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We analyze the constraining power of future dark energy experiments for pseudo-Nambu-Goldstone-

boson (PNGB) quintessence. Following the Dark Energy Task Force (DETF) methodology, we forecast

data for three experimental stages: Stage 2 represents in-progress projects relevant to dark energy; Stage 3

refers to medium-sized experiments; Stage 4 comprises larger projects. We determine the posterior

probability distribution for the parameters of the PNGB model using Markov Chain Monte Carlo analysis.

Utilizing data generated on a �CDM cosmology, we find that the relative power of the different data

stages on PNGB quintessence is roughly comparable to the DETF results for the w0 � wa parametrization

of dark energy. We also generate data based on a PNGB cosmological model that is consistent with a

�CDM fiducial model at Stage 2. We find that Stage 4 data based on this PNGB fiducial model will rule

out a cosmological constant by at least 3�.
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I. INTRODUCTION

A growing number of observations indicate that the
expansion of the universe is accelerating. Given our current
understanding of physics, this phenomenon is a mystery. If
Einstein’s gravity is correct, then it appears that approxi-
mately 70% of the energy density of the universe is in the
form of a ‘‘dark energy.’’ Although there are many ideas of
what the dark energy could be, as of yet, none of them
stands out as being particularly compelling. Future obser-
vations will be crucial to developing a theoretical under-
standing of dark energy.

A number of new observational efforts have been pro-
posed to probe the nature of dark energy, but evaluating the
impact of a given proposal is complicated by our poor
theoretical understanding of dark energy. In light of this
issue, a number of model independent methods have been
used to explore these issues (see, for example, [1,2]).
Notably, the Dark Energy Task Force (DETF) produced a
report in which they used the wo � wa parametrization of
the equation of state evolution in terms of the scale factor,
wðaÞ ¼ wo þ wað1� aÞ [3]. The constraints on the pa-
rameters wo and wa were interpreted in terms of a ‘‘figure
of merit’’ (FoM) designed to quantify the power of future
data and guide the selection and planning of different
observational programs. Improvements in the DETF FoM
between experiments indicate increased sensitivity to pos-
sible dynamical evolution of the dark energy. This is
crucial information, since current data is consistent with
a cosmological constant and any detection of a deviation
from a cosmological constant would have a tremendous
impact. There are, however, a number of questions left
unanswered when the dark energy is modeled using ab-
stract parameters such as w0 � wa that are perhaps better
addressed with the analysis of actual theoretical models of
dark energy.

First of all, the wo � wa parametrization is simplistic
and not based on a physically motivated model of dark
energy. Although simplicity is part of the appeal of this
parametrization, some of the most popular dark energy
models exhibit behavior that cannot be described by the
wo � wa parametrization. The pseudo-Nambu-Goldstone-
boson (PNGB) quintessence model considered in this pa-
per, for instance, allows equations of state that cannot be
approximated by the wo � wa parametrization, as shown
in Fig. 1.
Conversely, the wo � wa parametrization may allow

solutions that do not correspond to a physically motivated
model of dark energy. Because of these issues, one could
wonder whether the DETF FoM’s are somehow mislead-
ing. Various concerns with the DETF analysis have already
been explored. Albrecht and Bernstein used a more com-
plex parametrization of the scale factor to check the valid-
ity of the w0 � wa approximation [4], and Huterer and
Peiris considered a generalized class of scalar field models
[5]. Additionally, it has been suggested that the DETF data
models might be improved (see, for instance, [6]).
As of yet, however, no actual proposed models of dy-

namical dark energy have been considered in terms of
future data. Given the issues above, such an analysis is
an important compliment to existing work. Of course all
specific models of dark energy are suspect for various
reasons, and one can just as well argue that it is better to
make the case for new experiments in a more abstract
parameter space rather than tying our future efforts to
specific models that themselves are problematic. Rather
than ‘‘take a side’’ in this discussion, our position is that
given the diversity of views on the subject, a model-based
assessment will have an important role in an overall as-
sessment of an observational program.
In this paper we consider the pseudo-Nambu-Goldstone-

boson quintessence model of dark energy [7]. As one of the
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most well-motivated quintessence models from a particle
physics perspective, it is a worthwhile one to study. We use
the data models forecasted by the DETF and generate two
types of data sets, one based on a �CDM background
cosmology and one based on a background cosmology
with PNGB dark energy using a specific fiducial set of
PNGB parameters. We determine the probability space for
the PNGB parameters given the data using Markov Chain
Monte Carlo analysis. This paper is part of a series of
papers in which a number of quintessence models are
analyzed in this manner [8,9].

We show that the allowed regions of parameter space
shrink as we progress from Stage 2 to Stage 3 to Stage 4
data in much the same manner as was seen by the DETF in
the w0 � wa space. This result holds for both �CDM and
the PNGB data models. Additionally, with our choice of
PNGB fiducial background model, we demonstrate the
ability of Stage 4 data to discriminate between a universe
described by a cosmological constant and one containing
an evolving PNGB field. As cosmological data continues to
improve, careful analysis of specific dark energy models
using real data will become more and more relevant.
MCMC analysis can be computationally intensive and
time consuming. Since future work in this area is likely
to encounter similar challenges, we discuss some of the
difficulties we discovered and solutions we implemented in
our MCMC exploration of PNGB parameter space.

II. PNGB QUINTESSENCE

Quintessence models of dark energy are popular con-
tenders for explaining the current acceleration of the uni-
verse [10–12]. Although the cosmological constant is
regarded by many to be the simplest theory of the dark
energy, the required value of the cosmological constant
appears to be many orders of magnitude too small in naive
particle theory estimates. In quintessence models this prob-
lem is not solved. Instead it is generally sidestepped by
assuming some unknown mechanism sets the vacuum en-

ergy to exactly zero, and the dark energy is due to a scalar
field evolving in a pressure dominated state. As such fields
can appear in many proposed ‘‘fundamental theories,’’ and
as the mechanism mimics ideas familiar from cosmic
inflation, quintessence models are regarded by many (but
certainly not by everyone [13]) to be at least as plausible as
a cosmological constant [14,15].
Here the quintessence field is presumed to be homoge-

neous in space, and is described by some scalar degree of
freedom � and a potential Vð�Þ which governs the field’s
evolution. In a Friedmann-Robertson-Walker (FRW)
spacetime, the field’s evolution is given by

€�þ 3H _�þ dV

d�
¼ 0; (1)

where

H ¼ _a

a
(2)

and

H2 ¼ 1

3M2
p

ð�r þ �m þ �� þ �kÞ; (3)

where MP is the reduced Planck mass, �r is the energy
density of radiation, �m is the energy density of nonrela-
tivistic matter, and �k is the effective energy density of
spacetime curvature. The energy density and pressure as-
sociated with the field are

�� ¼ 1
2
_�2 þ Vð�Þ; P� ¼ 1

2
_�2 � Vð�Þ (4)

and the equation of state w is given by

w � P�

��

: (5)

If the potential energy dominates the energy of the field,
then as can be seen in Eq. (4) the pressure will be negative
and in some cases can be sufficiently so to give rise to
acceleration as the universe expands.
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FIG. 1 (color online). Examples of possible equations of state for PNGB quintessence (left panel). Attempts to imitate this behavior
with wðzÞ curves for the w0 � wa parametrization are depicted on the right.
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The PNGB model of quintessence is considered com-
pelling because it is one of the few models that seems
natural from the perspective of 4�D effective field the-
ory. In order to fit current observations, the quintessence
field must behave at late times approximately as a cosmo-
logical constant. It must be rolling on its potential with-
out too much contribution from kinetic energy, and the
value of the potential must be close to the observed value
of the dark energy density, which is on the order of the
critical density of the universe �c¼3H2

0m
2
p¼1:88�

10�26h2 kg=m3 or 2:3� 10�120h2 in reduced Planck units,
where h ¼ H0=100. These considerations require the field
to be nearly massless and the potential to be extraordinarily
flat from the point of view of particle physics. In general,
radiative corrections generate large mass renormalizations
at each order of perturbation theory unless symmetries
exist to suppress this effect [16–18]. In order for such fields
to seem reasonable, at least on a technical level, their small
masses must be protected by symmetries such that when
the masses are set to zero they cannot be generated in any
order of perturbation theory. Many believe that pseudo-
Nambu-Goldstone bosons are the simplest way to have
ultralow mass, spin-0 particles that are natural in a quan-
tum field theory sense. An additional attraction of the
model is that the parameters of the PNGB model might
be related to the fundamental Planck and electroweak
scales in a way that solves the cosmic coincidence problem
[19].

The potential of the PNGB field is well approximated by

V ¼ M4

�
cos

�
�

f

�
þ 1

�
(6)

(where higher derivative terms and instanton corrections
are ignored) and is illustrated in Fig. 2. The evolution of the
dark energy is controlled by the two parameters of the
PNGB potential, M4 and f, and the initial conditions, �I

and _�I. We take _�I ¼ 0, since we expect the high expan-
sion rate of the early universe to rapidly damp nonzero

values of _�I. The initial value of the field, �I, takes values
between 0 and �f. This is because the potential is periodic
and symmetric. Since a starting point of �I=f on the
potential is equivalent to starting at n���I=f and rolling
in the opposite direction down the potential, we require
0<�I=f < �.
Additionally, we place the bound f <Mp. As will be

discussed in the following section, this is necessary to cut
off a divergent direction so that the MCMC chains con-
verge. There are theoretical reasons for this bound as well.
For one, it is valid to neglect higher derivative terms of the
PNGB potential, Eq. (6), at least as long as f <Mp. In

general, we do not expect to understand 4�D effective
field theory at energies much larger than this. Additionally,
there are indications from string theory that f cannot be
larger than Mp [20,21].

III. ANALYSIS AND MCMC

Following the DETFmethodology, we generate data sets
for future supernova, weak gravitational lensing, baryon
acoustic oscillation, and cosmic microwave background
observations. These observations are forecasted for three
experimental stages: Stage 2 represents in-progress
projects relevant to dark energy; Stage 3 refers to
medium-sized experiments; Stage 4 comprises larger
dark energy projects including a large ground-based survey
(LST), and/or a space-based program. (Stage I, not con-
sidered in our analysis, represents already completed dark
energy experiments, and is less constraining than Stage 2
data.) ‘‘Optimistic’’ and ‘‘pessimistic’’ versions of the
same simulated data sets give different estimates of the
systematic errors. More information on the specific data
models is given in Appendix A (or see also the technical
appendix of the DETF report [3]). In our work we did not
use the cluster data because of the difficulty of adapting the
DETF construction to a quintessence cosmology (the same
reasons given in [4]).
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FIG. 2 (color online). An example of a PNGB model and its resulting cosmological solution for typical values of the PNGB
parameters. The PNGB potential Vð�Þ (dashed curve, right panel) is in units of h2. The evolution of the PNGB field along the
potential since the radiation era is shown by the solid curve overlaying the potential. The energy densities in the right panel are related
to these units via � ¼ !=h2.
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We generate and analyze two versions of data. One is
built around a cosmological constant model of the uni-
verse. The other is based on a PNGB fiducial model. The
latter is chosen to be consistent with a cosmological con-
stant for Stage 2 data.

We use Markov Chain Monte Carlo analysis with a
Metropolis-Hastings stepping algorithm [22–24] to evalu-
ate the likelihood function for the parameters of our model.
The details of our methods are discussed in Appendix B.
MCMC lends itself to our analysis because our probability
space is both non-Gaussian and also depends on a large
number of parameters. These include the PNGB model
parameters: M4, f, and �I, the cosmological parameters:
!m, !k, !B, �� , ns (as defined by the DETF), and the

various nuisance and/or photo-z parameters accounting for
error and uncertainties in the data).

In order for the results of an MCMC chain to be mean-
ingful, there must exist a finite, stationary distribution to
which the Markov chain may converge in a finite number
of steps. Degeneracies between parameters, i.e., combina-
tions of different parameters that give rise to identical
cosmologies, correspond to unconstrained directions in
the probability distribution. Unless some transformation
of parameters is found and/or a cutoff placed on these
parameters, the MCMC will step infinitely in this direction
and can never converge to a stationary distribution.
Additionally, the shape of the probability distribution can
drastically affect the efficiency of the chain. A large por-
tion of the task of analyzing the PNGB model, therefore,
involves finding convenient parametrizations and cutoffs to
facilitate MCMC exploration of the posterior distribution.

The probability space of the PNGB model becomes
more tractable from an MCMC standpoint if we transform
from the original variables to ones that are more directly
related to cosmological observables constrained by the
data. Such parametrizations make it easier to identify
degeneracies and also tend to make the shape of the
probability distribution more Gaussian. As discussed in
Sec. II, the dynamics of the PNGB field depend on its

potential Vð�Þ ¼ M4ðcosð�fÞ þ 1Þ, and the specific values

of M4, f, and �I. In order to fit current data the field must
hang on the potential approximating a cosmological con-
stant for most of the expansion history of the universe. If
the field never rolls it acts as a cosmological constant for all
times with a value corresponding to the initial energy
density of the field, VI ¼ Vð�IÞ. To first order, then, VI

sets the overall scale of the dark energy density. Since VI

has more physical significance than M4, it is a more
efficient choice for our MCMC analysis.
Additionally, the ‘‘phase’’ �I=f of the field’s starting

point in the cosine potential is closely related to the initial
slope of the potential. The slope affects the time scale on
which the field will evolve. If, for instance, �I=f ¼ 0 the
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FIG. 3 (color online). 2�D confidence regions for f vs M4 (left panel) and f vs VI (right panel). The concave feature of the f vs
M4 contours means it is inefficiently explored by MCMC. Contours in the f� VI space are nearly Gaussian and better facilitate
convergence.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5
v(φ)

φ

V

FIG. 4 (color online). PNGB potentials (dashed line) and with
the entire field evolution shown in thick solid curves. The
different curves show increasing values of f from left to right.
The smallest value of f (bottom curve) gives a nearly static dark
energy and fits a cosmological constant well. Any larger value
for f will also fit the data because the potential will be flatter,
and the field will evolve even less.
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field starts out on the very top of the potential where the
slope is exactly zero, and the field will not evolve. Starting
closer to the inflection point of the potential results in a
steeper initial slope and the field will roll faster toward the
minimum. Since the variable�I can correspond to both flat
initial slopes (if f is large) or steep ones (if f is small),
�I=f is more directly related to the dynamics of the field
and is therefore a superior parameter choice. These new
parameters, as illustrated in Fig. 3, also result in a proba-
bility distribution that is more Gaussian and thus is more
easily explored by our MCMC algorithm.

Even more important than choosing physically relevant
parameters is deciding how to handle divergent directions
in probability space. For PNGB quintessence the parameter
f must be cut off in some way because it can become
arbitrarily large without being constrained by the data. For
the fiducial model based on a �CDM universe, solutions
where the field does not evolve for the entire expansion
history of the universe, i.e., behaves as a cosmological
constant, can fit the forecast data perfectly. If such a choice
of parameters is found, then larger and larger values of f
will only make the potential flatter and flatter. If the field
did not evolve significantly for the smaller values of f, this
will be even more true as the potential flattens. Hence, f
can become arbitrarily large and the cosmological observ-
ables will remain identical, as shown in Fig. 4.

In general, it is possible to achieve identical deviations
from a cosmological constant by increasing f while at the
same time moving�I=f towards the inflection point of the
potential. Increasing f flattens the potential, but by chang-
ing �I=f, the slope of the potential can be held nearly
constant and the evolution of the field will not change
significantly. In order to achieve results with MCMC, it
is necessary to choose some cutoff f so that this infinite
direction is bounded. We choose f <Mp because there is

some theoretical motivation for this choice as detailed in
Sec. II.

IV. RESULTS

A. �CDM Fiducial model

In this section we present the results of our MCMC
analysis for the combined data sets based on a �CDM
fiducial model. The model parameters (represented in
Table I) are in units of h2.

Stage 2 combines supernovae, weak lensing, and cosmic
microwave background (CMB) data. Stages 3 and 4 addi-
tionally include baryon acoustic oscillation (BAO) data.
We marginalize over all but two parameters to calculate
2�D contours for parameters of the PNGB model and
find the 68.27%, 95.44%, and 99.73% (1, 2, and 3 sigma)
confidence regions.

Figure 5 depicts the contours in the VI-�I=f plane for
Stage 2, and the optimistic versions of Stage 3, Stage 4
space, and Stage 4 LST-ground combined data. The hori-
zontal axis where�I=f ¼ 0 corresponds to a cosmological

constant. (As explained above, the field is starting exactly
at the top of its potential and does not roll because the
potential is flat at this point.)
The value of VI on this axis, therefore, represents the

dark energy density, !DE, or �. The contours, as expected,
are centered around VI ¼ :38, the fiducial value of !DE. It
can be seen that the area of the contours shrinks from Stage
2 to Stage 3 and again from Stage 3 to Stage 4. The
shrinking in the �I=f direction roughly corresponds to
constraining deviations from a cosmological constant.
(Although this interpretation is a slight oversimplification,
since for larger values of f, �I=f can be nonzero and
perceptible deviations from a cosmological constant will
not occur until sometime in the future.) The reduction in
the VI direction reflects constraints the data places on the
contribution from the dark energy to the energy density of
the universe.
Figure 6 depicts the f��I=f contours. Although all

values of f are allowed, as f approaches zero the PNGB
potential gets narrower, and the phase must start closer to
zero, or else the field will evolve too quickly to its vacuum
state. (The very thin part of the distribution close to f ¼ 0
is not resolved by the MCMC analysis.) For larger values
of f, �I=f may start further from the peak of the potential
without the field evolving much. Even for Stage 2, how-
ever, the field may not start past the inflection point of the
potential.
Often it is assumed that the PNGB field is initially

displaced a small amount from the potential minimum.
But with the constraint we have placed on f, this region
of parameter space is no longer accessible for data based
on a �CDM fiducial model. This is because as the field
starts lower down the slope of the potential, the peak of the
potential must be raised so that VI may reflect the approxi-
mate energy density needed by the dark energy. But as the
peak of the potential gets higher it also becomes steeper
(since f is bounded) and the field evolves too quickly to fit
the data. It has been suggested, however, that since we

TABLE I. �CDM fiducial parameter values (left column) and
PNGB fiducial parameter values (right column). The nuisance
and photo-z parameters are 0 for each. !DE is the same as VI

for a �CDM universe and !DE ¼ 0:3738 for the PNGB fiducial
universe displayed in the right column. The value of f in the left
column is left blank since it is inconsequential for a �CDM
universe. Energy densities and VI are in units of h2. f is in
reduced Planck units.

!m 0.146 0.145

!k 0.0 0.0

!B 0.024 0.024

ns 1.0 1.0

�� 0.87 0.87

VI 0.1898 0.4319
�I

f 0 0.8726

f — 0.7103
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FIG. 6 (color online). f��I=f 1, 2, and 3 sigma confidence regions for DETF optimistic combined data sets.
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FIG. 5 (color online). VI ��I=f 1, 2, and 3 sigma confidence regions for DETF optimistic combined data sets.
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expect quantum fluctuations to displace the field from the
top of potential, it is more reasonable to expect the PNGB
field to start after the inflection point of the potential [16].
If either this argument or the theoretical reasons for the
bound f <Mp could be made more convincing, experi-

mental results consistent with a cosmological constant
could potentially rule out the PNGB model. As it stands,
however, we do not feel the arguments constraining f and
�I are robust enough to make such a claim.

Figure 7 depicts VI versus �!DE, where �!DE ¼ VI �
!DEða ¼ 1Þ. Since PNGB quintessence is a ‘‘thawing’’

model of dark energy [25], that is, it starts as a cosmologi-
cal constant until the field begins to roll causing the amount
of dark energy to decrease, �!DE reflects the amount the
dark energy has deviated from a cosmological constant. As
the DETF found, subsequent stages of data do better at
constraining the evolution of the dark energy. The fact that
Stage 4 space seems a little more constraining than ground
reflects the fact that ground and space data are sensitive to
slightly different features in the dark energy evolution and
will be more or less powerful at different redshifts. Other
quintessence models, such as the Albrecht-Skordis model
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FIG. 7 (color online). VI � �!DE 1, 2, and 3 sigma confidence regions for optimistic combined data. Here �!DE is the amount of
change in the dark energy density from the radiation era until today.
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[9] are somewhat better constrained by the DETF Stage 4
ground data models than by DETF Stage 4 space.

B. PNGB fiducial model

In addition to considering a �CDM fiducial model, we
evaluate the power of future experiments assuming the
dark energy is really due to PNGB quintessence. Our
PNGB fiducial parameter values (shown in Table I in units
of h2) were chosen such that the fiducial model lies within
the 95% confidence region for Stage 2 �CDM data, but
demonstrates a small amount of dark energy evolution that
can be resolved by Stage 4 experiments.

The left panel of Fig. 8 shows the potential and evolution
of the field for this model. The right panel depicts wðzÞ. It
can be seen that today (z ¼ 0) the deviation of the field
from wðzÞ ¼ �1 is only about 10%.

Repeating our MCMC analysis for the PNGB fiducial
model, we again marginalize over all but two parameters to
depict the 2-d confidence regions for the dark energy
parameters. Figure 9 depicts the VI ��I=f contours. It
can be seen that the �I=f ¼ 0 axis corresponding to the
field sitting on the top of its potential and not evolving, is
allowed at Stage 2 but becomes less favored by subsequent
stages of the data. By Stage 4 it is ruled out by more than
3�.

Figure 10 depicts the �I=f� f contours. Again it can
be seen that for larger values of f, �I=f must be nonzero.
By Stage 4 optimistic, only extreme fine-tuning with f

allows �I=f to approach zero, so that the field will be
displaced from the top of the potential and have started to
roll by just the right amount by late times.
Figure 11 depicts VI versus �!DE. At Stage 2 �!DE ¼ 0

is still is within the 1� confidence region. But subsequent
stages of the data disfavor this result. Stage 4 optimistic
rules out zero evolution of the dark energy by more than
3�.

V. DISCUSSION AND CONCLUSIONS

With experiments such as the ones considered by the
DETF on the horizon, data sets will be precise enough to
make it both feasible and important to analyze dynamic
models of dark energy. The analysis of such models, there-
fore, should play a role in the planning of these
experiments.
With our analysis of PNGB quintessence, we have

shown how future data can constrain the parameter space
of this model. We have shown likelihood contours for a
selection of combined DETF data models, and found the
increase in parameter constraints with increasing data
quality to be broadly consistent with the DETF results in
w0 � wa space. Direct comparison with the DETF figures
of merit is nontrivial because PNGB quintessence depends
on three parameters, whereas the DETF FoM were calcu-
lated on the bases of two, but in our two dimensional
projections we saw changes in the area that are consistent
with DETF results. Specifically, the DETF demonstrated a
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FIG. 11 (color online). VI � �!DE 1, 2, and 3 sigma confidence regions for DETF optimistic combined data, where �!DE is the
amount of change in the dark energy density from the radiation era until today.
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factor of roughly three decrease in allowed parameter area
when moving from Stage 2 to good combinations of Stage
3 data, and a factor of about ten in area reduction when
going from Stage 2 to Stage 4. We saw decreases by similar
factors in our two dimensional projections. We have pre-
sented likelihood contour plots for specific projected data
sets as an illustration. In the course of this work we
produced many more such contour plots to explore the
other possible data combinations considered by the
DETF including the data with pessimistic estimates of
systematic errors. We found no significant conflict between
our results in the PNGB parameter space and those of the
DETF in w0 � wa space.

As discussed in [15], we believe the fact that we have
demonstrated (here and elsewhere [8,9]) results that are
broadly similar to those of the DETF despite the very
different families of functions wðaÞ considered is related
to the fact pointed out in [4] that overall the good DETF
data sets will be able to constrain many more features of
wðaÞ than are present in the w0 � wa ansatz alone.

As data continues to improve, MCMC analysis of dy-
namic dark energy models will likely become more popu-
lar. Our experience with the PNGBmodel could be relevant
to future work. We find that the theoretical parameters of
the model are not in general the best choice for MCMC.
Transforming to variables that are closely related to the
physical observables can help MCMC converge more effi-
ciently. Additionally, it is necessary to cut off uncon-
strained directions in parameter space. It would be
desirable to find bounds that have some physical motiva-
tion. For PNGB quintessence, we find that the initial value
of the potential, Vð�IÞ, and the initial phase of the field,
�I=f, are more convenient than the original model pa-
rameters, and that there is some motivation for placing the
bound f <Mp.

Finally, we have demonstrated the power Stage 4 data
will have for detecting time evolution of the dark energy.
The PNGB fiducial model we choose is consistent with
Stage 2 data (and with current data by extension). If,
however, the universe were to in fact be described by
such a dark energy model, then by Stage 4 we would
know to better than 3 sigma that there is a dynamic
component to the dark energy.
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APPENDIX A: DATA

For each step in the MCMC chain, we integrate numeri-
cally to calculate the theoretical quantities dependent on
the dark energy. We start our integration at early times with
a ¼ 10�15 and we end the calculation at a ¼ 2. We com-
pare these values with the observables generated based on
our fiducial models. With the uncertainties in the data
forecast by the DETF we can calculate the likelihood for
each step in the chain. What follows is an overview of the
likelihood calculation for each type of observation we
consider.

1. Type 1a supernovae

After light curve corrections, supernovae observations
provide the apparent magnitudes, mi, and the redshift
values, zi, for supernova events. The apparent magnitudes
are related to the theoretical model through the distance
modulus, �ðziÞ, by

mi ¼ Mþ�ðziÞ; (A1)

where

�ðziÞ ¼ 5log10ðdlðziÞÞ þ 25; (A2)

M is the absolute magnitude, and

dLðziÞ ¼ 1

a

8>>>><
>>>>:

1ffiffiffiffi
jkj

p sinhð ffiffiffiffiffiffijkjp
	ðziÞÞ k < 0

	ðziÞ k ¼ 0
1ffiffiffiffi
jkj

p sinð ffiffiffiffiffiffijkjp
	ðziÞÞ k > 0

(A3)

and

	ðziÞ ¼ 
0 � 
ðziÞ �
Z 1

ai

da

a2HðaÞ (A4)

with jkj ¼ H2
0j�kj ¼ ðH0

h Þ2j!kj.
Uncertainties in absolute magnitude M as well as the

absolute scale of the distance modulus lead to the intro-
duction of an offset�off nuisance parameter in all SNe data
sets, giving �ðziÞ ! �ðziÞ þ�off .
Other systematic errors are modeled by more nuisance

parameters. The peak brightness of supernovae, for in-
stance, may have some z-dependent behavior that is not
fully understood. We include this uncertainty in our analy-
sis by allowing the addition of small linear and quadratic
offsets in z. Additionally, each SNe data model combines a
collection of nearby supernovae with a collection of more
distant ones. Possible differences between the two groups
are modeled by considering the addition of a constant
offset to the near group. The distance modulus becomes
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�ðziÞcalc ¼ �ðziÞ þ�off þ�linzi þ�quadz
2
i þ�shiftznear:

(A5)

In addition, some experiments will measure supernovae
redshifts photometrically instead of spectroscopically.
There may be a bias in the measurement of the photo-z’s
in each bin. This uncertainty is expressed by another set of
nuisance parameters, �zi, that can shift the values of each
zi. These observables become �i ¼ �ðzi þ �ziÞ.

Priors are assigned to each of the nuisance parameters
(except for �off , which is left unconstrained) which reflect
the projected strength of the various observational pro-
grams. Additionally, statistical errors are presumed to be
Gaussian and are given by the diagonal covariance matrix
Cij ¼ �2

i , where �i reflects the uncertainty in the �i

observables for each data set.
The likelihood function L for the supernovae data can be

calculated from the chi-squared statistic, where 	2 �
�2 lnL. For data sets with photometrically determined
redshifts chi-squared is

	2 ¼ X ð�ðzi þ �ziÞ ��ðziÞdataÞ2
�2

i

þ�2
lin

�2
lin

þ�2
quad

�2
quad

þ�2
near

�2
near

þX�
�z2i
�2

zi

�
: (A6)

For data sets with spectroscopic redshifts the chi-squared is
the same minus the contribution from redshift shift
parameters.

2. Baryon acoustic oscillations

Large scale variations in the baryon density in the uni-
verse have a signature in the matter power spectrum that
when calibrated via the CMB provides a standard ruler for
probing the expansion history of the universe. The observ-
ables for BAO data (after extraction from the mass power
spectrum) are the comoving angular diameter distance,
dcoa ðziÞ, and the expansion rate, HðziÞ, where

dcoa ¼ adL (A7)

and zi indicates the z bin for each data point. The quality of
the data probe is modeled by the covariance matrix for
each observable type, as described in Sec. 4 of the DETF
technical appendix. Additionally, some BAO observations
use photometrically determined redshifts, in which case
�zi are added as nuisance parameters as for the super-
novae, to describe the uncertainty in each redshift bin.

The likelihood function for BAO observations is

	2 ¼ X ðdcoa ðzi þ �ziÞ � dcoa-dataðziÞÞ2
�2

di

þX ðHðzi þ �ziÞ �HdataðziÞÞ2
�2

Hi

þX�z2i
�2

zi

: (A8)

3. Weak gravitational lensing

Light from background sources is deflected from a
straight path to the observer by mass in the foreground.
From high resolution imaging of large numbers of gal-
axies, it is possible to detect statistical correlations in the
stretching of galaxies, ‘‘cosmic shear.’’ From this fore-
ground mass distributions can be determined. The mass
distribution as a function of redshift provides a probe of the
growth history of density perturbations, gðzÞ, where gðzÞ
(in linear perturbation theory) depends on dark energy via

€gþ 2H _g ¼ 3�mH
2
o

2a3
g: (A9)

Additionally, because the amount of lensing depends on
the ratios of distances between the observer, the lens and
the source, gravitational lensing also probes the expansion
history of the universe, DðzÞ.
The direct observables of weak lensing surveys consid-

ered by the DETF are the power spectrum of the lensing
signal and the cross correlation of the lensing signal with
foreground structure. Systematic and statistical uncertain-
ties are described by a Fisher matrix in this space. As is
detailed in the DETF appendix, it is possible to transform
from this parameter space to the variables directly depen-
dent on dark energy, gðzÞ andDðzÞ. These become the weak
lensing observables we use in our analysis.
In addition to depending on the dark energy model, weak

lensing observations depend on the cosmological parame-
ters matter density !m, baryon density !B, effective cur-
vature density !k, the spectral index nS, and the amplitude
of the primordial power spectrum �� . These parameters are

treated as nuisance parameters with priors imposed by the
Fisher matrix.
Last, since ground-based lensing surveys will photomet-

rically determine redshifts, as for SNe and BAO data, we
must model the uncertainty in redshift bins. Again this is
done by allowing each zi bin to vary by some amount �zi.
The weak lensing observables are given to be the vector

X
!

obs ¼ ½ð!m;!k;!B; ns; �� Þ; dcoa ðziÞ; gðziÞ; lnðaðziÞÞ�;
(A10)

where aðziÞ is the scale factor corresponding to the redshift
bins for the data. The error matrix is nondiagonal in the
space of these observables so chi-squared is given by

	2 ¼ ðX!obs � X
!

obs-dataÞFlensingðX
!

obs � X
!

obs-dataÞ>:
(A11)

4. Planck CMB

As with baryon oscillations, observations of anisotropies
in the cosmic microwave background probe the expansion
history of the universe by providing a characteristic length
scale at the time of last scattering. As with weak lensing,
our Planck observables are extrapolated from the CMB
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temperature and polarization maps. The observable space
constrained by Planck becomes: ns, !m, !B, �� , lnð�SÞ.
These variables are constrained via the Fisher matrix in this
space (we use the same one used in [4]). The chi-squared is
calculated as

	2 ¼ ðX!obs � X
!

obs-dataÞFPlanckðX
!

obs � X
!

obs-dataÞ>:
(A12)

APPENDIX B: MCMC

Markov Chain Monte Carlo simulates the likelihood
surface for a set of parameters by sampling from the
posterior distribution via a series of random draws. The
chain steps semistochastically in parameter space via the
Metropolis-Hastings algorithm such that more probable
values of the space are stepped to more often. When the
chain has converged it is considered a ‘‘fair sample’’ of the
posterior distribution, and the density of points represents
the true likelihood surface. (Explanations of this technique
can be found in [22,26,27]).

With the Metropolis-Hastings algorithm, the chain starts
at an arbitrary position � in parameter space. A candidate
position �0 for the next step in the chain is drawn from a
proposal probability density qð�; �0Þ. The candidate point
in parameter space is accepted and becomes the next step
in the chain with the probability

�ð�; �0Þ ¼ min

�
1;
Pð�0Þqð�0; �Þ
Pð�Þqð�; �0Þ

�
; (B1)

where Pð�Þ is the likelihood of the parameters given the
data. If the proposal step �0 is rejected, the point � becomes
the next step in the chain. Although many distributions are
viable for the proposal density qð�; �0Þ, for simplicity we
have chosen to use a Gaussian normal distribution. (It
should be noted that, in general, the dark energy parame-
ters of the model are not Gaussian distributed. The power
of the MCMC procedure lies in the fact that it can probe
posterior distributions that are quite different from the
proposal density qð�; �0Þ.) Since this is symmetric,
qð�; �0Þ ¼ qð�0; �Þ, we need only consider the ratios of
the posteriors in the above stepping criterion.

For the results of the Markov chain to be valid, it must
equilibrate, i.e., converge to the stationary distribution. If
such a distribution exists, the Metropolis-Hastings algo-
rithm guarantees that the chain will converge as the chain
length goes to infinity. In practice, however, we must work
with chains of finite length. Moreover, from the standpoint
of computational efficiency, the shorter our chains can be
and still reflect the true posterior distribution of the pa-
rameters, the better. Hence a key concern is assuring that
our chains have equilibrated. Though there are many con-
vergence diagnostics, chains may only fail such tests in the
case of nonequilibrium; none guarantee that the chain has
converged [28]. We therefore monitor the chains in a

variety of ways to convince ourselves that they actually
reflect the underlying probability space.
Our first check involves updating our proposal distribu-

tion qð�; �0Þ, which we have already chosen to be Gaussian
normal. Each proposal step is drawn randomly from this
distribution. The size of the changes generated in any given
parameter direction depend on the covariance matrix we
use to define qð�; �0Þ. We start by guessing the form of the
covariance matrix and run a short chain (Oð105Þ steps)
after which we calculate the covariance matrix of the
Markov chain. We then use this covariance matrix to define
the Gaussian proposal distribution for the next chain. We
repeat this process until the covariance matrix stops chang-
ing systematically. This implies that the Gaussian approxi-
mation to the posterior has been found. In addition to
indicating convergence, this also assists the efficiency of
our chains. The more the proposal distribution reflects the
posterior, the quicker the Markov chain will approximate
the underlying distribution.
One convergence concern is that we might not be ex-

ploring the entire probability space. Since too large of a
proposal step can cause excessive rejection of parameter
space, we shrink our covariance matrix by a fixed amount
to ensure that the small scale features of the posterior are
thoroughly probed. However, it then is possible, for in-
stance, that if we started our chains at a random point in
probability space and our step sizes are too small, the chain
may have wandered to a local maximum from which it will
not exit in a finite time. We could be missing other features
of the underlying probability space. We convince ourselves
that this is not the case by starting chains at different points
in parameter space. We find that the chains consistently
reflect the same probability distribution, and, hence, we
conclude that we are truly sampling from the full posterior.
After we have determined our chains are fully exploring

probability space and we have optimized our Gaussian
proposal distribution, we run a longer chain to better
represent the probability space of our variables. We con-
sider the chain to be long enough when the 95% contour is
reasonably smooth. For most data sets, chains of Oð106Þ
are sufficient although the larger the probability space, the
longer the chains must be. (In particular, Stage 4 ground
data involves a large number of nuisance parameters and
may take two to 3 times longer to return smooth contours.)
With the final chains, we must control for both burn-in and
correlations between parameter steps. Burn-in refers to the
number of steps a chain must take before it starts sampling
from the stationary distribution. Because we have already
run a number of preliminary chains, we know approxi-
mately the mean parameters of our model. We find that the
means refer to a point in probability space close to the
maximum of the distribution. (Generically, this does not
have to be true if the probability space is asymmetrical.) If
we use this as our starting point, our chains do not have to
wander long before they appear to sample from the sta-
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tionary distribution. We control for this by removing differ-
ent amounts from the start of the chain. For instance, if we
cut out the first 1000 steps and calculate the contours and
compare this to contours calculated with the first 100 000
steps removed we find that the shape of the 2�D contours
remain essentially the same. We can conclude, therefore,
that chains very quickly begin sampling the posterior
distribution and we need not worry about burn-in.

Correlations between steps may also affect the represen-
tativeness of the samples generated via MCMC. The ef-
fects, however, may be controlled for by either thinning the
chains by a given amount or by running chains of sufficient
length such that the correlations become unimportant. We
experiment with different thin factors (taking every step,
every 10th step, and every 50th step and we find very little
difference in our results. Hence we conclude that the
sampling of our chains are not greatly affected by
correlations.

Last, we apply a numerical diagnostic similar to that
used by Dick et al. [29] to test the conversion of our chains.
(This technique is a modification of the Geweke diagnostic
[30].) We compare the means calculated from the first 10%
of the chain (after burn-in of 1000) to the means calculated
from the last 10%. If the chain has converged to the sta-
tionary distribution, then these values should be approxi-

mately equal. If mean1ð�iÞ�mean2ð�iÞ
�ii

is large, where �ii is the

standard deviation determined by the chain for the parame-
ter �i, then the chain is likely to still be drifting. We find

that for our chains mean1ð�iÞ�mean2ð�iÞ
�ii

< :1 for 95% of the

parameters. The remaining parameters are no less than �ii

5

away from each other. Coupling this with the qualitative
monitoring of the chains described above, we are confident
that our chains do a good job of reflecting the posterior
probability distribution of our model.
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