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In the scalar-tensor gravitational theories Newton’s constant GN evolves in the expanding universe.

Likewise, it has been speculated that the acceleration scale a0 in Milgrom’s modified Newtonian dynamics

is tied to the scale of the cosmos, and must thus evolve. With the advent of relativistic implementations of

the modified dynamics, one can address the issue of variability of the two gravitational ‘‘constants’’ with

some confidence. Using TeVeS, the tensor-vector-scalar gravitational theory, as an implementation of

Milgrom’s modified Newtonian dynamics, we calculate the dependence of GN and a0 on the TeVeS

parameters and the coeval cosmological value of its scalar field, �c. We find that GN , when expressed in

atomic units, is strictly nonevolving, a result fully consistent with recent empirical limits on the variation

of GN . By contrast, we find that a0 depends on �c and may thus vary with cosmological epoch. However,

for the brand of TeVeS which seems most promising, a0 variation occurs on a time scale much longer than

Hubble’s, and should be imperceptible back to redshift unity or even beyond it. This is consistent with

emergent data on the rotation curves of disk galaxies at significant redshifts.
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I. INTRODUCTION

The debate over the constancy of physical constants has
been simmering ever since Dirac enunciated the large
numbers hypothesis: very large (or small) dimensionless
universal constants cannot occur in the basic laws of
physics [1]. In particular, since the dimensionless gravita-
tional constant is very small, the possibility of variation of
Newton’s constant GN was raised. The Brans-Dicke theory
of gravitation [2], among others, can describe such varia-
tion by adding to the Einstein-Hilbert action an action for a
scalar field.

The past few decades have witnessed extensive searches
for evidence of variation of some of the fundamental
constants. Among the methods that have been used are
astrophysical observations of the spectra of distant quasars,
searches for variations of planetary radii and moments of
inertia, investigations of orbital evolution, searches for
anomalous luminosities of faint stars, studies of abundance
ratios of radioactive nuclides, and (for current variations)
laboratory intercomparison of precise clocks [3]. To cite
one example, current data on elemental abundances, when
compared with the theory of big-bang nucleosynthesis,
limit the mean rate of variation of GN since early epochs
to ð _GN=GNÞ< 3� 10�13 yr�1 [4]. Obviously any pro-
posed new theory of gravitation must be in harmony with
this constraint.

GN is not the only gravity linked ‘‘constant’’ which
might be variable. Milgrom’s modified Newtonian dynam-
ics (MOND) [5], which was proposed to explain mass
discrepancies in galactic dynamics without calling on
dark matter, introduces a new fundamental parameter, a0,
with dimensions of acceleration. In MOND, Newton’s
second law a ¼ �r�N is replaced by

~�ðjaj=a0Þa ¼ �r�N; (1)

where �N is the usual Newtonian potential due to the
baryonic matter alone, and the function ~�ðxÞ smoothly
interpolates between ~�ðxÞ ¼ x at x � 1 and the
Newtonian expectation ~�ðxÞ ¼ 1 at x � 1. This phenome-
nological relation, with a0 ’ 10�10 m=s2, has had great
success in explaining the rotation curves of disk galaxies
using only the distribution of visible matter, as well as the
slope and observed tightness of the Tully-Fisher relation,
which correlates the luminosity (or baryonic mass) of a
disk galaxy with its asymptotic rotational velocity [6].
Recent reviews of MOND may be found in Refs. [7–10].
Use of MOND immediately raises a question: are the

parameters GN and a0 appearing in it constants of nature,
or are they subject to spacetime changes, as is the GN in
Brans-Dicke theory?
Milgrom [5] noticed that the observed value of a0 is

quite close to cH0 where H0 is the present epoch Hubble
‘‘constant’’. He thus conjectured that a0 may decrease
together with the Hubble parameter on cosmological time
scales [5]. By contrast Sanders [11] proposed to provide, in
the framework of the biscalar-tensor-vector theory
(BSTV), a cosmological basis for MOND, and found that
a0 grows with time and would differ significantly at red-
shift z ’ 1 from its present value. This would imply sig-
nificantly reduced asymptotic rotational velocity for
distant galaxies. Sanders also remarked that in BSTV,
just as in scalar-tensor theories, GN varies at a rate mar-
ginally in conflict with current observational bounds on
_GN=GN .
Tensor-vector-scalar gravitational theory (TeVeS), a new

relativistic theory of gravity, was proposed by one of us
[12] as a basis for MOND. It has been explored and
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subjected to a wide battery of tests [13], and has also been
extended in various directions [11,14]. TeVeS has MOND
as its weak potential, low acceleration limit, while its weak
potential, high acceleration limit is the usual Newtonian
gravity. TeVeS is endowed with three dynamical gravita-
tional fields: a scalar field �, a timelike unit normalized
vector field u�, and the Einstein metric g�� on which the

additional fields in the theory propagate. The theory also
employs a ‘‘physical’’ metric ~g�� on which gauge, spinor,

and Higgs fields propagate. It is related to g�� by

~g �� ¼ e�2�g�� � 2u�u� sinhð2�Þ: (2)

The index of u� or of �;� is always raised with the metric

g��, the inverse of g��.

The equations of motion for the fields in TeVeS derive
from a five-term action depending on four parameters: the
fundamental gravity constant G, two dimensionless pa-
rameters k and K, and a fixed length scale ‘. We use here
the form of the action given in Ref. [15]. Variation of the
action with respect to g�� yields the TeVeS Einstein equa-
tions for g��:

G�� ¼ 8�Gð ~T�� þ ð1� e�4�Þu� ~T�ð�u�Þ þ ���Þ
þ ���; (3)

where vð�u�Þ � v�u� þ u�v�, etc. The sources here are

the usual matter energy-momentum tensor ~T�� (related to

the variational derivative of Sm with respect to ~g��), as
well as the energy-momentum tensors for the scalar and
vector fields,

��� � �ðyÞ
kG

ð�;��;� � u��;�uð��;�ÞÞ �
F ðyÞg��
2k2‘2G

; (4)

��� � Kðg��u½�;��u½�;�� � 1
4g

	�g��u½	;��u½�;��g��Þ
� 
u�u� (5)

where v½�u�� � v�u� � u�v�, etc., and

�ðyÞ � F 0ðyÞ; y � kl2h���;��;�: (6)

Each choice of the function F ðyÞ defines a separate TeVeS
theory. Its derivative �ðyÞ functions somewhat like the ~�
function in MOND. For y > 0,�ðyÞ ’ 1 corresponds to the
high acceleration, i.e., Newtonian, limit, while the limit
0<�ðyÞ � 1 corresponds to the deep MOND regime. We
shall only consider functions such that F > 0 and �> 0
for either positive or negative arguments.

The equations of motion for the scalar and vector fields
are obtained by varying the action with respect to � and
u�, respectively. We have

½�ðyÞh���;��;� ¼ kG½g�� þ ð1þ e�4�Þu�u�� ~T�� (7)

for the scalar and

Ku½�;��;� þ 
u� þ 8�

k
�u��;�g

���;�

¼ 8�Gð1� e�4�Þg��u� ~T�� (8)

for the vector. Additionally, there is the normalization
condition on the vector field:

u�u� ¼ g��u
�u� ¼ �1: (9)

The 
 in Eq. (8), the Lagrange multiplier charged with the
enforcement of the normalization condition, can be calcu-
lated from the vector equation.
The three parameters, k, K, and ‘, all specific to TeVeS,

are constant in the framework of the theory, as is G, the
fundamental gravitational coupling constant (which need
not coincide with Newton’sGN). As shown in Ref. [12], the
measurable quantitiesGN and a0 can be expressed in terms
of k, K, ‘, and G. However, that calculation of GN ne-
glected the nonzero cosmological value �c of the scalar
field in the scalar equation’s matter source, thus obtaining
spurious cosmological evolution of GN . In this paper we
carry out the calculations in great detail, and show that
TeVeS predicts a strictly nonvarying GN and only a weak
cosmological evolution of a0. This is in full agreement
with available observational constraints on the evolution of
GN , as well as the emerging constraints on the evolution of
a0. As extended rotation curves of high-z galaxies become
available in the future, they will make possible a serious
check of the TeVeS’s prediction that a0 evolves weakly.
In Sec. II we clarify the sense in which GN turns out to

be constant by contrasting physical (atomic) units of length
with the Einstein units in which the gravitational action
looks simple. In Sec. III we work in the Newtonian (strong
acceleration–weak potential) limit of TeVeS to calculate
GN in terms of the fundamental constant G and the TeVeS
parameters K and k. Passing to the weak acceleration limit
of TeVeS we calculate in Sec. IV a0 in terms of the TeVeS
parameters ‘, K, and k, and the cosmological value �c. In
Sec. V we estimate the cosmological evolution of a0, first
naively by assuming that it is tied to that of the Hubble
parameter which is taken to evolve à la general relativity
(GR), and then by setting a bound on the rate of � evolu-
tion from TeVeS’s equations. The latter method clearly
shows that a0 evolves slowly on Hubble’s scale.
Section VI summarizes our conclusions. In Appendix A
we check our methodology by recovering the accepted GN

for the Brans-Dicke gravitational theory.
Greek indices run over 0, 1, 2, 3 with x0 ¼ t representing

time; a partial derivative with respect to t is denoted by an
overdot. We set c to unity everywhere.

II. DIMENSIONS AND UNITS

What does it mean to say that GN is not evolving? After
all, a dimensionfull quantity can be caused to be constant in
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spacetime by simply choosing the unit in which it is
measured to have suitable spacetime variation [16]. So
the only operationally meaningful statement of constancy
of GN is that some dimensionless combination of physical
parameters involving GN does not evolve. Let us thus
specify such a constant combination in TeVeS.

Following Dicke’s masterful critique [16], we choose in
the present section to regard the metric coefficients as
carrying dimensions of squared length and to think of all
the coordinates themselves as dimensionless. As men-
tioned, in TeVeS the equations for the material fields
(spinor, gauge, and Higgs fields) take their usual form
when written on the physical metric ~g��. In particular,

we assume that in the stated formulation the dimensionless
gauge coupling constants and all elementary particle
masses are constant in spacetime. What is being assumed
is that the system of units reflected by ~g�� uses a particle

mass, say the proton’s mp, as its local mass unit. Likewise,

the physical parameters c and @, which appear in the
various equations, are supposed constant. Since @, c, and
mp all bear different dimensions, this last requirement has

fixed the system of units (up to the trivial freedom to
double the length unit everywhere, etc.). The statement
that GN is nonevolving in such ‘‘atomic’’ units is thus
equivalent to the statement that GNm

2
p=@c is a spacetime

constant.
The above units differ from those carried by the Einstein

metric g��, which is the one used in formulating the TeVeS

equations. (Here it may prove conceptually useful to regard
the ~T��, which is calculated by varying the matter action

with respect to ~g��, as reexpressed in terms of g��).

According to Eq. (2), for like coordinate increments, the
physical distance in the space orthogonal to u� (the space
whose metric is g�� þ u�u�) is a factor e�� times the

distance paced out by the Einstein metric itself. By con-
trast, the physical distance collinear with the timelike
vector field u� is e� times that given by the Einstein
metric. In other words, the Einstein unit of length is not
only spacetime varying but also spacetime anisotropic with
respect to that in atomic units. In Einstein units we may
still regard c and @ (but not mp or its corresponding

Compton length) as constants. Accordingly, we have set
c ¼ 1 everywhere. As mentioned,G is constant in Einstein
units. Were we to set it (as well as @) to unity, we would be
in Planck units. However, we shall refrain from this last
step and continue to exhibit G explicitly. The main ques-
tion we shall be asking is, how does GN or a0, when
appropriately calculated in physical units, relate to the
TeVeS constants G, ‘, etc.?

III. NEWTON’S GN IS CONSTANT

We begin by showing the relation between Newton’s
constant and the TeVeS coupling constantG. By definition,
Newton’s constant enters through the relation

�N ¼ �GN

Z ~ð~x0Þ
j~x0 � ~xj d

3~x0 (10)

with m ¼ R
~ð~x0Þd3~x0 the physical mass and ~x the

Cartesian coordinate that marks physical distance. Since
we expect TeVeS to have the customary weak field limit,
the Newtonian potential (10) should enter in the customary
way in the linearized form of the physical metric (the
metric measured by instruments made of matter). We
thus expect that

d~s2 ¼ �ð1þ 2�NÞd�2 þ ð1� 2�NÞd~x � d~x; (11)

where � is the coordinate that marks physical time.
To be able to compare Einstein and physical metrics, we

must use the same coordinates for both. To maintain con-
sistency with previous work [12,15] we choose new coor-
dinates t and x in terms of which the asymptotic physical
metric, though flat, differs slightly from standard
Minkowski form. The relations between physical distance
and time, ~x and �, and the coordinates x and t are

~x ¼ e��cx; � ¼ e�ct: (12)

With this in mind, we can rewrite the weak field limit of the
physical metric outside its source in the form

d~s2 ¼ �ð1þ 2�NÞe2�cdt2 þ ð1� 2�NÞe�2�cdx � dx:
(13)

To relateGN toGwemust use the solutions of the TeVeS
equations to construct the physical metric, which should
turn out to be identical to Eq. (13). In Appendix B we show
that, to first order in the potentials, the Einstein metric must
take the form familiar from linearized GR,

ds2 ¼ �ð1þ 2VÞdt2 þ ð1� 2VÞdx � dx: (14)

Once this form is assumed one can calculate the potential
V by using just one of the Einstein equations; we do this
here.
The vector field u� must be timelike; we shall take our

coordinate system to coincide with the ‘‘rest frame’’ estab-
lished by u�. In view of the normalization condition (9),
the vector field is given to first order by

u� ¼ f�ð1þ VÞ; 0; 0; 0g: (15)

The scalar field may be written

� ¼ �c þ ��; (16)

with �c the nonzero cosmological value of � and ��
representing the local departure from it; �� is to be
regarded as of the same order of smallness as V.
Now for the details. To find the potential V, we shall

solve the Gtt Einstein equation to first order. We take for
the energy-momentum tensor the familiar ideal fluid form

~T �� ¼ ~v�v� þ ~pð~g�� þ v�v�Þ; (17)

where ~ is the proper energy density, ~p the pressure, and
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v� the 4-velocity, all three referring to the physical metric.
We assume that the fluid is stationary in the coordinates
chosen, so the spatial part of v� must vanish, i.e., v� must
be parallel to u�. When we take account of v� normaliza-
tion with reference to ~g��, we get [12]

v� ¼ e�u�: (18)

In the nonrelativistic approximation ~p is negligible relative
to ~; thus

~T �� ¼ ~e2�u�u�: (19)

We now substitute (14)–(16) and (19) into the TeVeS
equations, and retain only first order in V and ��. We start
by solving the temporal component of the vector equa-
tion (8) for 
 (the other components are zero to linear
order), obtaining


 ¼ �Kr2V � 16�G~ sinhð2�cÞ: (20)

With this the Gtt Einstein equation becomes, to first order,

r2V ¼ 4�G

1� K=2
~e�2�c : (21)

We have neglected in the right-hand side terms of order ��
which would source terms of second order in V. With the
boundary condition V ! 0 for jxj ! 1, the solution is

V ¼ � e�2�cG

1� K=2

Z ~ðx0Þ
jx0 � xj d

3x0; (22)

in which integral ~ is regarded as a function of the coor-
dinates x, not of the physical distances.

This result must make its way into the physical metric.
Using transformation (2) in Eq. (14), we get

d~s2 ¼ �ð1þ 2VÞe2�dt2 þ ð1� 2VÞe�2�dx � dx; (23)

which becomes—to lowest order in ��:

d~s2 ¼ �ð1þ 2V þ 2��Þe2�cdt2

þ ð1� 2V � 2��Þe�2�cdx � dx: (24)

Comparing with Eq. (13) we may identify the Newtonian
potential

�N ¼ V þ ��: (25)

We now need only calculate ��.
In the scalar equation (7) we substitute � ¼ 1 because

we are concerned with the Newtonian limit in which �
approaches unity; any small corrections to it may be dis-
carded since we work here to first order in ��:

r2�� ¼ kGe�2�c ~: (26)

Note the factor e�2�c , the correct asymptotic value of
e�2�, which was missed in Eq. (53) of Ref. [12]. The
solution of this last equation in accordance with the bound-
ary condition � ! �c as x ! 1 is

�� ¼ � kGe�2�c

4�

Z ~ðx0Þ
jx0 � xj d

3x0: (27)

Substituting Eqs. (22) and (27) into Eq. (25) we get

�NðxÞ ¼ �
�ð2� KÞkþ 8�

4�ð2� KÞ
�
e�2�cG

Z ~ðx0Þ
jx0 � xjd

3x0:

(28)

Finally, we use relation (12) to switch back to physical
length coordinates ~x:

�Nð~xÞ ¼ �
�ð2� KÞkþ 8�

4�ð2� KÞ
�
G
Z ~ð~x0Þ

j~x0 � ~xj d
3~x0; (29)

where ~ð~xÞ � ~ðxe��cÞ is the energy density distribution
in physical units. Comparing with Eq. (10) we obtainGN in
terms of the TeVeS parameters:

GN ¼
�ð2� KÞkþ 8�

4�ð2� KÞ
�
G: (30)

Thus the ratio G=GN turns out not to depend on �c, the
asymptotic cosmological value of �, a cosmologically
evolving quantity. Since G, k, and K are constant parame-
ters, GN (as measured in physical units) does not evolve
with cosmological epoch. Further, since GN is observatio-
nally positive, while it is natural to expect that G> 0, we
must restrict K to the ranges K < 2 or K > 2þ 8�=k. It is
amusing that one can reconcile the small observed value of
GN (more properly of GNm

2
p=@) with strong gravity

(Gm2
p=@ which is not especially small) for the family of

TeVeS theories for which K is only very slightly above the
critical value 2þ 8�=k. In such a theory the true Planck

length ðG@Þ1=2 could be commensurate with elementary
particle scales like @=mp or it could be even larger, all

this without resorting to brane physics.
The result thatGN is constant is surprising in view of the

fact that TeVeS contains a scalar sector. To check our
methodology we work out, in Appendix A, GN for
Brans-Dicke theory by following the track set out in the
present section. We obtain the accepted law of evolution.

IV. THE MOND ACCELERATION SCALE

The MOND acceleration scale a0 can also be calculated
in terms of the TeVeS parameters. Since MOND is the
small acceleration, weak potential limit of TeVeS [12], we
can again work with the linear approximation to the physi-
cal and Einstein metrics; however, in the present case� �
1. As in Ref. [12] we shall look for a MOND-like equation
of the form (1). We shall then attempt to identify the
MOND function ~� and the combination of TeVeS coupling
constants which is equivalent to a0. For simplicity, we shall
assume spherical symmetry; it can be shown that our
results hold for asymmetric systems as well [12].
We write the Einstein metric for weak potentials exactly

as in Eq. (14), while in contrast to Eq. (13) the physical
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metric is expected to be

d~s2 ¼ �ð1þ 2�Þe2�cdt2 þ ð1� 2�Þe�2�cdx � dx;
(31)

with �, the MOND gravitational potential, replacing �N .
By transforming from the Einstein to the physical metric in
accordance with Eqs. (2), (15), and (16), we find to first
order that

� ¼ V þ ��: (32)

The contribution of V to � is the same as that to �N

because the terms depending on � in the Gtt equation
from which V arises are all of second order in ��, and
thus stand for higher order corrections. Thus we have V as
in Eq. (22).

In determining �� here we must take into account the
fact that, in the weak acceleration limit, �< 1. The scalar
equation (7) takes the form

r � ½�ðk‘2ðr��Þ2Þr��� ¼ kGe�2�c ~: (33)

Comparing this equation with Poisson’s and using Gauss’
theorem in the spherically symmetric case gives

r�� ¼ � kGe�2�c

4��
r
Z ~ðx0Þ

jx0 � xj d
3x0: (34)

Then in view of Eqs. (22) and (32) the gradient of the total
potential � satisfies

~�r� ¼ �Ge�2�cr
Z ~ðx0Þ

jx0 � xj d
3x0; (35)

~� �
��

1

1� K=2
þ k

4��

���1
: (36)

Equation (35) is the desired MOND-like equation. To
find Milgrom’s parameter a0 we proceed to the extreme
MOND regime defined by the condition � � k=ð4�Þ.
There Eq. (36) gives ~� � 4��=k. Substituting this in
Eq. (35) and comparing the result with Eq. (34) reveals
that in the said limit r� � r��. This implies that in
Eq. (25) rV is then negligible.

Instead of focusing on the toy form of �ðyÞ from
Ref. [12], or any other ansatz for it, let us be very general.
We just require that for 0< y � 1, �ðyÞ � D

p
y where D

is some positive constant. Going to sufficiently small y so
that � � k=ð4�Þ we have, in view of the last paragraph,
that

~� � 4��=k � 4�Dk�1=2‘jr��j � 4�Dk�1=2‘jr�j:
(37)

Substituting this in Eq. (35) and transforming all occur-
rences of x (including in the gradients) to ~x by means of
Eq. (12), we get the extreme MOND equation [5]

jr~x�jr~x�=a0 ¼ r~x�N; (38)

with

a 0 ¼ G

GN

p
ke�c

4�D‘
: (39)

Here we have employed the definition (10); it is understood
that � is also to be regarded as a function of the physical
length coordinates ~x. We see that Milgrom’s acceleration
scale a0 depends on the TeVeS parameters k, K, and ‘ (all
constant in Einstein units), as well as on the constant
coefficientD associated with the functionF ðyÞ. But unlike
GN , a0 is predicted in TeVeS to evolve cosmologically in
consonance with e�c . How fast an evolution it is capable of
is the subject of the next section.

V. PREDICTED EVOLUTION OF a0

A. The naive MOND viewpoint

The pure MOND paradigm is ambiguous about the time
evolution of a0. Milgrom [5,9,10] remarks on the numeri-
cal coincidence between a0 and the observed cH0 (H0 is
the present value of the Hubble parameter H) or a0 and the
value of the cosmological constant � inferred from the
acceleration of the cosmos. If the former coincidence be-
speaks of a physical connection, then one would expect
cosmological evolution of a0 with a0 / H, while if it is the
second coincidence that properly reflects the physics, then
a0 should be strictly constant.
How big an evolution can one expect in the first case?

Since naive MOND does not provide a consistent cosmol-
ogy, here we shall use cosmology à la GR. Let us write the
Friedmann equation in GR for a cosmological model with
curvature index �:

H2 ¼
_b2

b2
¼ � �

b2
þ�

3
þ 8�Gm0b

3
0

3b3
: (40)

Here b ¼ bðtÞ is the expansion factor with value b0 at the
present time, m0 is the present value of the mass density of
pressureless matter, and we are neglecting radiation’s con-
tribution because we focus on the more recent universe.
Differentiating with respect to t and dividing out by 2H
gives

_H

H
¼ �

� ��

H2b2
þ 4�Gm0b

3
0

H2b3

�
H: (41)

As is customary, we may introduce densities as fractions
of the present critical density

�m � 8�Gm0

3H2
0

; �� � ��

H2
0b

2
0

; �� � �

3H2
0

;

(42)

so that �m þ�� þ�� ¼ 1 on account of Eq. (40) eval-
uated at the present epoch (when b ¼ b0 andH ¼ H0). We
see that
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ð _H=HÞ0 ¼ �
�
�� þ 3

2
�m

�
H0: (43)

The standard cosmological model obtains values for the
�’s from various observations, e.g., those of the cosmo-
logical microwave background anisotropy spectrum. ��

comes out to be either zero (flat space) or positive (hyper-
bolic space) and very small on scale unity. By contrast�m,
which includes the contribution from putative dark matter,
is assigned a value of about 0.25. We may thus conclude
that at present _a0=a0, which is the same as ð _H=HÞ0, should
be about �0:25H0. Thus the present-day time scale of a0
variation is 4 times longer than the Hubble scale.

As we go back in time a0 should scale proportionately to
the coeval H. We may recast Eq. (40) as

H ¼ H0½��ð1þ zÞ2 þ�� þ�mð1þ zÞ3�1=2 (44)

with 1þ z ¼ b0=b. With �� � 0, �m � 0:25, and �� �
0:75 as in the standard model, the curvature term in the
square brackets in the last equation remains negligible,
while by z � 1 the matter term will have come to dominate
the � term. We then have for z > 1

a 0ðzÞ � að0Þð1þ zÞ3=2 (45)

which implies a drastic change of a0 between z of a few
and that of today.

However, it could be claimed that to keep in the spirit of
the MOND paradigm one should, apart from retaining
�� � 0, equate �m with the baryon fraction �b ¼ 0:04
inferred in standard cosmology. This last can easily ac-
commodate still unobserved massive neutrino or baryonic
matter which is nowadays invoked inMOND in connection
with the large clusters of galaxies [9,17,18]. Of course, to
be consistent we should then put �� � 0:95. With this
setup the matter term in Eq. (44) becomes comparable with
the � term only for z � 2, and a0 will follow the law (45)
for z > 2. For z � 1 we would have from Eq. (43) that a0
changes on a time scale 16 times longer than H�1

0 .

The above discussion is instructive; but it is hardly
trustworthy as underlined by the contrasting results it can
yield. The crux of the problem is, of course, that MOND is
not a nonrelativistic limit of GR, yet this last is being used
to work out the cosmology. This inconsistency can be
avoided by calculating the cosmological evolution of a0
entirely within TeVeS, which does have MOND as a non-
relativistic limit.

B. The TeVeS viewpoint

We found in Eq. (39) that a0, as defined by small scale
MOND dynamics, has a e� dependence; here and through-
out this section � stands for the scalar field’s cosmological
value�c. We are thus invited to establish the cosmological
evolution of �. It will be useful to distinguish here, as we
did in Sec. III, between the coordinate time t and the
physical time �.

The Einstein metric for a Friedmann-Robertson-Walker
model is

ds2 ¼ �dt2 þ bðtÞ2½d�2 þ fð�Þ2ðd�2 þ sin2�d’2Þ�
(46)

where fð�Þ is either � (open model with flat spaces, � ¼ 0)
or sinh� (open model with hyperbolic spaces, � ¼ �1).
As in Sec. VII of Ref. [12] we shall take u� ¼ f1; 0; 0; 0g
and� ¼ �ðtÞ, consistent with the timelike character of the
vector and the assumed isotropy and homogeneity of
space. Then according to Eq. (2) we obtain the physical
line element d~s2 by multiplying the temporal part of g��
by e2� and the spatial parts by e�2�:

d~s2 ¼ �d�2 þ ~bðtÞ2½d�2 þ fð�Þ2ðd�2 þ sin2�d’2Þ�;
(47)

with

~b ¼ e��b; d� ¼ e�dt: (48)

The � here is the physical time since it acts as the proper
time of commoving observers, cf. Eq. (12).
From a0 / e� it follows that

da0=d�

a0
¼ d�

d�
: (49)

The first integral of Eq. (7) for � is given in Ref. [12] for
the case of ideal fluid matter:

�ð�2k‘2 _�2Þ _� ¼ �k

2b3

Z t

0
Gð~þ 3~pÞe�2�b3dt: (50)

Here, as earlier, an overdot designates a derivative with
respect to t, not �. Since the physical energy density ~, the
physical pressure ~p, and the TeVeS parameter k are all

positive, we see that _�, and consequently also d�=d�, are
negative. Thus by Eqs. (48) and (49) a0 is strictly decreas-
ing with physical time �. But because the integral above
includes contributions from early times when ~p is not
negligible, and because of the complicated factor �, the

said equation is far from convenient for estimating _�. We
shall instead estimate d�=d� by way of the Einstein
equations.
First we compute the physical Hubble parameter ~H:

~H � d~b=d�
~b

¼ e��
_b

b
� d�

d�
: (51)

Next we compute 
 from the vector equation (8); it takes
the form [12]


 ¼ 8�½� _�2=k� 2G sinhð2�Þ~�: (52)

Finally we write down Einstein’s equations (3) sans the
cosmological constant and with a perfect fluid as matter,
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_b2

b2
¼ � �

b2
þ 8�G

3
~e�2� þ 16��ðyÞ _�2

3k
þ 4�F ðyÞ

3k2‘2
;

(53)

where y here is identical to the argument of � in Eq. (50).

Taking into account thatF > 0 and�> 0 and that _�< 0,
we see that for a spatially flat or hyperbolic cosmological
model (� 	 0)

_b

b
>�

�
16��

3k

�
1=2

e�
d�

d�
: (54)

This could be a strong inequality if the� term in Eq. (53) is
dominated by the matter energy density. In any case, from
Eq. (51) we see that

�
�
1þ

�
16��

3k

�
1=2

�
d�

d�
< ~H: (55)

It is clear from Eqs. (49) and (55) that for any choice of
�, so long as it is positive,��������

da0=d�

a0

��������< ~H ¼ d~b=d�
~b

: (56)

Thus within any reasonable TeVeS theory a0’s evolution is
slower than the Hubble expansion at the same epoch, and it
can be much slower, provided only � is not small com-
pared to unity in recent epochs and k < 1.

A case in point is the TeVeS theory investigated in detail
in Ref. [12]. It incorporates a function F ðyÞ for which
�ðyÞ> 1 for y < 0. As shown there, one then needs k �
1 for TeVeS cosmology to be consistent with causality.
Thus by Eq. (55) jd�=d�j � ~H. Then by virtue of Eq. (49)
this implies ��������

da0=d�

a0

��������� ~H ¼ d~b=d�
~b

: (57)

Thus at all epochs the evolution of a0 occurs on a time
scale much longer than Hubble’s. Put another way, as one

goes back in time, a0ðzÞ grows much slower than ~b0=~bðzÞ
or 1þ z.

VI. CONCLUSIONS

In this work we have calculated Newton’s constant GN

and the MOND acceleration scale a0 in terms of TeVeS
parameters. We find that GN does not depend on the
dynamical scalar field of the theory, and is thus strictly
constant in cosmology. This corrects an impression that
one might obtain from Ref. [12]. It also shows that anal-
ogies drawn between TeVeS and familiar scalar-tensor
theories can lead to incorrect inferences. Our result agrees
with known facts: all existing data point to a nonvarying
GN [4].

We also find here that in a cosmological setting a0 varies
as the exponential of the scalar field, thus decreasing with
time. However, a detailed consideration of TeVeS isotropic

cosmological models strongly suggests that the a0 varia-
tion occurs on scales much longer than the Hubble scale.
This result is in contrast to a naive view which regards a0 as
physically connected to the Hubble parameter; in such
eventuality a0 variation would most likely occur on the
Hubble scale (we have discussed inevitable ambiguities in
this point of view).
At present there are not enough quality data to test the

TeVeS prediction of slow a0 evolution. Clues as to the
evolution of a0 could be gleaned from existing data on the
Tully-Fisher relation at epoch z
 1. The Tully-Fisher
relation in the form v41 ¼ GNa0M, with M the total bar-
yonic mass of the galaxy and v1 its asymptotic rotation
velocity, emerges naturally in MOND. Evolution of a0
would entail evolution of the coefficient in the Tully-
Fisher relation or, equivalently, of the zero point of the
plot of logM vs logv1 for disk galaxies. The meager
available data are consistent with no evolution of the
Tully-Fisher relation back to z � 0:6 [19]. In addition,
Milgrom’s MOND analysis [10] of recent data by
Genzel, Tacconi et al. [20] on the rotation curve of a galaxy
at z ¼ 2:38 seems to be consistent with unchanging a0
(although that rotation curve does not extend as far as
would be desired for this kind of an inference).
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APPENDIX A: CALCULATION OF GN IN
BRANS-DICKE THEORY

We show here that the methodology of Sec. III will yield
familiar results when applied to a pure scalar-tensor theory
such as Brans-Dicke theory. Whenever feasible we shall
couch the equations in the notation of Sec. III.
Following Dicke [16] we transform the Brans-Dicke

gravitational action [2] to the Einstein frame; we shall,
however, leave the matter action in the physical frame in
parallel with our treatment of TeVeS [12]:

S ¼ 1

16�G

Z �
R� 1

2
ð2!þ 3Þ
;�
;

�


2

�
ð�gÞ1=2d4x

þ
Z

Lmð�~gÞ1=2d4x: (A1)

In the above ! is the celebrated Brans-Dicke parameter
and 
, a dimensionless entity, represents the Brans-Dicke
field in units of the fundamental constant G�1, i.e., 
 ¼
G�. The first line of the action is stated in terms of g��,

while the matter action takes its usual form when written in
the ~g�� metric. In Brans-Dicke theory
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~g �� ¼ 
�1g��; ~g�� ¼ 
g��;

ð�~gÞ1=2 ¼ 
�2ð�gÞ1=2:
(A2)

On account of the definition of the matter’s energy-
momentum tensor, as a variational derivative of the matter
action, we have

� 2�½Lmð�~gÞ1=2� ¼ ~T��ð�~gÞ1=2�~g��
¼ ð�gÞ1=2½ ~T���g

��
�1

þ ~T��~g
��
�3�
�; (A3)

where the second line results on account of the transfor-
mations (A2). Now variation of g�� in S, together with the

identity

�½Rð�gÞ1=2� ¼ G��ð�gÞ1=2�g�� þ boundary terms

(A4)

and our last result, yields the gravitational equations

G�� ¼ ð2!þ 3Þ
�2

�

;�
;� � 1

2

;�


�
; g��

�

þ 8�G ~T��

�1; (A5)

the counterpart of our Eqs. (3), while variation with respect
to ln
 yields the Brans-Dicke scalar equation in the form

1

ð�gÞ1=2 ½g
��ðln
Þ;�ð�gÞ1=2�;� ¼ 8�G

2!þ 3
~T��~g

��
�2;

(A6)

which is the counterpart of Eq. (7).
Let us solve the equations for a stationary situation to

linear order by writing

g�� ¼ ��� þ h�� and 
 ¼ 
c þ �; (A7)

with ��� and 
c the asymptotic values of the Einstein

metric and scalar field (where spacetime is assumed flat).
Now according to Eq. (17) for ideal fluid matter ~T��~g

�� ¼
�~þ 3~p. In the first approximation we may neglect the ~p.
Then to first order in � and h�� (and neglecting any

temporal variation of the cosmological boundary value

c) Eq. (A6) takes the form

r2� ¼ � 8�G=
c

2!þ 3
~; (A8)

whence in analogy with Eq. (22)

� ¼ 2G=
c

2!þ 3

Z ~ðx0Þ
jx0 � xj d

3x0: (A9)

This last result shows that the first term in the right-hand
side of Eq. (A5) is of second order in G~, and thus
negligible compared to the matter term. Again, from
Eq. (17) we see that here ~T�� � ~v�v�. If the matter is

static, we have from the normalization of v� in the physical
frame that v�v� ¼ �~gtt�

t
��

t
�. This will also be true to a

good approximation if the matter flows in space provided
that v�’s spatial part v is small compared to unity [errors
will be of Oðv2Þ]. Hence the Brans-Dicke gravitational
equations are

G�� � �8�G
�1 ~~gtt�
t
��

t
� � 8�G
�2

c ~�t
��

t
�; (A10)

where we have used relations (A2) and dropped from the
last expression subdominant terms with extra factors of
h�� and � . These equations are just the GR Einstein

equations in the metric g�� for a quasistatic mass-energy

distribution ~, but with G=
�2
c playing the role of gravi-

tational constant.
We know that to first order such Einstein equations have

the line element (14) as a solution with V signifying the
usual Newtonian potential. In light of our remark about the
gravity constant, we must write here the following analog
of Eq. (22):

V ¼ �G
�2
c

Z ~ðx0Þ
jx0 � xjd

3x0: (A11)

Using the transformations (A2) we evidently have, to first
order in V and � , that

d~s2 ¼ �ð1þ 2V � �=
cÞ
�1
c dt2 þ ð1� 2V

� �=
cÞ
�1
c dx � dx: (A12)

In order that the physical line element be asymptotically
Minkowski, we must define, in analogy with relations (12),
the physical time � and physical length coordinates ~x:

~x ¼ 
�1=2
c x; � ¼ 
�1=2

c t: (A13)

The line element here thus has a form that contrasts that of
Eq. (11) for GR and TeVeS:

d~s2 ¼ �ð1þ 2�NÞd�2 þ ð1� 2��NÞd~x � d~x: (A14)

Here

�N ¼ V � 1

2
�=
c ¼ �GN

Z ~ð~x0Þ
j~x0 � ~xjd

3~x0; (A15)

GN ¼ G


c

2!þ 4

2!þ 3
; (A16)

� ¼ !þ 1

!þ 2
: (A17)

In Eq. (A15) we have absorbed one factor 
�1
c into the

integral to convert from x to ~x.
Comparison with Eqs. (10) and (11) shows that GN here

is properly regarded as the Newtonian gravity constant.
Our GN concurs with Brans and Dicke’s [2], showing
clearly that in Brans-Dicke theory the Newtonian gravity
‘‘constant,’’ by virtue of its strong 
 dependence, evolves
cosmologically, in contrast to the case of GR or of TeVeS.
Our value for the coefficient � also coincides with that
obtained by Brans and Dicke [2]. The fact that � � 1 is
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responsible for gravitational lensing being smaller in
Brans-Dicke theory than in GR; this is again in contrast
to the TeVeS case for which gravitational lensing is the
same as that in GR for the same source ~ð~xÞ.

APPENDIX B: CALCULATION OF THE EINSTEIN
METRIC TO FIRST ORDER

We show here that, to first order in the potential, the
Einstein metric in TeVeS takes the form of Eq. (14). To this
end we rearrange the Einstein equations (3) as

R�� ¼ 8�Gð ~T�� þ ð1� e�4�Þu� ~T�ð�u�Þ þ ���Þ
þ ��� þ 1

2g��R; (B1)

where ��� and ��� are given by Eqs. (4) and (5), respec-

tively, and

R � �8�Gg��ð ~T�� þ ð1� e�4�Þu� ~T�ð�u�Þ þ ���Þ
� g�����: (B2)

To first order in the potential the temporal and spatial
components of the Einstein metric can be most generally
written as

g00 ¼ �1� h00ðx; tÞ; (B3)

gij ¼ �ij � hijðx; tÞ; (B4)

where Latin indices denote space coordinates. Other non-
diagonal terms are of higher order; for example, g0j is of

order Oð32Þ in the potential [21]. Taking into account the

normalization condition Eq. (9), we find, again to first
order, that the vector field is

u� ¼ f�ð1þ 1
2h00Þ; 0; 0; 0g (B5)

and the scalar field is as in Eq. (16) with �� regarded as of
first order. Substituting Eqs. (B3)–(B5) as well as Eq. (17)
into the temporal Einstein equation in (B1), calculating 

as in Eq. (20), and retaining only terms of first order, we
obtain the equations for the metric corrections:

r2h00 ¼ 8�G

1� K=2
e�2�c ~; (B6)

r2hij � h00;ij þ hkk;ij � hki;jk � hkj;ik

¼ 8�G

1� K=2
e�2�c ~�ij: (B7)

The solution for h00 is straightforward:

h00 ¼ � 2Ge�2�c

1� K=2

Z ~ðx0Þ
jx0 � xj d

3x0: (B8)

To solve for the hij we use the following gauge condition

which is frequently used in GR [21]:

hkj;k ¼ �1
2ðh00;j � hkk;iÞ: (B9)

Then Eq. (B7) takes the form

r2hij ¼ 8�G

1� K=2
e�2�c ~�ij; (B10)

whose solution is

hij ¼ ��ij

2Ge�2�c

1� K=2

Z ~ðx0Þ
jx0 � xj d

3x0: (B11)

We thus see that g00 ¼ �ð1þ 2VÞ and gij ¼ �ijð1� 2VÞ,
with V given by Eq. (22). Thus we have justified Eq. (14).
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