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We present an analysis of a scalar field model of dark energy with an exponential potential using the

Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling

techniques we examine the ability of each simulated data set to constrain the parameter space of the

exponential potential for data sets based on a cosmological constant and a specific exponential scalar field

model. We compare our results with the constraining power calculated by the DETF using their

‘‘ w0 � wa’’ parametrization of the dark energy. We find that respective increases in constraining power

from one stage to the next produced by our analysis give results consistent with DETF results. To further

investigate the potential impact of future experiments, we also generate simulated data for an exponential

model background cosmology which cannot be distinguished from a cosmological constant at DETF

‘‘Stage 2,’’ and show that for this cosmology good DETF Stage 4 data would exclude a cosmological

constant by better than 3�.
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I. INTRODUCTION

In the late 90’s, two independent teams presented evi-
dence from supernova observations that the universe, in-
stead of slowing down due to gravity, is accelerating [1,2].
In the standard cosmological framework, the acceleration
is caused by a mysterious new form of matter, dubbed
‘‘dark energy,’’ that makes up roughly 70% of the universe.
There is a wide variety of possible explanations for dark
energy. The simplest model that provides a good fit to the
data is a cosmological constant. A cosmological constant is
equivalent to a homogeneous fluid with a constant energy
density and a ratio of pressure to energy density (the
‘‘equation of state parameter’’ w), equal to�1 at all times.
Yet, despite compelling evidence for the existence of dark
energy, it is unclear whether the dark energy density is
constant or varies with time. There are many different
proposals for a dynamical form of dark energy, one of
them being quintessence. Quintessence describes the ac-
celeration being caused by a scalar field, �, but even just
among quintessence models there is a tremendous variety
of possible behaviors. There is considerable interest in
acquiring better data in order to improve our understanding
of dark energy.

Recently the Dark Energy Task Force (DETF) released a
report charting a course for future experiments [3]. They
modeled dark energy as a homogeneous and isotropic fluid
with an equation of state parametrized by wðaÞ ¼ w0 þ
wað1� aÞ, where the scale factor a ¼ 1 today. Defining
Stage 1 to be what is already known, they forecasted data
for three additional experimental stages: Stage 2 data
represents on-going experiments that will be completed
in the near future. Stage 3 data sets represent medium sized
proposed experiments. Last, Stage 4 data sets represent
proposed large scale future space and ground-based experi-
ments. Each stage is further categorized as either ‘‘opti-

mistic’’ or ‘‘pessimistic’’ depending on how well the
systematics are expected to be constrained. The scientific
impact of a stage was quantified in terms of a ‘‘figure of
merit’’ (FoM). The figure of merit is defined to be the ratio
of the area of the 2� contour of the w0 � wa space for
Stage 2 divided by the area of the 2� contour of the w0 �
wa space for Stage 3 (or 4).
The DETF analysis leaves several open questions, some

of which our research seeks to address. The w0 � wa

parametrization is not motivated by a physical model of
dark energy and provides cosmological solutions that may
be very different from a scalar field model. As illustrated in
Fig. 1, the w curves generated by the exponential scalar
field model that we consider in this paper are not especially
well fit by curves in the w0 � wa family, except for those
nearly identical to w ¼ �1. Thus the relationship between
the DETF results and the impact of future experiments on
scalar field models is not clear. A good way to clarify this
point is to model the impact of future data sets directly on
particular scalar field quintessence models, which is what
we do here. Our work complements the DETF report as
well as work by other authors using alternative wðaÞ pa-
rametrizations [4,5], parametrizations of �DE [6], and
model independent scalar field parameters [7].
The exponential scalar field model has been used in

many different cosmological contexts due to its ability to
give scaling solutions for the scalar field energy density ��

where
dðlogð��ÞÞ
dðlogðaÞÞ ! �. The constant � depends on parame-

ters in the scalar field potential as well as the other forms of
matter present in the universe. Originally the potential was
used for power law inflation models and was shown to have
a range of attractor solutions [8]. Its ability to produce
attractor solutions that scale like the background energy
density made it an interesting choice for a dark matter
candidate [9–11]. The variety of scaling solutions is well
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covered by Copeland, et al. [12] where they argue that
consideration of ‘‘fine-tuning’’ parameters and constraints
from nucleosynthesis give � > 20 as a natural choice. This
range of � values would not allow for late time cosmo-
logical acceleration and is therefore ruled out as an expla-
nation for dark energy. The fine-tuning that is required to
successfully describe dark energy with this model is
needed so that the scalar field energy density can be
initially very small; of the order of the dark energy density
today. This has caused this model to be discarded by many
authors on the basis that the model has lost the theoretical
generality that made the potential initially interesting.
However, as a practical matter the fine-tuning is straight-
forward to implement, and the potential is very simple and
easy to work with. Because of this simplicity, we found it
valuable to have this potential as part of our larger project
(which includes a variety of more complicated quintes-
sence potentials [13,14]). The simplicity helped us deal
with a number of technical issues first with the exponential
model and then transfer our understanding to the more
complicated cases. In addition, realistic cosmologies for
the exponential model have their special forms for wðaÞ
(illustrated in Fig. 1). We found it useful to include this
family of wðaÞ curves in our set of possibilities to more
fully understand the constraining power of future data sets.

The paper is organized as follows. In Sec. II we provide
an introduction to our scalar field model and its cosmo-
logical solutions. In Sec. III we describe how we come
about our choice of parametrization, as this is a critical step
in the MCMC analysis. (An account of our general MCMC
methods and data modeling can be found in the appendix
of our companion paper [13]. This paper contains only
information specific to the exponential model.)
Section IV presents our results for data simulated using a
background cosmology with a cosmological constant and
then Sec. V presents results where the data is based on a

cosmology with exponential model quintessence. Finally,
we summarize our key results in the conclusions.

II. EXPONENTIAL MODEL COSMOLOGY

We model dark energy as a homogeneous scalar field
evolving in an exponential potential

V ¼ V0e
���: (1)

The cosmological evolution of this scalar field in a
Friedmann-Robertson-Walker (FRW) universe is then
given by solving:

d2�

dt2
þ 3H

d�

dt
þ dVð�Þ

d�
¼ 0; (2)

H2 ¼ 1

3M2
p

ð�r þ �m þ ��Þ � k

a2
; (3)

�� ¼ 1

2

�
d�

dt

�
2 þ Vð�Þ; (4)

where Mp is the reduced Planck mass. The equation of

state of the scalar field is given by

w ¼
1
2 ðd�dt Þ2 � Vð�Þ
1
2 ðd�dt Þ2 þ Vð�Þ ; (5)

which wewill use in discussing an evolving dark energy. In
this picture a cosmological constant is equivalent to a
scalar field with w ¼ �1.

In our analysis we initially set d�
dt ¼ 0 [15]. This leaves

the dynamics of the field completely determined by the
slope and curvature of the potential:

dV

d�
¼ ��V0e

���;
d2V

d�2
¼ �2V0e

���: (6)
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FIG. 1 (color online). Here we illustrate the differences between wðaÞ curves from the exponential model (solid line) and from the
ansatz used by the DETF (dot-dashed line). Curves are plotted with respect to z (left panel) and a (right panel). The four curves from
top to bottom are given byðw0; waÞ: ð�0:77673;�0:2327Þ, ð�0:9211;�0:0789Þ, ð�0:9797;�0:0203Þ, ð�0:9992;�0:0008Þ. Using the
final parametrization (explained in Sec. III), the exponential model parameters are given by ð�; VIÞ: (0.07, 0.3725), (0.35, 0.42), (0.7,
0.42), (1.2, 0.52) (in units defined in the text). Both models give wða ¼ 1Þ to be the same value for each set of curves and wðaIÞ ¼ �1
for all curves shown.
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Since the initial field velocity is zero, the initial equation of
state is w ¼ �1, mimicking a cosmological constant. As
the field begins to roll the equation of state begins to depart
from �1. The rate of this departure is determined by the
steepness of the potential. A steeper slope gives changes in
� that correspond to larger changes in w. Likewise, a flat
slope gives little change in � and therefore has a cosmol-
ogy similar to a cosmological constant, as shown in Fig. 2.

The possible scaling solutions achievable by the expo-
nential model are systematically discussed by Copeland,
et al. [12]. If a scaling solution is reached before the onset
of dark energy domination the universe will not accelerate
and therefore is a poor match to current data. However,
there are subsets of scaling solutions that reach their scal-
ing solution after dark energy domination and provide
different fates for the universe. These scaling solutions

fall into two categories: (i) 0< �<
ffiffiffi
2

p
or (ii)

ffiffiffi
2

p � � <
��. Solutions with � values in category (i) approach scaling

where w ! �2

3 � 1, giving late time acceleration. For cate-

gory (ii), we define �� to be the value that gives wða¼
1Þ¼�1

3 , but the scaling solution leads to wða > 1Þ>� 1
3 .

It is possible for �� to be larger than
ffiffiffi
3

p
and therefore have

wða > 1Þ ! 0. This value depends on the initial scalar
field energy density, ��;I, which in turn determines when

the field begins to approach its scaling solution, i.e., when
the field starts rolling. We are allowing ��;I and other

cosmological parameters to float so a universal value of
�� cannot be uniquely determined.

III. PARAMETRIZATION

In order to run our MCMC analysis on the potential V ¼
V0e

���, we first need to make a careful choice of parame-
ters. The obvious choice of the potential parameters V0, �,
and the initial field value �I presents several problems.

Rewriting the potential V ¼ V0e
��� ! V ¼ elnðV0Þ��� re-

veals a degeneracy between lnðV0Þ and ��I. For fixed
values of �, a change in �I and a corresponding change

in lnðV0Þ gives identical cosmological solutions. This will
lead to an unconstrained and uninteresting parameter
space. Fixing V0 removes this degeneracy. We make the
choice of V0 ¼ �� ¼ 8:74� 10�121 (in reduced Planck
units), which is the value of the cosmological constant
energy density used by the DETF. This is the simplest
choice, although not absolutely necessary. Other choices
of V0 would provide equivalent cosmological solutions.
Removing the degeneracy and fixing V0 leaves � and�I

as the two model parameters. However, this choice leads to
an ‘‘infinite direction’’ in ���I space: Since the data for
the first part of our analysis is modeled on a cosmological
constant, the most probable values of � are those where �
approaches zero. As � approaches zero, �I can take any
value and produce solutions indistinguishable from a cos-
mological constant. This leads to an infinite unconstrained
direction in parameter space that is uninteresting and also
fatal to the MCMC techniques.
One can resolve this problem by placing a bound on � or

�I. For small values of �, a bound placed on � is nearly
equivalent to placing a bound on wða ¼ 1Þ. A choice of a
bound on � can be chosen such that the difference from
w ¼ �1 is small, however, the choice is arbitrary. Further,
for data based on a � universe, the closer the bound is
placed to � ¼ 0, the more the allowed region of parameter
space squeezes against this bound as smaller values of �
allow a wider range of �I, basically partially restoring the
degeneracy we are trying to eliminate. This arbitrariness
and distortion of allowed parameter ranges make bounding
� a poor choice for addressing the parameter space degen-
eracies in this model. The squeezing effect leads to incor-
rect conclusions about allowed values of �. The space
appears to disfavor larger values of �, or equivalently
larger departures from wða ¼ 1Þ ¼ �1, than would the
space in the final parametrization that we discuss next.
We find the best choice of free model parameters to be

VI, where VI ¼ Vð�IÞ, and �. The value of �I is then
determined from � and VI. This parametrization avoids the
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FIG. 2 (color online). The left panel shows three examples of the exponential potential (dashed line: � ¼ 0:07, V0 ¼ 0:24, �I ¼
�6:28, long-short dashed line: � ¼ 0:35, V0 ¼ 0:32, �I ¼ �0:78, solid line: � ¼ 0:7, V0 ¼ 0:38, �I ¼ �0:14. V0 is given in
units of h2, as mentioned in Sec. IV). The path of the scalar field is depicted by thick solid curves. The corresponding w behavior is
shown in the right panel. The solid curve gives the potential used for the fiducial model discussed in Sec. V.
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degeneracy discussed in the previous paragraph since a
cosmological constant of a particular value is only repre-
sented at one point (VI ¼ �� and � ¼ 0) in the �� VI

space. Values similar to a cosmological constant are ex-
plored without an arbitrary bound placed on any parameter.
This allows the MCMC method freedom to explore a more
natural space.

There is no loss of generality with this choice of pa-
rametrization as is easily seen by the slope and curvature of
the potential in the new parameters:

dV

d�
¼ ��VI;

d2V

d�2
¼ �2VI: (7)

This parametrization allows a simple intuition about the
role of these parameters forming the solutions. Small
values of � give a flat potential and the scalar field will
be stationary, independent of the choice of VI. For large
values of � the field will roll and the amount to which it
does will depend on the value of VI.

IV. COSMOLOGICAL CONSTANT FIDUCIAL
DATA

With our parametrization firmly in hand, we now ana-
lyze the DETF data sets based on a cosmological constant
cosmology using the MCMC technique. The likelihood
contours for Stage 2, Stage 3 Photo Optimistic, Stage 4

Ground LST Optimistic, and Stage 4 Space Optimistic are
shown in Fig. 3 for the �� VI space. In all plots shown in
this paper we use the DETF supernova, weak lensing,
baryon oscillation, and PLANCK (using the alternate pa-
rameters as in [5]) data sets but not the cluster data sets due
to technical problems adapting the DETF cluster data
models to our methods. These technical problems are
similar to those outlined in [5], where similar issues were
encountered. Our plots were constructed by marginalizing
over all the cosmological parameters, !m, !k, !B, �� , ns,

the various nuisance parameters, and/or the photo-z pa-
rameters. The nuisance and photo-z parameters are de-
tailed in the appendix of one of our companion papers
[13]. The fiducial values for the cosmological parameters
are shown in Table I. The values for all energy densities
and VI in the remainder of the paper are in units of h2,
where h ¼ H

100 .

Figure 4 gives likelihood contours in �� �!DE space,
where �!DE � !DEða ¼ 1Þ �!DEðaIÞ. Here !DE ¼
��

�c
h2 and �c ¼ 3M2

pH
2. The value of �!DE gives the

amount the dark energy density has changed since the
simulation started at scale factor aI (well in the radiation
era). Values of �!DE different from zero correspond to
dynamical dark energy. Figure 5 shows an enlarged version
of the �� �!DE space for Stage 3 and Stage 4
experiments.
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FIG. 3. Likelihood contours in the VI � � space for cosmological constant data models. The three contours give 68.27%, 95.44%,
and 99.73% confidence regions.
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For Stage 2, values of � from 0 to about 0.15 in Fig. 4
correspond to shallow slopes and do not allow for much
change in the amount of dark energy. For these values of �
there is a spread in VI in the �� VI space (Fig. 3). Since
these values are consistent with a nonevolving dark energy,
the spread in VI is essentially a measure of how well the
experiment is measuring !DEða ¼ 1Þ. Values of � > 0:15
all correspond to detectable differences from a cosmologi-
cal constant. This portion of the �� VI space has an
upturned feature. As the slope gets steeper the field needs
to start higher up in the potential in order to roll down to

acceptable values of !DEða ¼ 1Þ. These features are evi-
dent in the plots for Stage 3 and Stage 4, although by Stage
4 it is less clear as the parameter space has shrunken to
values closer to a cosmological constant, and so the up-
turned trend has diminished.
Comparing Stage 2 to Stage 3 Photo Optimistic, and

then on to Stage 4, there is a significant tightening of the
allowed area in parameter space. This increased constrain-
ing power is similar to the factors of about three (Stage 2 to
Stage 3) and ten (Stage 2 to Stage 4) increase in constrain-
ing power noted by the DETF in the w0 � wa space. The
�� �!DE contours in Fig. 4 allow one to interpret the
constraining power already seen in the �� VI space in
terms of a specific aspect of the dark energy dynamics,
namely, the overall change in dark energy density (given
by �!DE).
Figure 6 shows plots of the allowed functions ofwðzÞ for

each data set. The plots are constructed by selecting around
100 points taken uniformly within the 3� contour (thus
also including points within the 1 and 2� contours). This is
done to illustrate the full range of solutions not excluded at
better than 3�. The furthest most curve from w ¼ �1 for
each stage corresponds to the top right most tip in the ��
VI space.
Since we are interpreting the data using the exponential

quintessence model, we can use our knowledge of how the
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FIG. 4. Likelihood contours in the �� �!DE. Deviations of �!DE from 0 indicate evolving dark energy. The background
cosmology has a cosmological constant. The boxes in the top left panel (Stage 2), respectively, show the size of the axes for Stage 3
and Stage 4 plots in Fig. 5. The contours give 68.27%, 95.44%, and 99.73% confidence regions.

TABLE I. �CDM (left column) and exponential (right col-
umn) fiducial parameter values. The nuisance and photo-z
parameters are 0. !DE is the same as VI for a �CDM universe
and !DE ¼ 0:372 for the exponential universe displayed in the
right column, although it is not a parameter varied for either
fiducial model.

!m 0.146 0.146

!k 0.0 0.0

!B 0.024 0.024

ns 1.0 1.0

�� 0.87 0.87

� 0.0 0.7

VI 0.3796 0.42
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FIG. 5. Enlarged plots of the �� �!DE confidence contours for cosmological constant data models. The three contours correspond
to 68.27%, 95.44%, and 99.73% confidence regions. The axes correspond to the boxes in Fig. 4.
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FIG. 6 (color online). The wðzÞ behavior for a sample of points covering the full range of the �� VI space for data based on a
cosmological constant.
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cosmological solutions vary with � to discuss constraints
on future cosmology as well. Since all the stages depicted

in Fig. 3 strongly favor � <
ffiffiffi
2

p
, essentially all future wðaÞ

behavior consistent with these data sets will approach

scaling solutions where w ! �2

3 � 1<� 1
3 and give accel-

erating universes where �� ! 1. The scaling solutions

have not been reached by today but will be approached
in the future. Therefore, by Stage 2, solutions that lead to
universes with a nonaccelerating fate have been ruled out
in this scenario. Wewill revisit this point in the next section
in the context of a different background cosmology.

V. EXPONENTIAL MODEL FIDUCIAL DATA

Next we consider the case where the universe happens to
have dark energy described by the exponential model. We
select a particular fiducial model of dark energy to illus-
trate the potential impact of Stage 4 data. We use expo-
nential model parameters of � ¼ 0:7 and VI ¼ 0:42 for the
fiducial model (the remaining parameters were given the
same values we use for the cosmological constant back-
ground model, given in Table I).

We choose the fiducial values by finding a point in the
�� VI space in Fig. 3 for Stage 2 that was just outside a 1�
detection but was excluded by better than 3� in Stage 4
Optimistic (for both ground and space). This point corre-
sponds to wða ¼ 1Þ ¼ �0:92, as shown in Fig. 2. The

results of Stage 2, Stage 3 Photo Optimistic, Stage 4
Space Optimistic, and Stage 4 LST Optimistic are shown
in Fig. 7 for the �� VI space. The �� �!DE space is
shown in Fig. 8. Figure 9 shows an enlarged version of the
�� �!DE space for Stage 4 experiments.
For Stage 2, the likelihood contours in �� VI space

look similar to the case with a cosmological constant
background cosmology. The range of � is nearly the

same with all � <
ffiffiffi
2

p
. Therefore the same conclusions

about strongly favoring future scaling behavior that were
made in the previous section apply here. The upturned
trend is a little more dramatic since dark energy solutions
with more evolution are favored. The major difference in
the space is that values of � & 0:05 are outside the 1�
contour. Comparing this with the 1� region of �!DE shows
that these values are consistent with a nondynamical dark
energy. It is not until we reach values of � � 0:2 that we
find a 1� region that corresponds to an evolving dark
energy in the �!DE plot. Therefore, even though the pa-
rameters consistent with a cosmological constant fall out-
side the 1� contour in the �� VI plot, a nondynamical
dark energy, and thus a cosmological constant, is not ruled
out at even the 1� level by analyzing the contours in the
�� �wDE space. This apparent discrepancy between
the two pictures is in fact a common situation when exam-
ining relatively low likelihood contours in different pa-
rameter spaces. More clear signals will only be found
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FIG. 7. Plots of the likelihood in VI � � space for data based on the fiducial exponential background cosmology. The three contours
correspond to 68.27%, 95.44%, and 99.73% confidence regions.
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when looking at phenomena that are rejected at higher
likelihood levels.

By Stage 3 Photo Optimistic, the cosmological constant
is now excluded in the 1� contour although well within the
2� contour in the �� VI space. This is consistent with the
�� �!DE plot in Fig. 8. The increased constraining power
is again equivalent to the DETF result for the �� VI space.
However, the range of � has not changed much within the
3� contour, allowing the range of evolving dark energy
solutions to be nearly as large as Stage 2, as seen in Fig. 8.

Stage 4 clearly differentiates between the exponential
fiducial model and a cosmological constant by better than

3�, as shown in both �� �!DE and �� VI spaces de-
picted in Figs. 7 and 8. Again, the increased constraining
power is consistent with the DETF results for both Stage 4
experiments.
Figure 10 shows the span of the wðzÞ solutions for each

of the stages determined in the same way as in the previous
section. The curve with the greatest wðz ¼ 0Þ departure
from �1 is obtained from the top right tip of the 3� curve
in the �� VI space. For the Stage 4 plots, the bottom most
curve, corresponding to the closest approach to a cosmo-
logical constant, corresponds to the bottom left tip of the
3� region in the �� VI space.
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FIG. 8. Plots of the �� �!DE confidence contours for data based on the fiducial exponential background cosmology. The three
contours correspond to 68.27%, 95.44%, and 99.73% confidence regions. The box in the top left figure (Stage 2) shows the size of the
axes for the Stage 4 plots in Fig. 9.
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FIG. 9. Enlarged plots of the �� �!DE confidence contours for data based on an exponential model. The three contours correspond
to 68.27%, 95.44%, and 99.73% confidence regions. The axes correspond to the box in Fig. 8.
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VI. DISCUSSION AND CONCLUSIONS

We have analyzed the exponential scalar field model
using MCMC techniques for the DETF simulated data
sets representing future dark energy experiments. We
have demonstrated the ability of these experiments to place
significant constraints on the parameters of a scalar field
model. The relative constraints on the size of the �� VI

space between various data sets produce values similar to
the constraints computed by the DETF in the w0 � wa

space. In addition to placing constraints on the quintes-
sence parameters, we also presented our results in terms of
the evolution of the dark energy in our quintessence model.
This allows us to distinguish more directly between a
cosmological constant and our particular scalar field
model. We have presented plots for a characteristic selec-
tion of combined DETF data models, but in the course of
this work we have also examined similar plots for a much
wider range of DETF data models, including data models
representing single techniques. We found that the consis-
tency with constraints reported by the DETF in w0 � wa

space to hold across the entire range of data choices and
combinations were considered.

We based our data on two different background cosmol-
ogies, one with a cosmological constant and one with
exponential model quintessence with specific parameters.
We found that the equivalence with the DETF results held
in both cases. Our specific background quintessence model

was chosen (with the parameter values of Vð�IÞ ¼ 0:42
and � ¼ 0:7) in order to illustrate the power of Stage 4
experiments. For this model, the maximum deviation from
w ¼ �1 occurs today, with wða ¼ 1Þ ¼ �:92. We found
that if the universe is accelerating due to this particular
exponential quintessence model then a cosmological con-
stant dark energy model can be ruled out to at least 3� by
good Stage 4 experiments. For this background cosmology,
the cosmological constant is within the 1� contour at Stage
2 and the 2� contour at Stage 3.
We note that there are a number of ways experiments

might be optimized to do better than the cases considered
by the DETF (see, for example, [16,17]). We have not
included such ideas in our work, with an eye for offering
more direct points of comparison with the DETF. However,
improvements such as these could lead to more powerful
constraints on quintessence models than we have calcu-
lated here.
We have found in this work and in our companion

papers [13,14] that a wide variety of quintessence models
(with widely varying families of functions wðzÞ) are con-
strained by DETF data in a way comparable to the con-
straints found inw0 � wa space by the DETF. As discussed
in [18], we believe that this is related to recent work by
one of us (A. A.) and Bernstein [5], where it was demon-
strated that, overall, the good DETF simulated data sets
could constrain significantly more than two dark energy
parameters. From this point of view our various models of
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FIG. 10 (color online). The wðzÞ behavior for a sample of points covering the full range of the �� VI space for data based on an
exponential model.
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dark energy are just sampling different more or less ‘‘ran-
dom’’ combinations of the ‘‘well measured modes’’ dis-
cussed in [5] and in each case are coming up with similar
results.
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