QH -~ H)Sx+2—x + 6H—4X] —6n[8f(2H + 3H?) + 26 f(2H + 9HH + 3H?)
a a a a

. . . . A
+ 8f(2H + 12HH + 6H* + 9H*H — 9H*)] + 4n(H + 3H*) = &f
a

Trace-free:
1 1 = = . .
Pg——éng=%(V“VB——5;§A)I:f[a+qS—)'(—HX]+f[2d+3Ha—2¢—H¢—2)'(—H;'(+(4H
3 a 3
5 I . ) 5 A . . ) ) A
+TH*)x]+ fla +5Ha + (4H + 8H*)a + wa —5¢ — 17THp — (4H + 8H*)p + 3¢ — ¥
a a
i . .. . 3 A A i ,
+ (6H + 9H?)x + (SH + 21HH + 8H )y — — x —3H — x | — 2(H + 3H*)5f |,
a a
with
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. . . ) A . . . .
8Y = —12H(2H + 3H?)& — 48(H* + 3H*H + 3HY)a — 4Q2H + 3H*) S a + 12(2H + 3H*)¢p + T2H(H + 2H?)¢
a

. A . A ) A
~ 8(H + 3H) 2+ 4QH + 3H)  f + BH(H +3H) . (40)
The special unperturbed solution has a = /3, H = £ and ¥ = %(3 — 3P+ P?) o t74,

Linearizing about the special solution in the zero-shear gauge

We now take the large-scale limit and choose the zero-shear gauge (y = 0) and linearize about the special flat FRW
solution with a = ¢#/3. For P = P., the equations simplify to

Energy:
0 4P2 0 n—2 8P4 o) 9} . .
SPY=n W(3—3P+P) ﬁ(—6+6P—P +n(12 — 12P + 3P?))Hta + 2 —4n + P)a
3 . . .
- ;(tzg{) +(5—4n+P)tp +(4—8n+ 2P)¢>)}
Momentum:
0 4p? 2\ 2 [8P° > > . .
5P) = n(wG _3p4p )) {ﬁm 6P+ P2 — n(12— 12P + 3P ))}va{m 4 (1 —4n+ Pl
- %(ﬂé&' @ —dn+ Pyd+ (2 —8n+ 2P)qs)}
Trace:

4p? n=2r 8 p3
5T = n(WG _apy Pz)) [897(—6 L 6P — P2+ 3n(P — 2)2)][1‘252 L (4 8n 4 2Pt + (2 — 4n + P)(1

—dn+ P)a = S(BF + 8= 80+ 2P)F + (T dn+ PY2 = dn+ Pidh + 22— dn + P)(1 —dn + P)d)):l
Trace-free propagation:

1 (4P2

9r*

4p?

1

612

n—2 1
(3-3P+ PZ)) (vavﬁ = gégA)[

16P2
81¢°

4p?
(3-3P+ PHa+ ﬁ(n — 69P + 27P* — P?

+6n(—12 + 14P — 7P> + P3))a +

(3—3P+ P?)(27 + 12P — 4P? 4+ 3n(—21 — 5P + 2P?)

4p? . 4p?
+36n%)a + 97(—3 —3P+ P2 +6n(-2+3P—P?))p + ﬁ(—n +57P — 33P* +7P?

16P2
8140

+12n(2 — P)(3 — 3P + 2P%))¢ + (3 =3P + P?)(27 — 2P? + n(—63 + 3P) + 36n2)¢].

[
The energy and momentum equations together imply that 3
a=5ld+p)dit?t+(1+p)ot? +(1+p)¢-17]

3 . B 27 —2P? 4+ n(—63 + 3P) + 36n? é
a=pld+ ¢+ a) “1) 27+ 12P — 4P” + 3n(—21 — 5P+ 2P) + 3602 *
where « is a free constant. In addition, this also satisfies (43)
the trace equation. P P
Finally, we use the trace-free equation to calculate that p=-3+4n— 3 =& + 3 1=+ 2(7 — 1)
¢ = ot P11 + PP+ p_tP-, 42) (44)
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FIG. 7. Power-law exponents, pj,
perturbations with P = P.

p=+, versus n for scalar

10

FIG. 8. Power-law exponents, pj,
perturbations with P = P_.

p=+, versus n for scalar

1
P+ Eg(—ls +12n+ P

+ /327 — 42P + 11P2 — 720 + 24nP + 482?))

=§t+£—1=/\¢+2(§—1), (45)

3

where ¢, ¢, and ¢ are free constants, and £+ were
defined in (38). We note that these are the same power-law
exponents as for the vorticity perturbations plus g— 1.
These exponents are shown in Figs. 7 and 8. For all n,
and either choice of P = P, at least one of these expo-
nents has negative real part, and hence the isotropic vac-
uum solution is unstable as r — 0.

VII. SUMMARY

We can now summarize the results for the linearized
tensor, vector, and scalar perturbations about the spatially

PHYSICAL REVIEW D 77, 103523 (2008)

flat vacuum FRW solution (11) of the theory with
Lagrangian (R,,R%)". The general perturbed metric in
the neighborhood of the isotropic vacuum solution a =
/3, given by Eq. (11), has the form

ds?*=—(1+2a)d?* — aB ,dtdx" + a2(6a5 + C’aﬁ)dx“dxﬁ,
(46)

and the perturbation variables may be decomposed into
their scalar, vector, and tensor parts by writing

B,=2B,+2B,

Ca/} = 2¢5aﬁ + 2'y,a,3 + 2C(a,B) + 2Ca/3'

In the gauge defined by f=0=1vy and C, =0, the
general solution of the linearized equations is given by

4 = aj(x) + t"'b%(x) + cp(x) + t’\*dg,(x) 47

B, = £+ YV (x) + - Y2 (x)

30
_ £ vy0)
23_6P TP —6nteup) T2 8
b = ¢o(x) + 1 (X)tP + P (X))t + p_(x)t*-  (49)
3
a = agpy + F{(pl + Dep P + (py + Dp 1P+

+ (p- + Dp_rtP-}, (50)

where

11
A2=9—14P+?P2—24n+8Pn+ 16n>

1
Ae =20 =41y

P
=A==
fl 1 3

P
=+2(=—1
pi=+2(5-1)

B 27 —2P? + n(—63 + 3P) + 36n>
27+ 12P — 4P? + 3n(—21 — 5P + 2P%) + 361"

ag =

For the solution branch defined by P = P, each type of
perturbation (tensor, vector, and scalar) is unstable as t —
0 for all values of n. For P = P_, which is the only
physically relevant value of P for n > 1, the tensor pertur-
bations are stable to linear order as t — O for
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% <n< \/Ecos[% arccos<_;/§)] =~ 1.1309

and the vector perturbations are stable to linear order as
t — 0 for

1 1 316
l=n=—(25+2v23 sinh[— arcsinh(—)])
36 ( 3 23423

~ (0.861425.

For all other n, these perturbations are unstable as ¢ — 0.
The scalar perturbations are unstable as ¢t — 0 for all n.
In conclusion, in our earlier work [2], we discovered that
isotropic cosmological models in theories of gravity
formed with a quadratic Ricci term added to the
Einstein-Hilbert action are stable on approach to an initial
“big bang” singularity. This is quite different to the be-
havior of general-relativistic cosmological models, where
isotropy is strongly unstable in this limit in vacuum [6,7].
In this paper, we have analyzed the more complicated
problem of cosmological evolution in the presence of
arbitrary powers of the Ricci term in the Lagrangian. We
have found that the behavior displayed in the quadratic

FOO(B = az[H((Salg + 2C£¥,B) + Caﬁ],
gT°  =3H,  RQ=3(H + H),

R =6(H + 2H?),

I, =Hb6% + C5,
R =R%, =0,

Y = R{R, = 12(H* + 3HH? + 3H*),

PHYSICAL REVIEW D 77, 103523 (2008)

case was special. Isotropic power-law solutions of the sort
found by Barrow and Clifton [12,17] still exist in vacuum
and with a perfect fluid when a term proportional to
(R,,R*™)" is added to the Einstein-Hilbert action for gen-
eral n # 1. However, both solution branches of these spe-
cial isotropic solutions are unstable to the growth of small
metric perturbations as t — 0, and so the quadratic case
with n = 1, in which these perturbations are bounded in
this limit, is special.
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APPENDIX A: RELEVANT TENSOR QUANTITIES
USING ¢ AS THE TIME VARIABLE

Using ¢ as the time variable and H = %, the important
quantities to linear order in the gravitational-wave-type
perturbation are

I, =C%, +C% 5= Cp" I' = 0 otherwise,
: i ) A
a — 2\ Sa a a a
RB—(H+3H )6/3+C,3+3Hcﬁ ;Cﬁ"

RRO o= —3(H + H*)(H + 3H?),

ReR® ,, =0 =R“R" 0, R“R* ;5 = —(3H* + 8HH? + 9H*)8% — (3H + 2H*)Cy — (TH + 6H*)HC '}

. A
+ (H + 2H?*) = C¢,
( )a2 B

VoR) = 3(H + 2HH),

VoR§ = 0= VyR), = VR,
A

§ . e U N .
VoRf = (H + 6HH)8f + T + 3HCH + 3HC — — Cj + 2H - Cp,

. ) o . A .
VsRY, = a2|:—2HH5aB + HC 5 + BH* = 2H)Cop — H(4H + ?)Caﬂ], V4R = 6HH,

V.R,=3(H+4HH), VgR: =0,

ORS = —3(H + 5HH + 2H? + 2H?H),

CIRY, = 0 = OIR,

. . . ) : A g
ORy = —(H + 9HH + 6H* + 22H*H) 6% — (Dg +3HD} — <2H2 + —Z)Dg) — 8HHCS,
a

) A
Dy =C5+3HC——Ch OR

and for any scalar function f(z) of time only, it holds that
f(t);aﬁ = _(H8aﬁ + Caﬁ)fr f(t);o() = _f’

Thus, since Y = Y (),

—6(H +7HH + 4H?* + 12H*H),

f@0.4=0=f0’,  Of@t)=—f—3Hf.

O™ Y =0-nY"3(n—-2Y>+YY + 3HYY).
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APPENDIX B: RELEVANT VECTOR QUANTITIES USING ¢ AS THE TIME VARIABLE

Using ¢ as the time variable, H = % and B B = %(B“) gt B B'“), the important vector quantities to linear order in the

perturbation are

1 .
Y, =0, Y, = —aHB,, [0, = a’Hbop + aBap), ry = —E(HB“ + B9),
re, = H6% — ! (B* , — B,l%) ¢ = aHB"6 re,=0  RY=23(H+ H? R) = — AB,
g~ MO T H s P By — @ By’ ac = 0= . «= T 50
— § A\ B a — (L 2\ Sa 1 2 n(a . — : 2
Ry = 2H+2—az7’ RB—(H+3H)5B+$(aB ,B)), R = 6(H + 2H?),

. . . : A
Y = R{R, = 12(H* + 3HH* + 3HY), = R“R°,, = —3(H + H*)(H + 3H?),  R“R’,,, = HZEBQ,

. . 1. . 4 .
Re4Re = —(3H% + 8HH? + 9H*)6% — —(3H + 2H?)B'* , — —(HH + H?)B*
cdB B a ,B) a .B)

VoR) = 3(H + 2HH), VR = 2aHHB, — SoBat H=B,  VoR§ = 0(B),
. i sar Lapa v 3H ahw . A
VoRy = (H + 6HH)S + 5 (a’B' p)) = —3(a’B" ), VyRy = aH(2H + — By,

. . . A . ) .
VpRo = —2a°HHS ,p + G[HBm,ﬁ) — 2(H — H*)B(a,p) — z—azBa,ﬁ], VgRE =6HH,  V.R§=3(H +4HH),
V.RE— L (2B® ) —an(2mBss, + 2 (BPs.. + B.SP VRE— 25 —an(om +2)s
ally ;(a ’y),a) a ay 2712( ay % a) s pha —% a—a ? @
A2

.. ) ) A A . . A
V.RS =0, DRS = —3(H + 5SHH + 2H? + 2H*H), OR)=—B,+H—B,—2(H+H*»)—B, — ~——Ba
2a 2a a 2a

.. . ) 1 3H 1 . A 1
a — _ 2 2 a _ 2 pla a . 2 2 pla -
ORG = —(H + 9HH + 6H* + 22H*H)5% ;(a B! 8 +?(B< 8 +$<3H + 2H +;)(a B! ) -
) AN L
X <8HH + 2H ;)B B

and for any scalar function f(z) of time only,

. 1 " . 1 . . .
f(t);o() = _f’ f(t);oa = 0’ f(t);ao = _EBa(f - Hf)r f(t);alg = _<H6aﬁ + EB(QB))f’ Df(t) = _f - 3Hf
Note that R = R(z) and Y = Y(r) are the same as in the gravitational-wave case.

APPENDIX C: RELEVANT SCALAR PERTURBATION QUANTITIES

Taking ¢ as the time variable, the metric takes the form

ds?* = —(1 + 2a)di* = 2aB ,dtdx® + a*(1)(8,5(1 + 2¢) + 2y ,5)dx*dxP.

The important scalar quantities to linear order in the perturbation (using H = ¢, y = a(B + ay)) are
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Fgo =a,
[0, = (a — aHP) 4
I, = a2[5aB(H —2Ha +2H¢ + ¢) + (2H'y + %) aﬁ],
1 .
Ty = zla —alB —ap),
a a I Sa .o
Log = HOG + ¢6% + 7o,
I, = aHB'“éM + ¢ 05+ ¢ oy — d’la(s/;y + ¥%y
[, =3H + &+ 3¢ + Ay,
e =(a+3¢ +Ay),,
. A
g“T% =3H —a—6Ha +3¢ +—x,
a
1 .
gl = —(—a+aB +2aHB — ¢ + Ay)le,
a
0 . s ) . 5 A . A
Ry=3(H+ H*) —3Ha —6(H + H)a — = a + 3¢ + 6Hd + = %,
a a
R(L)v = _2(Ha - ¢),a;
2 . .
R =5 (Ha — ¢+ aHp)*,
. ) ) . ) . A A 1 . |
Rz =\H+3H>—Ha —2H+3H)a+ ¢ +6H) —— ¢+ H— x)o5 + 5 (—a— ¢+ x+Hy),
a a a
. 5 _ . 5 A . . A A A
R =6(H+2H*) —6H& — 12(H + 2H)a =2 —a + 6¢ +24Hp —4—5dp + 25 x +4H > x,
a a a a
Y = R¢R},
. . . . . . A
= 12(H* + 3H*H + 3H*) — 12H(2H + 3H*)& — 48(H* + 3H*H + 3H*)ae — 4(2H + 3H*) S a
a
) o . o ) 5 A ) WA . A
+12Q2H + 3H*)¢ + T2H(H + 2H*)$p — 8(H + 3H*)— ¢ + 4(2H + 3H?) = x + 8H(H + 3H*) 5 x
a a a
=Y + 67,
with ¥ = 12(H? + 3H*H + 3H%),

. . . . . . A
RRY = —3(H*> + 4H?H + 3H") + 6H(H + 2H?)& + 12(H* + 4H*H + 3H")a + 2(H + 2H*) S a
a
. N . N . 5 A i WA : 5 A
—6(H + 2H*)$ — 12H(2H + 3H*)¢ + 4(H + H*) = ¢ — 2(H + 2H*) — y — 4H(H + H*) = x,
a a a
RR°,, = 4H*(Ha — @),
. . . . ) ) A
R“R® 45 = —(3H* + 8HH? + 9H*)8% + 6;[(6HH + 8H%)a + (12H? + 32H?H + 36H*)a + (H + 2H*) S a
a
. N . N . 5 A i A . 5 A
— (6H + 8H*)¢ — (16HH + 36H*)¢ + (H + 6H*) = ¢ — (H + 2H*) = x — (HH + 6H?) = x
a a a

1. . . . .
+—[(3H + 2H*)a + (H + 2H*) ¢ — (3H + 2H?)y — H(H + 2H?) x]\* ,
a

103523-15



JONATHAN MIDDLETON AND JOHN D. BARROW PHYSICAL REVIEW D 77, 103523 (2008)
. . . . . A A . .. A
VoRY = 3(H + 2HH) — 3Hé& — (9H + 6H*)a — 6(H + 2HH)a — ?a + ZH?a + 3¢ + 6Hop + 6H ¢ +;)'g
A
_ZH?X,
VoRY, = [-2H& + 2H? — 4H)a + 2 — 2H + 2aHHB]
VRS = ;[2Ha + (4H — 2H®)a — 2¢ + 2H¢ + 2a(H — HH)8]'*,
. . . . . . . A A
VoRg = (H + 6HH)8% + 5;;[—}1& —3(H +2H*)& — 2(H + 6HH)a + ¢ + 6Hp + 6H p ——  + 2H— ¢
a a
A . A 1. . ) , . -
~I—H—2,\/~I—(H—2H)—2)(]+—2[—a+2Ha—¢+2H¢~I—){—H)(+(H—2H ),
a a a
v RO = . . ) A . A .
«Ry=|—-3Ha — (6H + 2H )a—?a+3¢+2H¢+;)(+2aHHﬁ K
vV RO = 42 - 5. . A . . ) A A , A
oRp=a Oqp| —2HH + 2H a+8HHa+H;a—2H¢—2H¢—4HH¢—H?¢—H?X+H ;,\/
+[-3Ha+2¢ — Hep + Hy + (H> — 2H)y — 4a*HHy] aﬁ,

A A A
V. RE = 5"[2HH 2H2a—4HHa—Ha—a+2H¢>+2H¢+H ¢+ H— i~ H? 2)(]

1 . _ .
+ ?[3H0[ —2¢ +Hp — Hy + 2H — H*)x]#,,

V.R=3(H +4HH) —3H& — (9H + 12H?*)& — 6(H + 4HH) o — —a+2H—-a+3¢ +12H¢ + 12H ¢
a a

A A
—2—¢+4H s+ 2/\/+(2H 4H2)

> 9

Q

. ; . A , .
VR = 5;;[—Ha —2(H +3H)a+ ¢+ 6H — S ¢ + H?,\/] - 2HS 5 (Ha — ¢ + aH )«

. 1 .
—2H8Y(Ha — ) g + ?(—a — ¢+ x+Hy,
) A . . A A A
V.RS = [—3Ha —6(H +2HY)a — —Sa+3¢ +12H) —2— ¢ +—2)'(+2H—2X] ,
a a a a L
ORY = —3(H + 5HH + 2H? + 2H*H) + 3H& + (12H + 15H?)é& + (18H + STHH + 6H?)&

.. . . A A i A A?
+ 12(H + 5HH + 2H* + 2H*H)a + — & — 4H—a — (8H + 4H2)—a ——a—3¢—15H¢
a a

. .. .. o A A A
—6(2H+H2)¢—3(5H+4HH)¢+3a—¢—2H ¢>-|—8H22¢— X-I—H X+2(H+3H2)—2)(

) : LA AT
— (3H —2HH + 8HY) S x + — X,
a a
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. . . A . ; A, A
ORY = [ZHd +6(H + H?)a + (6H + 12HH — 16H?)a — 2H — a — 2¢p — 6H¢p + 16H*$p + 2— ¢ — 4H — ¢
a a a

A
+ (4H? — 2H)?Xj| ,

ORg = —(H + 9HH + 6H*> + 22H*H)8% + 5g[Hbz + (4H + 9H*)é + (6H + 39HH + 22H%) &

+ (4H + 36HH + 24H* + 88H*H)a — H— & — 2H + 4H?) — a — ¢ — 9H$ — (12H + 22H?)
a a
AZ

.. o A A . A A . A
—(9H+44HH)¢+2?¢+5H?¢—(2H+4H2);qb—?qb—H;j(—(ZHJer)?/\'z

. . A A? 1 i A . . )
- (2H + 3HH—4H3)—2X+H—4X:| +—2|:d —Hda — 2H + 12H)a — —a + ¢ + THp — (2H + 4H?) ¢
a a a a

|a

A . . A A
—gcﬁ—)2+5H2,\’/—(H+5HH—4H3)X+?,\’/+H;X] g

OR = —6H — 42HH — 24H? — 72H*H + 6H& + (24H + 42H%)é& + (36H + 174HH + 72H%) & + 24(H + THH

. . A A . A A2 . )
+4H2 + 12HH)a + 2~ & — 8H —a — (16H + 28H?) S a — 2=ra — 64 — 42H$ — 24QH + 3H*)
a a a a

2
— (42H + 144HH)¢ + 10%(;& + ZOH%d) — 8(H + Hz)%qs - 4%45 - 2%)2— 2H%)’2

. A . ) A A? A?
a a a a

and, for a general scalar function f(x, ),

foo=f—¢alf

f;Oa = f,ar - (a - aHﬁ),af - Hf,w

fiap = Fap — a2[5aﬁ(H —2Ha +2H¢ + ) + (ZHy + ;),aﬁ]f,
fo% =—-f+2af +af

f;OD( = _f,a + a,ozf + Hf,a!

fit = 5[ = alaf + aHBf — aplef — Hf]

a

' 1 . 1 .
Fty = = | 8 — 2t + @)+ e, ]

Df:_J'é+2af'+%f—(3H—d—6Ha+3(ﬁ+%X)f-
a a
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