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A new time-dependent, scale-independent parameter, $, is employed in a phenomenological model of

the deviation from general relativity in which the Newtonian and longitudinal gravitational potentials slip

apart on cosmological scales as dark energy, assumed to be arising from a new theory of gravitation,

appears to dominate the Universe. A comparison is presented between $ and other parametrized post-

Friedmannian models in the literature. The effect of $ on the cosmic microwave background anisotropy

spectrum, the growth of large-scale structure, the galaxy weak-lensing correlation function, and cross

correlations of cosmic microwave background anisotropy with galaxy clustering are illustrated. Cos-

mological models with conventional maximum likelihood parameters are shown to find agreement with a

narrow range of gravitational slip.
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I. INTRODUCTION

The quest for the source of the cosmic acceleration has
led to speculation that the proper theory of gravitation
departs from general relativity (GR) on cosmological
scales. That is, gravitation may be well described using
Einstein’s theory within the solar system and the environs
of the galaxy, but a different theory is required on the scale
of the Hubble length (e.g. Ref. [1]). There are numerous
examples of a theory capable of producing a late-time
acceleration, all of which introduce new gravitational de-
grees of freedom, with wide-ranging implications for ob-
servable phenomena [2,3]. Given this possible abundance
in new physics, it is important to come up with tests that
can distinguish between the effects of dark energy and
those of modified gravity. Though late-time accelerated
cosmic expansion is the principal indicator that a new
‘‘dark’’ physics is needed, it is not the only test such
physics must satisfy. A successful cosmology must also
agree with measurements related to the growth of pertur-
bations as probed by the cosmic microwave background,
clustering of large-scale structure, and weak-lensing de-
flections of light.

The concordance cosmology, �CDM within GR, gives
very specific predictions for the cosmic expansion and the
evolution of inhomogeneities. It has been proposed to
evaluate alternative theories of gravitation by testing for
violations of these predictions (e.g. Ref. [4]). Efforts along
these lines consist of fitting separate �CDM parameters to
tests of structure growth and cosmic expansion [5], or
constraining a phenomenological description of the linear
growth rate of density perturbations with galaxy clustering
surveys [6–9]. To within the stated uncertainties, these
current results are all consistent with �CDM. The absence

of any realistic theory of the cosmological constant, how-
ever, has prompted many to question whether gravity itself
is the culprit.
An exhaustive study of departures from GR as an expla-

nation for dark energy phenomena is difficult, as Einstein’s
theory represents a mere island in a sea of possible gravi-
tational theories. Yet, a common feature within a broad
range of such theories is a decoupling of the perturbed
Newtonian-gauge gravitational potentials� and  , defined
by the perturbed Robertson-Walker line element

ds2 ¼ a2½�ð1þ 2 Þd�2 þ ð1� 2�Þd~x2�; (1)

using the notation and convention of Ma & Bertschinger
[10]. To give a physical sense of these potentials,  enters

the Newtonian limit of the equation of motion, €~x ¼ � ~r ,
and � enters the Poisson equation r2� ¼ �4�Ga2��.
Whereas GR predicts  ¼ � in the presence of non-

relativistic matter, a gravitational slip, defined as  � �,
generically occurs in modified gravity theories. This in-
equality means that the gravitational potential created by a
galaxy cluster is not the same potential responsible for the
geodesic motion of the constituent galaxies. For primordial
cosmological perturbations, the potentials are not com-
pletely free, however, as there exists a constraint equation,
valid under general assumptions in the long-wavelength
limit [11]. Hence, a new relation between these potentials
is a launching point for investigations of cosmological
manifestations of modified gravitation.
With a view towards testing modified gravitation

against large-scale structure, the relation between � and
 has been examined for scalar-tensor theories [12],
generalized gravitational Lagrangians or fðRÞ theories
[13,14], a tensor-vector-scalar model of gravity [15],
the Dvali-Gabadadze-Porrati (DGP) model [16–18],
and a Lorentz-invariance-violating massive gravity [19].*scott.f.daniel@dartmouth.edu
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Phenomenological relations between the potentials have
been widely investigated [20–26]. A general set of post-
Friedmannian parameters has also been proposed [27],
which reproduces the evolution of � and  on both sub-
horizon and superhorizon scales for DGP and fðRÞ grav-
ities; the relation between these parameters and cosmic
acceleration has been discussed in Ref. [28]. Much of the
analysis has been formal, with an aim towards future tests.
Few efforts have been made to place constraints using
current data.

In this paper we explore the parametrized post-
Friedmannian (PPF) description of gravitation introduced
in Ref. [29] (hereafter CCM). CCM posit a modified theory
of gravitation that produces a �CDM-equivalent back-
ground with perturbations such that  ¼ ð1þ$Þ�, where
$ is taken to be scale independent. Here, we correct an
important error in CCM, and explore the impact on a wider
range of cosmological phenomena. In Sec. II we review the
model for the time-dependent quantity $ and the descrip-
tion in terms of cosmological parameters. We compare the
PPF formalism to similar attempts at modifying GR in the
literature. In Sec. III we give the procedure for evolving
cosmological perturbations and describe modifications to
the CMBFAST software [30]. In Sec. IV we explore the
influence of $ on the cosmic microwave background
(CMB) anisotropy, correcting several errors in the numeri-
cal calculations described in CCM. We show the effect of
$ � 0 on the Wilkinson Microwave Anisotropy Probe
(WMAP) [31] best-fit cosmology and its consistency
with current data. Using WMAP best-fit cosmological
parameters, we similarly demonstrate the effect of $ � 0
on perturbation growth in Sec. V, weak lensing in Sec. VI,
and the integrated Sachs-Wolfe effect in Sec. VII. We
attempt a synthesis of these results in Sec. VIII, and present
a final discussion in Sec. IX.

II. PARAMETRIZATION

Non-Einstein gravitation generically predicts a decou-
pling of the gravitational potentials, � �  , such that the
two potentials are independent functions of the four space-
time coordinates, � and ~x:

 ð�; ~xÞ ¼ ½1þ$ð�; ~xÞ� ��ð�; ~xÞ: (2)

The model proposed in CCM attempts to link the departure
from GR with the growth of an effective dark energy
relative to normal matter and radiation, whereby it was
motivated that

$ð�; ~xÞ ¼ $0�DEð�; ~xÞ=�mð�; ~xÞ � $0

��DEð�Þ
��mð�Þ : (3)

The approximate equality is obtained by expanding to first
order in perturbations on the homogeneous background,
indicated by the overbar. Because$ already multiplies first
order perturbation quantities, the spatial dependence enters
at second order and is neglected here. Truly, any theory of

gravitational slip must be scale dependent in order to both
satisfy solar system constraints at small length scales and
allow for novel cosmological phenomena at extragalactic
length scales. Implementation of scale dependence neces-
sarily requires the introduction of additional parameters
which can be constrained only when there is evidence for a
nonzero, homogeneous $. We therefore only consider
homogeneous $, and comment on this assumption later.
The background evolution is taken to be identical to

�CDM, in which case

$ ¼ $0

��

�m

ð1þ zÞ�3: (4)

Hence, the gravitational slip remains negligible until late
times, when the cosmic acceleration becomes apparent.
Our PPF cosmological model is described by the standard
set of �CDM parameters, plus $0. Informally, this model
may be referred to as ‘‘ $�CDM.’’ While there is no a
priori reason that new gravitational physics should behave
this way, this model provides a simple means to test for
indications of new gravitational physics. If cosmological
data are found to be favoring a nonzero value for $, an
advanced theory of gravity beyond GR will be required to
explain its value and redshift evolution.
Our parametrization of the relationship between the

gravitational potentials can be compared to modifications
of GR in the recent literature. Bertschinger & Zukin [26]
(hereafter BZ) adopt a notation with  ¼ �BZ and � ¼
�BZ and parametrize

�BZðk; tÞ ¼ �BZðaÞ�BZðk; tÞ þ . . . ; (5)

with �BZðaÞ ¼ 1þ �as where � and s > 0 are model
parameters. In our language (5) takes the form � ¼
�BZðaÞ , with �BZðaÞ ¼ 1=ð1þ$ðaÞÞ leading to

$ðaÞ ¼ ��asð1þ �asÞ�1: (6)

In the case s ¼ 3 and the limit of small �, the parame-
trization of BZ agrees with our model (4) for � ¼
�$0��=�m. As we discuss later, CMB anisotropy
spectra obtained using the parametrization of Eq. (6) in
our code are fully consistent with the results of BZ. The
differences in the CMB anisotropy spectra reported in BZ
and CCM are due to a numerical error in the implementa-
tion of CCM, which we correct as discussed below.
Hu [28] presents another parametrization with

�Hu þ�Hu

2
¼ gðk; aÞ

�
�Hu ��Hu

2

�
þ . . . ; (7)

with gðk; aÞ ¼ gSHðaÞ=ð1þ c2gk
2
HÞ and gSHðaÞ ¼

g0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�de�tot=�tot�de

p
. In our notation the perturbations are

now � ¼ ��Hu and  ¼ �Hu. Ignoring the momentum
dependence, which only dampens the post-Friedmannian
modification below a certain scale, the correspondence is
found to be
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$ðaÞ ¼ �2gðaÞ
1þ gðaÞ : (8)

Given the difference in redshift dependence between
Eqs. (4) and (8) for the gðaÞ used in Ref. [28], a simple
relation between $0 and g0 that is accurate at redshifts
other than z ¼ 0 is not evident. Thus, a detailed compari-
son is not pursued.

Jain & Zhang [25] present a post-Friedmannian pa-
rametrization with � ¼ �ðk; tÞ . Ignoring the momentum
dependence, � is related to $ðaÞ through $ðaÞ ¼
�ðaÞ�1 � 1. Since they do not present numerical results
on the modification imposed by their parametrization to
CMB anisotropies and other large-scale structure ob-
servables, a comparison with their work is also not at-
tempted here.

In addition to modifications of gravitation that lead to
� �  , constraints on possible departures from the
Newtonian inverse-square law at cosmological distance
scales have also been considered [32,33]. It is not certain
that such modifications satisfy the consistency relation for
cosmological perturbations described in Ref. [11]. In any
event, our study differs from such works in that no scale-
dependent corrections to gravitation are imposed.

III. IMPLEMENTATION OF PPF MODEL

An implementation of the parametrized relationship
between the potentials requires a consistent method of
treating perturbations in the modified theory. To begin,
the phenomenological relation between the gravitational
potentials is defined in the conformal-Newtonian (longitu-
dinal) gauge. In practice, however, we find it most conve-
nient to pursue perturbation evolution in the synchronous
gauge. Using the notation of Ref. [10], the metric pertur-
bation variables in the two gauges are related as

 ¼ 1

2k2
½ €hþ 6 €�þH ð _hþ 6 _�Þ�; (9)

� ¼ �� 1

2k2
H ð _hþ 6 _�Þ; (10)

where the dot indicates the derivative with respect to
conformal time. In the standard GR case ($ ¼ 0), the
perturbed Einstein equations,

k2�� 1
2H

_h ¼ 4�Ga2�T0
0 ; (11)

k2 _� ¼ 4�Ga2ð ��þ �pÞ	; (12)

€hþ 2H _h� 2k2� ¼ �8�Ga2�Tii ; (13)

are used to evolve the metric variables, where ð ��þ �pÞ	 �
ikj�T0

j (for greater detail, see [10]). It is standard practice

to use the latter two equations (12) and (13) for evolution,
and apply the first equation (11) as a constraint.

We presume a theory of modified gravitation in which
the stress-energy tensor of matter and radiation is con-
served; Eq. (12) remains valid, but Eqs. (11) and (13) are
invalid. If the perturbed Einstein equations were assumed
to remain valid, then the gravitational slip would neces-
sarily imply the existence of new energy density and
pressure perturbations which are comoving with the bary-
onic and dark matter density perturbations. Furthermore,
the nonzero gravitational slip introduces a modification to
the perturbed, off-diagonal space-space Einstein equation

_
 ¼ �ð2þ$ÞH
þ ð1þ$Þ�
� 12�Ga2ð ��þ �pÞ�=k2 (14)

where 
 � ð _hþ 6 _�Þ=2k2. The factor of 1=k2 in the last
term on the right-hand side of (14) corrects a typographical
error in Eq. (8) of CCM. Note that the shear due to matter
and radiation is negligible at late times. This leaves _
 ¼
�ð2þ$ÞH
þ ð1þ$Þ� which is simply a restatement
of (10) in synchronous gauge. In order to maintain con-
tinuity from early times, when GR is valid, to late times,
when the gravitational slip becomes significant, Eq. (14) is
used. In turn,

€
 ¼ _�ð1þ$Þ � ð2þ$Þð _H
þH _
Þ þ _$ð��H
Þ
� d

d�

�
12�Ga2ð ��þ �pÞ �

k2

�
: (15)

Now, instead of evolving Eqs. (12) and (13) with constraint
(11), Eqs. (12) and (14) are evolved with the constraint

_h ¼ 2k2
� 24�Ga2

k2
ð ��þ �pÞ	 (16)

derived from 
 and Eq. (12). Thus, the time evolution of �,
h and 
, _
 is fully specified in a modified gravity model.
The above set of equations, corresponding to the recipe

R1 of CCM, has been implemented in a modified version
of CMBFAST [30]. As shown in the Appendix, this prescrip-
tion satisfies the consistency condition that was first de-
rived in Ref. [11] (Eq. 2 of BZ). This consistency suggests
that our implementation, introduced by CCM, is not fun-
damentally different from that employed by BZ. Despite
the reasons suggested in BZ for differences between the
two approaches, consistent results are obtained when the
two post-Friedmannian parametrizations are matched.
Note that when presenting results here, an error in the

numerical software used by CCM has been corrected.
Having rechecked the derivations and software, the revised
results for the effect of $ on the CMB anisotropy power
spectrum are described below.

IV. EFFECTS ON CMB ANISOTROPY

The predicted CMB anisotropy spectra are compared
with the WMAP 3-year data, and a likelihood function
for the modified gravity variable $0 is constructed, using
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the likelihood code supplied by the WMAP team [31]. To
avoid duplicating a lengthy search of parameter space,
the background cosmology is set to the 3-year WMAP
maximum likelihood cosmology (hereafter WMAP3 ML:
�b ¼ 0:0414,�c ¼ 0:196,�� ¼ 0:7626, h ¼ 0:732, � ¼
0:091, ns ¼ 0:954), and for comparison, to the 3-year
WMAP plus SN Gold maximum likelihood cosmology
(hereafter WMAP3þ SNGold ML: �b ¼ 0:0454, �c ¼
0:2306, �� ¼ 0:724, h ¼ 0:701, � ¼ 0:079, ns ¼ 0:946)
[34]. Figure 1 plots the multipole moments for several
simulations with different values of $0 in the WMAP3
ML cosmology. Normalizing the spectra to the observed
amplitude of the acoustic peaks at ‘ * 100, we see that
only the lowest multipole moments, ‘ & 30, are affected
by $0.

Furthermore, we observe that the large-angle anisotropy
power grows as j$0 � 0:5j deviates from zero. For a closer
look, the quadrupole moment is shown as a function of$0

in Fig. 2. This quadratic behavior can be understood as
follows. The integrated Sachs-Wolfe effect contribution

to the temperature anisotropy depends on _�þ _ , which
varies with $ as

_�þ _ ¼ ð3$þ ð�� 1Þð2þ$ÞÞH� (17)

where � � 1þ d ln�=d lna. Numerical results show that
� decreases monotonically, becoming negative with in-
creasing $0. Upon squaring the above quantity, it is evi-
dent that j$j � 1 will lead to strong anisotropy in the low
multipoles, which are sourced at late times. Note that a
similar trend, a local minimum of large-angle anisotropy
power as a function of the post-Friedmannian parameter, is

seen in Hu’s model, in Fig. 1 of Ref. [28]. BZ should see
the same trend, if a wider range of � is searched than in
Fig. 5 of Ref. [26].
The local minimum in the quadrupole amplitude helps

explain the double-peaked structure of the WMAP like-
lihood function, shown in Fig. 3. The likelihood is sup-
pressed at large values of j$0 � 0:5j, due to the excessive
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FIG. 1 (color online). CMB anisotropy power spectra for
different $0 cosmologies are shown with the binned WMAP
3-year data. All differences are localized to the low multipole
moments: the spectra are normalized so that the higher multipole
moments for all models are identical to the case of $0 ¼ 0,
corresponding to the WMAP3 ML model.
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FIG. 2 (color online). The predicted CMB temperature an-
isotropy quadrupole power is shown as a function of $0 (solid
curve). All other parameters are set to the WMAP3 ML cosmol-
ogy. The central value and 1� upper bound of the WMAP 3-year
data, 6C2=2� ¼ 211� 860 [31], are shown by the dashed and
dot-dashed curves.
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FIG. 3 (color online). The likelihood of $0 due to the CMB,
calculated using the November 2006 version of the WMAP
likelihood code [31], is shown. All other cosmological parame-
ters are set to the WMAP3 ML (solid curve) or the WMAP3þ
SNGold ML (dashed curve) model. The results include the
TT and TE spectra. The results are consistent with $0 ¼ 0
(�CDM), but favor positive values of $0. The locations of the
primary (left) and secondary (right) likelihood peaks correspond
to the range of $0 for which the predicted quadrupole lies
within the 2� range of WMAP.
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large-angle anisotropy power. And while the low quadru-
pole moment reported by WMAP has been interpreted to
be indicative of new physics, in fact the WMAP likelihood
does not necessarily reward an anisotropy spectrum that
smoothly leads to low power at low ‘. The anisotropy
spectrum with lowest quadrupole, at $0 ¼ 0:5, is sup-
pressed relative to $0 ¼ 0, 1.5 for the WMAP3 ML
parameters, as shown in Fig. 3. In the case of the
WMAP3þ SNGold ML model, which has a slightly
higher matter density, the primary peak in the likelihood
distribution is shifted towards a slightly higher value of$0.
To understand this behavior, note that in the case $ ¼ 0,
the strength of the ISW contribution depends on �m, with
� � ð�m½a�Þ0:55. An increase in �m thereby diminishes
the ISW contribution. Because the WMAP CMB data
appear to prefer a moderate ISW contribution, the low
quadrupole notwithstanding, then the data should prefer a
low matter density at $0 ¼ 0, as seen in Fig. 3.

Figures 4 and 5 compare the results of BZ with our
PPF implementation. To recreate BZ’s results, a second
CMBFAST code was modified to evolve according to GR

until z ¼ 30. At that point, the parameter

� ¼ 2

3

_�
H

þ�

1þ w
þ� (18)

is calculated, where w is the background equation of state
(assuming that only matter and� contribute). Next, � is set
to remain constant for the rest of the calculation, where-
upon the evolution is determined by the equations

_� ¼ ð� ��Þ
�
H �

_H
H

�
�H ; (19)

_
 ¼  �H
 (20)

and  ¼ �=�BZ, �BZ ¼ 1þ �as, � ¼ �þH
. Here,
(19) comes from Eq. (2) of BZ and (20) comes from the
definition of 
. This second code uses none of the per-
turbed Einstein equations. The results, shown in Figs. 4 and
5, are equivalent to our results produced using Eq. (4) if the
appropriate relationship between $ and �BZ is imposed.
The Appendix demonstrates this equivalence analytically.

V. THE GROWTH OF STRUCTURE

The growth of density perturbations in baryonic and
dark matter is affected by gravitational slip, as the potential
produced by an overdensity no longer matches the po-
tential responsible for gravitational acceleration. In GR,
Eqs. (11) and (13) combine with the fluid conservation law
[Eq. (29a) in Ref. [10]],

_� ¼ �ð1þ wÞ
�
	þ

_h

2

�
� 3H

�
�p

��
� w

�
�; (21)

to give the equation for the growth of nonrelativistic,
pressureless perturbations:

€�þH _� ¼ 4�Ga2��: (22)

In the case$ � 0, an independent differential equation for
the matter density contrast is not readily available as
Eqs. (11) and (13) have been eliminated. CCM try to
circumvent this obstacle, using (12) and (14) and 
, to-
gether with the assumption of negligible shear, to arrive at
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FIG. 5 (color online). The effect of the parametrization of
gravitational slip on CMB anisotropy spectra is shown. Lines
show the spectra produced using our parametrization, Eq. (4);
symbols indicate spectra produced using BZ’s parametrization,
�= ¼ 1þ �as with s ¼ 3. To compare, the parameter � is
set to � ¼ �$0��=�m. The agreement is excellent in the limit
of small �.
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FIG. 4 (color online). The equivalence of alternative tech-
niques for evolving cosmological perturbations under PPF gravi-
tation is illustrated by the effect on CMB anisotropy spectra.
Lines show the spectra produced following our procedure
[Eqs. (14)–(16)] with the parametrization (4) replaced by that
proposed in BZ, $ðaÞ ¼ ��as=ð1þ �asÞ with s ¼ 3. Sym-
bols indicate the spectra produced following BZ’s procedure
[Eqs. (18)–(20)]. The agreement between the techniques is exact.
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€�þH _� ¼ k2ð1þ$ÞðH
� �Þ: (23)

Unfortunately, that is as far as CCM can go without pos-
tulating another perturbed fluid ��DE to account for
the theory’s departure from (11). However, there is no
barrier to evolving �—it is simply obtained numerically
from (21).

The modified Boltzmann code CMBFAST calculates � as
a function of time in the process of calculating the anisot-
ropy spectrum. Figure 6 illustrates the effect of$0 � 0 on
the growth of long-wavelength matter density perturba-
tions. This effect is monotonic, with $0 > 0 enhancing
the growth at late times and $0 < 0 suppressing it. By
comparing the rate of growth for models with different

values of $0 and �m, an approximate mapping for the
growth of � from $�CDM to �CDM models has been
obtained. Specifically, to a good approximation, the growth
of structure in a $0 � 0 cosmology is equivalent to a
�CDM cosmology with

�mj�CDM ¼ �mj$�CDM þ 0:13$0: (24)

In the parameter ranges �0:5 � $0 � 0:5 and 0:2 �
�mj$�CDM � 0:5, this fit is good to the 3% level for a 	
0:2. (See Fig. 7). Note that $0 � 0 does not change the
shape of the (linear) matter power spectrum.
Figure 8 plots the predicted dimensionless linear growth

rate, f ¼ d ln�=d lna, against a compilation of recent data.
In the future, this may provide an alternative test of modi-
fied gravitation. Unfortunately, the current uncertainties in
f are too large to provide a meaningful constraint on $0.

VI. WEAK LENSING

Gravitational lensing depends directly on the sum of the
two gravitational potentials, and is therefore an excellent
probe of gravitational slip. In the cosmological setting,
measurements of weak lensing of the pattern of galaxy
clustering can be used to constrain $0. Proceeding, the
E-mode weak-lensing convergence correlation function,
E [35], is calculated, which requires the convergence
power spectrum, given by [36–39]

P�ðlÞ ¼ l4
Z �h

0
d�

n2ð�Þ
r4ð�Þ P

nonlin
�þ 

�
k ¼ l

rð�Þ ; �
�
; (25)

nð�Þ ¼
Z �h

�
d�0pð�0Þ rð�

0 � �Þ
rð�0Þ ; (26)
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FIG. 6 (color online). The matter density contrast as a function
of scale factor is shown for different values of $0. The density
contrast is normalized to a $0 ¼ 0 model. All models use
WMAP3 ML parameters.
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FIG. 7. The goodness of fit of the mapping of the growth rate
between $�CDM and �CDM models is illustrated. The
percent difference in the density contrast for a model with $0 ¼
0:4, �m ¼ 0:3, and a �CDMmodel with �m ¼ 0:35 is plotted
with respect to the cosmic scale factor. These cosmologies are
predicted to be equivalent by Eq. (24).
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FIG. 8 (color online). The dimensionless linear growth rate f
plotted as a function of z for different $0 cosmologies with the
WMAP3 ML background. The data point at z ¼ 0:77 is due to
Ref. [60]. The remaining, hybrid set of data points are taken
from Table 1 of Ref. [9], and are based on estimates of large-
scale structure power spectrum growth at different redshifts.
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where � is the comoving radial distance and �h is the
horizon distance, rð�Þ is the comoving angular distance
(� in the case of a flat universe), pð�Þ is the probability
distribution of lensed sources, and 0 refers to the pres-
ent epoch.

The lensing convergence depends on the power spec-
trum of metric perturbations �þ  . At linear scales, the
power spectrum can be expressed through the power spec-
trum of density perturbations � by making use of the
growth function D$ ¼ �ðzÞ=�ðz ¼ 0Þ to account for the
redshift growth of perturbations and the Poisson equation.
Using the relation between � and  , we can write

P�þ ðk; zÞ ¼ 9

4
�2
m;0

�
H0

ck

�
4
�
D$ðzÞ
aðzÞ

�
2
�
2þ$ðzÞ

2

�
2

� P��ðk; z ¼ 0Þ; (27)

where P�� is the power spectrum of density perturbations
today. Because the length scales probed by the weak-
lensing measurements extend into the nonlinear regime,
this description must be extended in order to compute the
nonlinear matter power spectrum. Since we do not have a
complete description of nonlinear evolution under modi-
fied gravity, here we employ the same technique as used for
the usual GR predictions of lensing statistics. We use the
fitting function from Peacock and Dodds [40] (PD) to
get Pnonlin

�� from the linear power spectrum calculated

with our modified CMBFAST code. Note that PD’s factor
gPDð�; aÞ ¼ �ðaÞ=a is meant to compare the growth his-
tory to that of an �m ¼ 1 model [41], so �ðaÞ normalized
at an early redshift is used. Specifically, the density con-
trast is set to �ða ¼ 0:01Þ ¼ 0:01 for all $0 models. The
linear power spectrum amplitude is set by the normaliza-
tion of the CMB anisotropy spectrum to the WMAP 3 year
data. In Fig. 9 we plot �8 as a function of$0 and note that
an increase in $0 has a similar effect of enhancing weak

lensing as does an increase in �8 in standard �CDM
cosmologies. For $0 ¼ 0, the GR case, we recover the
WMAP3 ML preferred value of �8 ¼ 0:76 [34].
From the convergence spectrum, we can then find the

modes of the correlation function [42–45],

þð	Þ ¼ 1

2�

Z 1

0
dkkP�ðkÞJ0ðk	Þ;

�ð	Þ ¼ 1

2�

Z 1

0
dkkP�ðkÞJ4ðk	Þ;

0ð	Þ ¼ �ð	Þ þ 4
Z 1

0

d	0

	0
�ð	0Þ � 12	2

Z 1

0

d	0

	03
�ð	0Þ;

Eð	Þ ¼ þð	Þ þ 0ð	Þ
2

; (28)

where JiðlÞ are Bessel functions of the first kind. Figure 10
plots Eð	Þ for different $ models with the WMAP3 ML
cosmology. Varying $0 results in a multiplicative shift
in E.
Figure 11 plots the likelihood derived from the weak-

lensing shear correlation function as measured by the
Canada-France-Hawaii Telescope Legacy Survey [46] and
presented in Table B.1 of Fu et al. [47]. The source
distribution pð�Þ is taken from Eq. (14) and Table 1 of
Ref. [47]. For this analysis we assume that the errors are
Gaussian and independent. Furthermore, we ignore any
systematic uncertainties arising from the model source dis-
tribution. Unlike the CMB anisotropy spectra, the weak-
lensing shear correlation functions do not ‘‘bounce’’ with
$0, so the resulting likelihood function, shown in Fig. 11,
is narrower and peaks at $0 � 0:3. This result excludes
$0 ¼ 0, but is roughly consistent with the primary peak in
the CMB likelihood, shown in Fig. 3.

-0.5 0 0.5 1 1.5
ϖ0

0.75

0.8

0.85

σ 8

FIG. 9. The values of �8 resulting from the normalization to
the WMAP 3-year anisotropy power spectrum are shown as a
function of $0. All other cosmological parameters are set to
match the WMAP3 ML model.
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FIG. 10 (color online). Model predictions of E for different
values of $0. Data are taken from Table B.1 of [47]. The
background cosmology is the WMAP3 ML. The power spectrum
amplitude is determined by the normalization to WMAP.
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The exclusion of $0 ¼ 0 based on CMB and weak-
lensing data in the WMAP3 ML model is not significant
at this stage. Only a single parameter in a multidimensional
parameter space has been searched. Indeed, a positive
value of $0 is expected since we have normalized the
underlying density power spectrum to the WMAP3 pre-
ferred value of �8, which is at the lower end of the range of
�8 preferred by the weak-lensing data. (See Fig. 10 of
Ref. [47].) The disagreement between these two values is
now resolved by a nonzero value for $0. While such a
difference between CMB and low-redshift matter pertur-
bations is generally the very type of behavior we should
look for in modified gravitation scenarios, the fact that we
do not perform a joint analysis of CMB and weak-lensing
data precludes us from making a strong statement.

We expect a degeneracy in the effect of $0 and �mh
2

on the weak-lensing predictions, as both parameters con-
trol the growth rate of fluctuations. Specifically, increasing
$0 enhances fluctuation growth, as seen in Fig. 6, just as
increasing the abundance of clustering matter does. By
raising �mh

2 the likelihood is expected to peak at lower
values of $0. This is precisely illustrated in Fig. 11,
wherein the weak-lensing likelihood for $0 is shown
for cosmological models with parameters set by the
WMAP3þ SNGold ML model, which has a slightly
higher matter density. This new likelihood is indeed
consistent with lower values of $0, including zero.

VII. CMB AND LSS CROSS CORRELATIONS

A deviation from GR leaves an imprint on the cross
correlation between the CMB and large-scale structure.
In order to identify such a signal, we define the two-point

angular cross correlation between the temperature ISW
anisotropy and the dark matter fluctuation as [48–51]

CXð	Þ ¼ h�ISWð�̂1Þ�LSSð�̂2Þi; (29)

where the angular brackets denote the average over the
ensemble and 	 ¼ j�̂1 � �̂2j. For computational purposes
it is convenient to decompose CXð	Þ into a Legendre series
such that

CXð	Þ ¼ X1
l¼2

2lþ 1

4�
CXl Plðcos	Þ; (30)

wherePlðcos	Þ are the Legendre polynomials andCXl is the
cross-correlation power spectrum given by [49,50,52,53]

CXl ¼ 4�
9

25

Z dk

k
�2

RI
ISW
l ðkÞILSSl ðkÞ; (31)

where�2
R is the primordial power spectrum. The integrand

functions IISWl ðkÞ and ILSSl ðkÞ are defined, respectively, as

IISWl ðkÞ ¼ �
Z
e��ðzÞ

dðð2þ$Þ�kÞ
dz

jl½krðzÞ�dz; (32)

ILSSl ðkÞ ¼ b
Z

�ðzÞ�kðzÞjl½krðzÞ�dz; (33)

where �k and �
k are the Fourier components of the gravi-

tational potential and matter perturbation, respectively; �
is the galaxy survey selection function; jl½krðzÞ� are the
spherical Bessel functions; rðzÞ is the comoving distance at
redshift z; and �ð�Þ ¼ R

�0
� _�ð�Þd� is the total optical depth

at time �.
A change in$ could therefore change not only the value

of IISWl but also its sign with respect to ILSSl . Direct mea-

surements of the cross-power spectrum CXl are more robust

for likelihood parameter estimation since these data would
be less correlated than measurements of CXð	Þ. Therefore,
the cross-power spectrum CXl is computed for different

values of $0 assuming a galaxy survey with a selection
function as

�ðzÞ 
 z2 exp½�ðz=�zÞ1:5� (34)

where �z, the median redshift of the survey, is �z ¼ 0:25. In
recent years, the WMAP temperature anisotropy maps
have been cross correlated with several surveys of large-
scale structure (LSS) distributions, and a positive correla-
tion signal has been detected [54–59]. As seen in Fig. 12,
values of $0 > 0:5 would result in anticorrelation and a
negative angular spectrum, in disagreement with current
observations at the 
2� level.
In order to obtain a more quantitative result, the ISW-

galaxy theoretical correlation function for different values
of $ is compared with the current data as reported in
Ref. [59] under the assumption of the WMAP ML model.
The data and some model curves under modified gravity
are shown in Fig. 13. Again, we assume that the errors are
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FIG. 11 (color online). The likelihood of different $0 mod-
els according to the E data collected by the Canada-France-
Hawaii Telescope Legacy Survey and presented in Table B.1 of
Ref. [47] is shown with parameters set by the WMAP3 ML
model (solid line) as well as the WMAP3þ SNGoldML model
(dashed line).
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Gaussian and independent, and we ignore any systematic
uncertainties arising from the model galaxy selection dis-
tribution. The likelihood is reported in Fig. 14, consistent
with no indications for modified gravity. This constraint
should be considered with caution, since the full parameter
space has not been explored and the ISW signal may
certainly be highly sensitive to changes in parameters
such as the matter density and the Hubble constant.

Qualitatively, the ISW-galaxy theoretical correlation
may be understood by considering the path of a CMB
photon through a region on the sky containing an abun-
dance of galaxies. As the photon passes through the col-

lective gravitational potential of the clustered galaxies, the
decay of the gravitational potential in a�CDM cosmology
with $0 ¼ 0 leads to the blueshifting of the photon. A
negative value of $0 suppresses the clustering and causes
the photon to be further blueshifted as it climbs out of the
weakening gravitational potential. The coincidence of the
hot spot in the CMB resulting from the blueshifted pho-
tons, with the abundance of galaxies on the sky, explains a
positive cross correlation. Likewise, a large $0 enhances
clustering and reduces the blueshifting as the photon
climbs out of the growing gravitational potential. In ex-
treme cases, the enhanced clustering causes the photon to
be redshifted, thereby leading to a negative cross correla-
tion. The degeneracy between$0 and�mh

2 suggests that a
preference for$0 < 0, seen in Fig. 14, will be enhanced by
increasing �mh

2: the slower decay of the gravitational
potential [� ! 1 in Eq. (17)] due to the increased mat-
ter density is compensated by the reduced clustering
with larger $0. Figure 14 also shows the fit to current
ISW-galaxy cross-correlation data using the WMAP3þ
SNGold ML model parameters, for which the matter den-
sity is slightly higher than the WMAP3MLmodel. Indeed,
the peak of the likelihood shifts to even more negative
values, as expected.

VIII. SYNTHESIS

We have examined the consequences of the proposed
PPF model of gravitational slip for predictions of the
cosmic microwave background anisotropy, the growth of
large-scale structure, weak lensing, and the ISW-galaxy
cross correlation. The likelihood distributions in $0 using
the WMAP3 ML model parameters are summarized in
Figs. 15, and using the WMAP3þ SNGold ML model
parameters in Fig. 16. The weak lensing is clearly the
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FIG. 12 (color online). The cross-correlation angular power
spectrum between CMB temperature (ISW) and galaxy distri-
bution is shown as a function of $0. A value of 0:5<$0 < 1:5
changes the sign of the ISW, resulting in a negative cross
correlation, in conflict with observations.
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FIG. 13 (color online). The cross-correlation amplitude at 	 ¼
6 degrees is shown as a function of redshift for different samples
of LSS and WMAP data. The curves show the expected cor-
relation with $0 varied. The data plotted here come from
the compilation in Ref. [59], making use also of data from
Gaztanaga et al. [61] (circles), Cabre et al. [62] (squares), and
Giannantonio et al. [59] (triangle).

-0.5 0 0.5
ϖ0

0

1

2

3

4

lik
el

ih
oo

d 
(n

or
m

al
iz

ed
)

FIG. 14 (color online). The likelihood of different $0 models
using current ISW-galaxy cross-correlation data is shown. All
other cosmological parameters are fixed to the WMAP3 ML
model (solid line) or the WMAP3þ SNGold ML model
(dashed line).
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most sensitive to $0, followed by the ISW-galaxy cross
correlation, and then the CMB.

In the case of the WMAP3 ML model parameters,
shown in Fig. 15, the overlap between the three distribution
functions is strongest near $0 � 0:2. However, there is no
concordance due to the tension between the values$0 > 0
indicated by the CMB and weak-lensing data, and the
values centered on zero for the ISW-galaxy cross correla-
tion. This tension appears to be related to the disagreement
in the best-fit �8 values derived from measurements of the
CMB and large-scale structure.

The gravitational slip parameter $ has been assumed to
be scale independent. This is a good assumption for cos-

mological phenomena ranging from Mpc to Gpc scales in
most gravitational theories. Yet the amplitude of $ must
decay below 10�5 at some transition scale in order to agree
with present-day precision tests of gravitation within
the solar system. To test the consequences of scale de-
pendence, we applied an exponential cutoff $ ! $ �
expð�k=kcÞ and calculated CMB anisotropy and weak-
lensing power spectra with $0 ¼ 0:5 and WMAP3 ML
model parameters. The changes in the weak-lensing corre-
lation function grow as large as 
5% for kc as small as
20 h=Mpc, corresponding to a transition wavelength
2�=k
 0:5 Mpc. The changes in the CMB anisotropy
are well below the percent level for ‘ < 1500. Hence, the
results presented in this paper are unchanged for a transi-
tion scale below about a Mpc.
To find concordance among the three observational con-

straints, we increased the matter density. As we argued, this
should have the effect of shifting the weak-lensing distri-
bution towards lower values of $0, with the primary con-
cern to determine whether $0 ¼ 0 is allowed. Increasing
the matter density also has the effect of moving the CMB
distribution towards higher values, away from$0 ¼ 0, and
moves the ISW-galaxy cross correlation towards more
negative values, also away from $0 ¼ 0. Using the
WMAP3þ SNGold ML model parameters, as shown in
Fig. 16, the overlap is improved. The apparent tension
between weak lensing and ISW is somewhat relaxed,
with a joint likelihood that allows $0 ¼ 0. Whether $0 ¼
0 is preferred remains to be demonstrated. A full, multi-
dimensional parameter space analysis is planned for a
subsequent paper.

IX. DISCUSSION

A PPF formalism for modified gravity has been pro-
posed to describe possible departures from cosmological
predictions under GR. The model consists of a background
cosmology, a parametrized relationship between the gravi-
tational potentials, and an implementation of new evolu-
tion equations in the absence of the perturbed Einstein
equations. For simplicity we have focused on the case in
which the background cosmology evolves as a standard,
�CDM universe. The gravitational slip is chosen to evolve
in proportion to the dominance of an effective dark energy
density over matter. The constant of proportionality intro-
duces a new parameter, $0. The new evolution equations
are summarized by Eqs. (14)–(16).
We have made a comparison between our proposed

PPF model of modified gravitation and other models that
have recently appeared in the literature. Our implemen-
tation satisfies the consistency relation proposed by
Bertschinger [11]. Furthermore, the equivalence with the
model of BZ has been demonstrated, after accounting for
the correspondence between $ðzÞ and �BZðaÞ, using ana-
lytical calculations and numerical results.
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FIG. 15 (color online). The likelihood distributions for $0,
based on the CMB (solid curve), weak lensing (dashed curve),
and ISW-galaxy cross correlation (dot-dashed curve) using the
WMAP3 ML model parameters are shown.
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FIG. 16 (color online). The likelihood distributions for $0,
based on the CMB (solid curve), weak lensing (dashed curve),
and ISW-galaxy cross correlation (dot-dashed curve) using the
WMAP3þ SNGold ML model parameters are shown.
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We remark that many different parametrizations for the
departure from GR on cosmological scales have been in-
troduced in the literature. This variety may be useful, as no
single model of non-Einstein gravitation stands out. How-
ever, it would also be useful if the data are compared within
a single parametrization, similar to the post-Newtonian pa-
rameter �PPN that is used to measure the amount of space-
time curvature per unit mass in tests of gravitation in the
solar system. In that regard, our parameter corresponds to
$ � 1� �PPN in the limit of weak departures from GR.
When $ is positive, then the gravitational potential deter-
mined by geodesic motion is greater than the potential
inferred from the distribution of matter via the Poisson
equation.

An alternative view of the gravitational slip is that it
effectively introduces a new source for the perturbed off-
diagonal space-space Einstein equation. If we infer the
existence of some new density perturbations, defined so
as to balance the perturbed time-time Einstein equation,
then the new source takes the simple form 1

3$��tot.

We have corrected an error in CCM, and proceeded to
examine the cosmological consequences of $0 � 0. We
hope our study clarifies that (a) current data do not exclude
PPF modifications of GR; (b) different parametrizations
produce the same results at the end as long as certain
consistency relations are satisfied; and (c) it would be
useful to establish one or two (and the same) parameters
from future data to finely test the departures from GR at
cosmological scales.
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APPENDIX: EQUIVALENCE BETWEEN MODELS
OF PPF GRAVITATIONAL SLIP

Bertschinger and Zukin [26] propose that � evolves
according to Eq. (19) after z ¼ 30, with constant curvature

perturbations, � . To show that their model is consistent
with $�CDM, their evolution equation is recast as

� ¼ �þ
_�þH 

H ð1� _H =H 2Þ
¼ �þ 2

3

_�

H ð1þ wÞ (A1)

where the translation from conformal-Newtonian (longitu-
dinal) gauge to synchronous gauge,

� ¼ ��H
; (A2)

 ¼ _
þH
; (A3)

is used in the second equality. Also, in a matter-

and �-filled universe, H ð1� _H =H 2Þ ¼ 3
2H ð1þ wÞ

where w is the background equation of state.
If $�CDM is consistent with the model of BZ, then

Eqs. (14)–(16) must give _� ¼ 0. To show this, we use
the zero-i perturbed Einstein equation [Eq. (21b) of [10]]
to find

� ¼ �þ
�
2

3

�
4�Ga2ð�þ pÞ	
k2H ð1þ wÞ ¼ �þH	

k2

where the background Friedmann equation is used to get
the second equality. Taking a derivative with respect to
conformal time,

_� ¼ _�þ
_H 	

k2
þH _	

k2
: (A4)

Again using the zero-i Einstein equation, and the equa-
tion for _	 derived from stress-energy conservation
[Eq. (29) of [10]],

_	 ¼ �H ð1� 3wÞ	� _w

1þ w
	þ �p=��

1þ w
k2�� k2�;

(A5)

then the time derivative of the curvature perturbation is

_� ¼ H
�
�p

��

�

1þ w
� �

�
: (A6)

Since the dominant perturbations at late times (z < 30) are
due to baryonic and dark matter that have negligible pres-

sure and shear perturbations, then _� � 0. Therefore,
$�CDM is consistent with the evolution equation (A1)
with constant � .
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