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We study the modified theory of gravity in the Friedmann-Robertson-Walker universe composed of

several perfect fluids. We consider the power law inflation and determine the equation of state parameters

in terms of the parameters of modified gravity’s Lagrangian in the early universe. We also briefly discuss

the gravitational baryogenesis in this model.
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I. INTRODUCTION

The modified theory of gravity, constructed by adding
geometrical correction terms to the usual Einstein Hilbert
Lagrangian, has been used to study the inflationary epoch
and the subsequent reheating stage in the early universe
[1,2]. In this view the effective Lagrangian, L, in the early
universe includes higher order curvature terms and in-
flation may be a natural result of this theory. In [1], it
was shown that involving a term proportional to the square
of the scalar curvature, i.e., L ¼ Rþ �R2, results in a
quasi-de Sitter expansion. In this model the Hubble param-
eter decreases slowly for large� before going into an oscil-
lation phase which can reheat the universe [2]. In principle,
one can assume that the effective Lagrangian is a function
of the scalar curvature L ¼ fðRÞ [3]. The time dependence
of the scale factor depends on fðRÞ, e.g., if one chooses
fðRÞ ¼ Rþ �R2 þ �R3, instead of an exponential-like
inflation, he may obtain a power law expansion for the
universe [4]. Some particle physics problems such as the
hierarchy problem [5] and baryogenesis [6] can also be
studied in the framework of modified theory of gravity.
Recently, the modified theory of gravity which is able to
describe the present cosmic acceleration [7] without in-
volving exotic dark energy [8] has attracted more attention.

In this paper we aim to study the universe in an era when
the expansion can be described by the scale factor aðtÞ /
t�. This assumption is consistent with most parts of the
(Friedmann=Robertson=Walker expanding) universe his-
tory, when one of the components such as (dark) matter or
radiation dominates. But in the framework of the usual
theory of gravity, and in the presence of ordinary matter
and radiation, the power law expansion cannot describe the
inflationary and accelerating expansion phases. Besides,
the gravitational baryogenesis proposal fails to determine
the baryon asymmetry in the radiation dominated era. In
this paper we consider the modified theory of gravity,
characterized by fðRÞ ¼ P

iAiR
ni , in the early universe.

We assume that the universe is composed of different
perfect fluid components with constant equation of state
parameters. Physical parameters of the system such as

radiation temperature and the equation of state parameters
of the fluids are determined in terms of ni’s and Ai’s. At the
end we use our results to determine the gravitational baryo-
genesis in a universe composed of two components in the
framework of modified theory of gravity. Through the
paper we use the units c ¼ kB ¼ 1.

II. POWER LAW EXPANSION IN MODIFIED
THEORY OF GRAVITY

We consider the modified theory of gravity described by
the action

S ¼
Z �

1

16�G
fðRÞ þ Lm

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where Lm is the Lagrangian corresponding to the matter
such as radiation, baryonic matter, dark matter, and so on.
The geometry of the universe which is assumed to be
spatially flat, homogeneous, and isotropic is described by
Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: (2)

aðtÞ is the scale factor in terms of which the Hubble

parameter is H ¼ _aðtÞ
aðtÞ . The Ricci scalar is

R ¼ 6ð _H þ 2H2Þ: (3)

By variation of the action with respect to the metric, we
obtain

g��hf0ðRÞ � r�r�f
0ðRÞ þ f0R�� � fðRÞ

2
g��

¼ 8�GTm
��; (4)

where Tm
�� are the energy momentum tensor components

of matter fields which behave like a perfect fluid. The
energy density, �, and the pressure, P, may be derived
from (4):*mohseni@phymail.ut.ac.ir
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8�G� ¼ fðRÞ
2

þ 3
_a

a
f00ðRÞ _R� 3

€a

a
f0ðRÞ

8�GP ¼ � fðRÞ
2

þ
�
2
_a2

a2
þ €a

a

�
f0ðRÞ � 2

_a

a
f00ðRÞ _R

� f000ðRÞ _R2 � f00ðRÞ €R: (5)

The energy conservation relation,

_�þ 3HðPþ �Þ ¼ 0; (6)

is not independent of (5), but is required for consistency.
We assume that the perfect fluid is effectively composed of
noninteracting components, although each component may
include subcomponents whose interactions are rapid com-
pared to the expansion rate keeping them in thermal equi-
librium. In this way the total energy density and the total
pressure are given by

� ¼ X

i

�i; P ¼ X

i

Pi: (7)

Each component satisfies

_�i þ 3HðPi þ �iÞ ¼ 0: (8)

For time independent equation of state parameters (EOS)
(denoted by �i’s), the solution of (8), in terms of the scale
factor, is

�iðtÞ ¼ �iðt0Þ
�
aðtÞ
aðt0Þ

��3ð�iþ1Þ
: (9)

Note that even for constant �i’s, the EOS parameter of the
universe,

� ¼ P

�
¼

P
i
�i�i

P
i
�i

; (10)

is time dependent. To study (5), let us take

fðRÞ ¼ X

i

fiðRÞ; (11)

such that fi satisfies

8�G�i ¼ fiðRÞ
2

þ 3
_a

a
f00i ðRÞ _R� 3

€a

a
f0iðRÞ

8�GPi ¼ � fiðRÞ
2

þ
�
2
_a2

a2
þ €a

a

�
f0iðRÞ � 2

_a

a
f00i ðRÞ _R

� f000i ðRÞ _R2 � f00i ðRÞ €R: (12)

In this way if (12) is satisfied, then (5) will also be satisfied.
In this paper we restrict ourselves to the models charac-
terized by [9]

fðRÞ ¼ X

i

AiR
ni : (13)

Ai’s and ni’s are real constants (ni’s are not restricted to
integer numbers). Note that fðRÞ broken power law models
such as [10]

fðRÞ ¼ R�m2
c1ð Rm2Þn

c2ð Rm2Þn þ 1
;

where m; n > 0; c1; c2 are real numbers, can be cast to (13)
at the high-curvature limit R � m2.
fðRÞ in (1) must satisfy some stability conditions [11].

For the model (1), the condition d2fðRÞ
dR2 > 0, which in our

model reduces to
X

i

niðni � 1ÞAiR
ni�2 > 0; (14)

is necessary for classical stability of the FRW solution in
the high-curvature regime. In the context of quantum me-
chanics, this condition ensures the absence of tachyonic

scalarons [1]. We also require that dfðRÞ
dR > 0 or

X

i

niAiR
ni�1 > 0; (15)

to prevent the graviton from turning into a ghost [11].
In the following, we use the ansatz aðtÞ / t� for the scale

factor. This ansatz is allowed when the number of (domi-
nant) fluid components is the same as the number of the
terms in fðRÞ. In general, � depends on EOS parameters of
the components of the perfect fluid, �i’s, and ni’s. Now let
us find the conditions required for consistency of aðtÞ / t�

with (12). By substituting the Ricci scalar, R ¼ 6� 2��1
t2

,

and (9) into (12), we obtain

ð2�� 1Þni�1ð6�Þniðnið3� �Þ � 2n2i � 1þ 2�ÞAit
�2ni

¼ 16�G�iðt0Þ
�
t

t0

��3�ð�iþ1Þ
: (16)

The above equation is true for all t, provided that

3�

2
¼ ni

1þ �i

¼ nj
1þ �j

8 i; j; (17)

and

Ai ¼ �iðt0Þt3�ð�iþ1Þ
0

	i

; (18)

where

	i ¼ 3

8�G
ðnið��þ 3Þ � 2n2i þ 2�� 1Þ

� ð6ð2�� 1ÞÞni�1�ni : (19)

Hence, if the EOS parameters of the fluid components
satisfy (17), and Ai’s are given by (18), then in fðRÞ gravity
specified by (13), aðtÞ / t� can be considered as the scale
factor. If nl ¼ 0, then we must take �l ¼ �1 describing a
cosmological constant corresponding to the vacuum en-
ergy. For positive �, ni < 0 leads to �i <�1 describing a
phantomlike dark energy component.
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The above discussion can be generalized to the case that

� is a slowly varying function of time, � ¼ �ðtÞ, _�ðtÞt �
�ðtÞ [9]. Time independence of Ai requires

_�i

�i
¼ ðni � 2Þ _R

R
þ

_Qi

Qi

; (20)

where Qi is defined through Qi ¼ R2 � 6nið _H þH2ÞRþ
6niðni � 1ÞH _R. By �i ¼ �1� _�i

3H�i
and (20), we can de-

termine the time dependent EOS parameters:

�i ¼ � 3�� 2ni
3�

þ 4ð4�� 1Þn2i þ ð4�2 � 17�þ 2Þni þ 11�� 8�2

3�ð2�� 1Þð2n2i þ ð�� 3Þni þ ð1� 2�ÞÞ

�
_�t

�
þO

� _�2t2

�2

�
: (21)

Up toOð _�t
� Þ, the relation between �i’s may be obtained in a

compact form:

�iðtÞ ¼ ni
nj

�jðtÞ þ
�
ni
nj

� 1

�
8 i; j ¼ �1þ 2ni

3�ðtÞ :
(22)

It is worth noting that in a one component fluid, with EOS
parameter �, we have � ¼ 2n

3� � 1; hence, if the universe is

approximately filled with radiation (i.e. � ¼ 1
3 ) then � ¼ n

2

and R ¼ 3nðn�1
t2
Þ. Therefore for n � 1 we have R � 0 and

_R � 0 while in the Einstein theory of gravity we obtain
_R ¼ 0. This is the note used in [6] to show that in modified
gravity the gravitational baryogenesis may occur even in
the radiation dominated epoch.

Now assume that one of the thermal fluid components
(e.g. the radiation component) has temperature T, i.e., the
subcomponents of this component have nearly common
temperature T. We assume also that the density of each
component is given by

�i ¼ 
iT
�i : (23)

This is allowed when T is proportional to a power of the
scale factor. It is worth noting that T may not be the
temperature of other noninteracting fluid components.
Equations (9) and (18) can be used to obtain the time
dependence of T:

T ¼
�
	i

Ai


i

�
1=�i

tð�2ni=�iÞ: (24)

This equation holds for each i, therefore

ni
�i

¼ nj
�j

8 i; j: (25)

Besides, for 8i, j we must have
�
	i


i
Ai

�
1=�i ¼

�
	j


j
Aj

�
1=�j

: (26)

To elucidate our results, as an example, we assume that the
universe is approximately composed of a radiation compo-
nent (denoted by the subscript R) and a nonthermal com-
ponent with EOS parameter ! [12]. These noninteracting
components satisfy the energy conservation relation

_�R þ 4H�R ¼ 0 _�! þ 3Hð1þ!Þ�! ¼ 0: (27)

The time derivative of the ratio of these components,
denoted by r :¼ �R

�!
, is

_r ¼ 3Hrð!� 1
3Þ (28)

if !> 1
3 , _r > 0, and the �! component decreases more

rapidly than the radiation component and the universe will
become radiation dominated. Following our previous dis-
cussions let us take

fðRÞ ¼ ARRnR þ A!R
n!: (29)

Stability conditions require that the parameters of the
model satisfy

nRðnR � 1ÞARRnR þ n!ðn! � 1ÞA!R
n! > 0; (30)

and

nRARRnR�1 þ n!A!R
n!�1 > 0: (31)

If the scale factor is given by aðtÞ / t�, then

nR ¼ 2�; n! ¼ 3
2ð1þ!Þ�: (32)

As a result, in this model, ! can be expressed in terms of

ni’s: ! ¼ 4n!
3nR

� 1. The stability conditions are satisfied by
choosing appropriate parameters for the model, e.g., if we
take n! ¼ 1, which results in ! ¼ 2

3� � 1, (29) reduces to

fðRÞ ¼ A!Rþ ARRnR (the stability of models including
this specific case was discussed in [13]), and the stability
conditions become

nRðnR � 1ÞARRnR > 0 nRARRnR�1 þ A! > 0:

(33)

For positive curvature and for �’s belonging to the domain
0:5< �< 0:64, AR becomes a positive real number [see

(19) and (36)]. Besides, 	! ¼ 3�2

8�G implies that A! is posi-

tive. Therefore the stability conditions are satisfied. Note
that in [14] it was proposed that fðRÞ models with B< 0,
where B is defined through

B �
d2f
dR2

df
dR

dR

d lna

�
d lnH

d lna

��1
; (34)
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are unstable to linear perturbations at high curvature; this
leads us to take � > 0:5 which is in agreement with 0:5<
�< 0:64 proposed above.

Following (9) and (18), the energy densities can be
obtained as

�i ¼ 	iAit
�3�ð1þ�iÞ: (35)

For the radiation component this yields

�R ¼ 3

8�G
ð�10�2 þ 8�� 1Þ�2�

� ð6ð2�� 1ÞÞ2��1ARt�4�: (36)

On the other hand, the temperature of the radiation com-
ponent is given [15]:

�R ¼ 
RT4; (37)

where 
R ¼ �2

30 g? and g? is the total degrees of freedom of

effective massless particles contributing in the radiation
component. Hence, in (23), �R ¼ 4. By using (35) and
(37) we find out

T ¼
�
	RAR


R

�
1=4

t�ðnR=2Þ: (38)

By substituting (38) into (35) one gets

�! ¼ 	!A!

�

R

	RAR

�
n!=nR

T4ðn!=nRÞ: (39)

By considering the assumption (23) we find


! ¼ 	!A!

�

R

	RAR

�
n!=nR

; �! ¼ 4
n!
nR

: (40)

If at a time denoted by t ¼ tRD, the energy density
of radiation component becomes equal to the other
component,

�!ðtRDÞ ¼ �RðtRDÞ ¼ 
RT4
RD; (41)

where TRD is the radiation temperature at tRD, then the
solution of (27) may be written as

�! ¼ 
RT4
RD

�
T

TRD

�
4ðn!=nRÞ

: (42)

The temperature TRD can be determined in terms of the
parameters of the model:

TRD ¼ 
�ð1=4Þ
R ð	!A!ÞnR=4ðnR�n!Þð	RARÞn!=4ðn!�nRÞ:

(43)

As an application, we can use these results to study a
simple gravitational baryogenesis model [12], in the con-
text of the modified theory of gravity in the early universe
composed approximately of radiation and a nonthermal
component described by (27). The key ingredient in this
theory is the coupling of the derivative of the Ricci scalar
curvature and the baryon number current

"

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ð@�RÞJ�; (44)

where� is a cutoff characterizing the scale of the energy in
the effective theory and " ¼ �1. Equation (44) dynami-
cally violates CPT giving rise to the baryon asymmetry. In
a universe with spatially constant R, to obtain the chemical
potential for baryon (�B) and antibaryons (� �B), we use

1

�2
ð@�RÞJ� ¼ 1

�2
_RðnB � n �BÞ; (45)

where nB and n �B are the baryon and antibaryon number
densities, respectively. Therefore there is an energy shift,
2" _R
�2 , for a baryon with respect to an antibaryon. We can

assign a chemical potential to baryons: �B ¼ �� �B ¼
� " _R

�2 . So, in thermal equilibrium there will be a nonzero

baryon number density given by

nb ¼ nB � n �B ¼ gbT
3

6�2

�
�2 �B

T
þ

�
�B

T

�
3
�
; (46)

where gb �Oð1Þ is the number of internal degrees of
freedom of baryons. The entropy density of the universe

is given by s ¼ 2�2

45 gsT
3, where gs ’ 106 indicates the total

degrees of freedom for relativistic particles contributing to
the entropy of the universe [15]. In the expanding universe
the baryon number violation decouples at a temperature
denoted by TD and a net baryon asymmetry remains. The
ratio nb

s in the limit TD � mb (mb indicates the baryon

mass), and TD � �b is then

nb
s

’ �"
15gb
4�2gs

_R

�2T

��������TD

: (47)

Introduction of " gives us the possibility to choose the
appropriate sign for nb. In our model _R is determined as

_R ¼ �6nRð1� nRÞ
�


R
	RAR

�
3=2nR

T
6=nR
D : (48)

To derive (48) we have used the fact that the decoupling
time is

tD ¼
�


R
	RAR

��ð1=2nRÞ
T
�ð2=nRÞ
D : (49)

By putting (48) into (47) we can determine the baryon
asymmetry:

nB
s

� "
0:02

�2
nRð1� nRÞ

�

R

	RAR

�
3=2nR

T6�nR=nR
D : (50)

Note that (50) is valid for the radiation dominated epoch
as well as for the nonradiation dominated era provided
that the EOS parameter of the nonradiation component
satisfies (32).
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