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Cosmic shear from scalar-induced gravitational waves

Devdeep Sarkar,1 Paolo Serra,1 Asantha Cooray,1 Kiyotomo Ichiki,2 and Daniel Baumann®

1Centerfor Cosmology, Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California,

Irvine, California 92697, USA

“Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
(Received 10 March 2008; published 19 May 2008)

Weak gravitational lensing by foreground density perturbations generates a gradient mode in the shear
of background images. In contrast, cosmological tensor perturbations induce a nonzero curl mode
associated with image rotations. In this note, we study the lensing signatures of both primordial
gravitational waves from inflation and second-order gravitational waves generated from the observed
spectrum of primordial density fluctuations. We derive the curl mode for galaxy lensing surveys at
redshifts of 1-3 and for lensing of the cosmic microwave background at a redshift of 1100. We find that the
curl mode angular power spectrum associated with secondary tensor modes for galaxy lensing surveys
dominates over the corresponding signal generated by primary gravitational waves from inflation.
However, both tensor contributions to the shear curl mode spectrum are below the projected noise levels
of upcoming galaxy and cosmic microwave background lensing surveys and therefore are unlikely to be

detectable.
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I. INTRODUCTION

The weak lensing of background sources such as gal-
axies at redshifts of 1-3 and cosmic microwave back-
ground (CMB) fluctuations at a redshift of 1100 by
foreground density perturbations is now well understood
[1-3]. In addition to the lensing by density perturbations,
metric tensor perturbations associated with gravitational
waves also lens background images [4,5]. While the lens-
ing by gravitational waves was first considered to be
negligible [4], the advent of high precision weak lensing
surveys (both from the ground and from space) as well as
the potential availability of high resolution and high sensi-
tivity CMB anisotropy and polarization maps has renewed
interest in the lensing by gravitational waves [6,7].

An important source of cosmological gravitational
waves are quantum fluctuations during the inflationary
era. The weak lensing of background galaxy images [6]
and CMB anisotropies [7] by these primordial tensor
modes has previously been discussed in the literature.
Even for the maximal inflationary gravitational wave am-
plitude consistent with current observations (correspond-
ing to a tensor-to-scalar ratio, r =< 0.4), the weak lensing
effect on galaxy images is below the noise level even for a
next-generation all-sky lensing survey and is therefore
unlikely to be detectable [6]. For lensing of CMB anisot-
ropies and polarization, the modifications imposed by fore-
ground gravitational waves with a tensor-to-scalar ratio
below 0.4 is again smaller than the cosmic variance for
all-sky CMB anisotropy and polarization measurements
[7].

While previous studies have concentrated on the lensing
by first-order primordial gravitational waves, a secondary
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spectrum of gravitational waves is generated at second
order by the observed primordial density fluctuations [8].
These tensors produce a B-mode spectrum in the CMB
polarization [9] with an equivalent amplitude that is about
107¢ in the (first-order) tensor-to-scalar ratio, after ac-
counting for the late-time reionization contribution to
CMB polarization [10]. In the presence of residual polar-
ized foregrounds and the confusion produced by weak
lensing of CMB anisotropies by foreground density per-
turbations [11], such a signal is in practice unobservable.
Furthermore, the present amplitude of secondary scalar-
induced gravitational waves is below the projected sensi-
tivity for future experiments like the Big Bang Observer
(BBO) at the wavelengths corresponding to space-based
direct detection experiments [12]. However, on larger
scales secondary gravitational waves are continuously
sourced by a nonlinear scalar source term. As a conse-
quence secondary gravitational waves have a nontrivial
transfer function and the late-time spectrum is enhanced
on cosmological length scales relative to the small scales
accessible to direct detection experiments [13]. In particu-
lar, on comoving scales of order the horizon size at matter-
radiation equality ( ~ ke_ql) second-order gravitational
waves do not redshift and their amplitude stays constant.
This is in contrast to (first-order) primordial gravitational
waves that redshift on all scales. This effect leads to a peak
of the secondary gravitational wave spectrum on large
scales (around k) which could potentially be probed
with weak lensing of galaxies at redshifts of 1-3 (see
Figs. 1 and 3 in Ref. [13]).

The identification of lensing by gravitational waves is
aided by the fact that the lensing deformation associated
with tensors leads to a curl mode in cosmic shear [5,14].

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.77.103515

SARKAR, SERRA, COORAY, ICHIKI, AND BAUMANN

Foreground density perturbations do not generate a curl
mode in cosmic shear, except at second order and at small
angular scales due to effects such as lens-lens coupling
[15]. The situation is analogous to the curl (B) and the
gradient (E) modes of CMB polarization, where only
gravitational waves source the curl or B mode [9].

The paper is organized as follows. In Sec. I we review
theoretical aspects of lensing by foreground gravitational
waves. Computing the lensing signals requires input power
spectra and transfer functions for both primordial tensors
and the secondary tensors sourced by primordial density
perturbations. We provide these results in Sec. III. In
Sec. IV we present our results on the shear curl mode
angular power spectrum. We conclude in Sec. V.

When presenting numerical calculations, we will as-
sume a flat-A cold dark matter cosmology with (2, =
0.3 and & = 0.7.

II. WEAK LENSING BY GRAVITY WAVES

In weak gravitational lensing, density perturbations only
lead to image distortions involving amplification (or con-
vergence) x. However, the lensing by gravitational waves
leads to both convergence and rotation w, involving the
antisymmetric part of the weak lensing deformation matrix
[15]

A:<1—K—yl

Y2 T @

1—k+ vy

where all components are functions of the position on the
sky and fi and v, are two shear components [3]. (A);; = A;;
maps between the source plane (S) and the image plane (/)
such that 8x} = A;;8x.

For lensing by foreground gravitational waves, the geo-
desic equation is [6]
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where, to simplify notation, the explicit dependence on 7
in each of these terms has been suppressed. Here, overdots
represent derivatives with respect to conformal time and
(H);; = hy; is the transverse (V-H = 0) and traceless
(TrH = 0) tensor metric perturbation representing gravi-
tational waves. The operator Vj denotes the gradient
applied only to the metric perturbation H; when not sub-
scripted with H, the gradient should be interpreted as
applying to all terms, including the line-of-sight directional
vector fi. The solution to the above equation, r(f, ), is
discussed in Refs. [6,7].

Using the transverse displacement associated with a
perturbed photon trajectory, the angular deflection pro-
jected onto the sky is A=[r—(h- r)i]/(ny — n). This
can be related to the convergence « and the rotation w in
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the weak lensing deformation matrix [5]
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where the colons denote covariant derivatives with respect
to the perturbed Friedmann-Robertson-Walker metric [5].

A simple argument explains why gravitational waves h;;
lead to an image rotation. If we take the line of sight to be
in the Z direction, then w = €;,9,h,,;. If the gravitational
wave propagates in the § direction, then w = dh,, and the
deflection is in the X direction with 66, « h_,.

Integrating over all deflections along the line of sight to a
background image at ng, we can write the rotational com-
ponent as [5]

K =
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Assuming isotropy, the three-dimensional spatial power
spectrum of initial metric fluctuations related to a stochas-
tic background of gravitational waves is

(hoy (KA (KDY = 2m)*P,(k)8;;69(k — k), (5)

where the two linear-polarization states of the gravitational
wave are denoted by (i), (j) = X, +. Taking the spherical-
harmonic moments of Eq. (4) and using (V X H);; =
€;j10hy, the angular power spectrum of the rotational
component becomes [6,7]
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Here T,(k, n) represents the transfer function of tensor
perturbations.

III. SECONDARY TENSOR SPECTRUM

The derivation of the cosmic shear curl modes from a
spectrum of tensor fluctuations has so far made no refer-
ence to the form of the underlying power spectrum P,(k)
and the transfer function T,(k, 7). The previous results are
therefore applicable to different sources for cosmological
gravitational waves. In standard inflationary models, the
primordial tensor fluctuation spectrum is predicted to be

P (k) = A", ®)
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Inflationary models generally predict that n, ~ 0 while the
ratio of tensor-to-scalar amplitudes r = A,/A, is now con-
strained to be < 0.4 [16]. We will use this upper limit when
calculating the inflationary gravitational wave contribution
to shear curl modes. In addition to the primordial power
spectrum, we also require the transfer function T,(k, n).
This is obtained as a solution to the wave equation for
primordial gravitational waves

H - V2H +2%H = 167Ga?P, 9)
a

where P is the tensor part of the anisotropic stress, say, due
to neutrinos [17]. The term on the right-hand side acts as a
damping term for the evolution of gravitational waves and
is important for modes that enter the horizon before matter-
radiation equality, with a smaller correction for modes
entering the horizon after matter-radiation equality.
Ignoring this small correction, we take the transfer function
for the primordial gravitational wave spectrum as
T,(k, m) = 3, (kn)/(kn).

We now consider the spectrum and transfer function for
cosmological gravitational waves which are created at
second order by the observed primordial density perturba-
tions [8]. We make use of two calculations in the literature
for the spectrum of secondary gravitational waves. Using
results from Mollerach, Harari, and Matarrese [10], the
secondary tensor power spectrum is given by

1272
25

k.
k

Mol () — 4 1 k. \2n=1)
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(10)

with k, = Q,,h*> Mpc~! and the coefficient C(n,) = 0.062
when n, = 1. The function W(x) is well fitted by W(x) =
(1 + 7x + 5x?)73. The normalization of the scalar spec-
trum is taken to be A% (ky = 0.002 Mpc™') = 2.4 X 107°
[16] and to simplify the calculation we assume a spectral
index for density perturbations with n, ~ 1. Our results
and conclusions are insensitive to assuming n, ~ 0.96,
more consistent with recent WMAP results [16]. The trans-
fer function associated with this secondary gravitational
wave spectrum is

™Ik, 7) = (1 - M)g%m (11)
kn

where g, is the growth-suppression factor in the limit z —
oo [18].

The Mollerach, Harari, and Matarrese [10] calculation
of secondary tensor fluctuations was recently extended by
Baumann et al. [13] by accounting for the evolution over
all wave numbers during both radiation and matter domi-
nation. The analytical result for the scalar-induced gravi-
tational wave power spectrum is [13]
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while the corresponding transfer function is
1 if k<keg,
TBau(f, ) = (kﬁ)”“‘) if keg <k <k.(m),  (13)
an itk k),
where
ko(n) = ["a(—z)]l/w)_”keq- (14)

Here, ke, = 0.073Q),,h* Mpc ™! corresponds to the comov-
ing horizon scale at matter-radiation equality. y(k) is a
weakly k-dependent function which we fit by comparison
to numerical calculations of the tensor power spectrum in
Baumann et al. [13]. In practice, we use a smooth inter-
polation between k., and k(7). For low z we find y(keq) =
1.5 and y(k.) = 3. The analytical result presented here was
found to be in agreement with the full numerical result at
the 10% level and is adequate for the purposes of this
calculation.

IV. RESULTS AND DISCUSSION

In Fig. 1, we give a comparison between the primordial
gravitational wave spectrum with a tensor-to-scalar ratio of
0.4 and the secondary gravitational wave spectrum at z =
3. We show results from both Mollerach, Harari, and
Matarrese [10] and Baumann et al. [13] for the second-
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FIG. 1 (color online). The power spectrum of primordial
(dashed line) and secondary gravitational waves at z = 3. For
the secondary spectrum, we show results from two calculations
in the literature: the solid line is from Baumann et al. [13] and
the dotted-dashed line from Mollerach, Harari, and Matarrese
[10]. The dotted part of the spectra corresponds to superhorizon
scales at z = 3.
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FIG. 2 (color online).
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The angular power spectra of the cosmic shear curl mode at z = 1 (left panel) and at z = 3 (right panel). The

dotted line is the noise associated with a measurement of the shear curl mode power spectrum (see text for details). While the curl
mode power spectrum is below the noise, the secondary gravitational waves produce a larger signal than the primordial tensor modes
when r < 0.4. For reference, the triple-dotted—dashed line on the left panel shows the angular power spectrum of secondary shear curl
modes generated by the coupling of two lenses (lens-lens coupling) along the line of sight to background sources at z =1 [15].

order tensor spectrum. They agree at the percent level
when k < keq(= 0.0107 Mpc™!) and at high redshifts.
For smaller scales, k > k., and at low redshifts, due to
differences in the treatment of the evolution of the tensor
modes captured in the transfer function, the two calcula-
tions predict spectra that differ by more than a few percent.
Baumann et al. [13] capture the correct transfer function
for small scale gravitational waves.

In Fig. 2, we show the weak lensing curl mode angular
power spectrum for sources out to z = 1 and at z = 3. The
dotted line in Fig. 2 shows the expected binned noise from
an all-sky experiment similar to the one discussed in
Dodelson, Rozo, and Stebbins [6]. For weak lensing shear,
the binned noise is

_ 2 o
S i U

and we take (y), the intrinsic ellipticity, to be 0.3 and
Ngy = 1.5 X 10’ or roughly 100 galaxies per square-
arcminute. The plotted noise power spectrum in Fig. 2
assumes varying bin sizes A; but as shown there, even
with wide bins in the multipole space, the detection of
secondary tensor modes with the curl mode of cosmic
shear remains challenging.

Even if there were a technique to improve on the mea-
surement noise of lensing surveys, the signal from second-
ary tensors would be heavily confused with another signal
in the shear curl mode associated with the coupling of two
lenses along the line of sight (lens-lens coupling [15]). We
show the resulting angular power spectrum out to z = 1 in
the left panel of Fig. 2 with a triple-dotted—dashed line.
This signal peaks at small angular scales as it is generated
by nonlinear density perturbations. At multipoles of 10—
100 where the secondary tensor signal is interesting the

lens-lens coupling corrections to the rms of the curl mode
is larger by a factor of 10-100.

While the signal is below the measurement noise and is
confused with the lens-lens coupling signal in the curl
modes of shear, the secondary tensor modes produce a
larger curl mode at € ~ 100 than the primordial tensor
modes from inflation with » =< 0.4. Thus, we find that at
large angular scales the curl modes of cosmic shear will be
dominated by secondary gravitational waves and not the
primordial signal from inflation. This is consistent with
results in Baumann et al. [13] which show that at cosmo-
logically interesting wave numbers with k~ 1073 to
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FIG. 3 (color online). The angular power spectrum of the curl
mode at z = 1100 for lensing of CMB anisotropies by fore-
ground gravitational waves. The dotted line shows the expected
noise from a cosmic-variance-limited reconstruction of the curl
mode following Cooray, Kamionkowski, and Caldwell [14]
using E- and B-mode CMB polarization maps. For CMB
lensing, the primordial tensor modes dominate when r = 107°.
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0.1 Mpc™!, the secondary spectrum dominates over the
primordial spectrum at low redshifts. While such modes
are not probed by a direct detection experiment such as the
BBO, such modes are in the range that is in principle
detectable with cosmic shear. Unfortunately, the amplitude
is below what can be achieved with galaxy lensing surveys,
even considering optimistic galaxy statistics and shear
noise.

Finally, in Fig. 3, we plot C; of cosmic shear for z =
1100 related to lensing of CMB anisotropies by foreground
tensors [7]. The noise plotted here comes from a cosmic-
variance-limited reconstruction of the shear curl mode with
a combination of E- and B-mode polarization maps
[14,19]. For both primordial gravitational waves and the
secondary gravitational waves, a detection is unlikely to be
achieved. In the case of the CMB, unlike galaxy lensing at
low redshifts, the primordial tensors dominate the curl
mode (for r = 107%) since one is probing out to a high
redshift where primordial modes are not significantly
damped due to subsequent evolution.

V. CONCLUSION

At second order in perturbation theory the measured
spectrum of primordial density fluctuations generates a
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secondary gravitational wave signal. In this paper, we
computed the weak lensing signatures of these secondary
tensor modes. We considered the use of the cosmic shear
curl mode, or analogously the rotational component, as a
diagnostic of these tensor modes since density perturba-
tions at first order do not generate a curl mode. We pre-
sented results both for galaxy lensing surveys at redshifts
of 1-3 and lensing of CMB fluctuations at a redshift of
1100. At low redshifts, the signal associated with second-
ary tensor modes is larger than the shear curl mode from
primary gravitational waves generated by inflation with a
tensor-to-scalar ratio less than 0.4. However, we find that
the expected shear curl mode spectrum from both primor-
dial and secondary gravitational waves is very small and
unlikely to be detectable with upcoming galaxy and CMB
lensing surveys.
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