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This paper is mainly devoted to applying the invariant, fast, Lyapunov indicator to clarify some doubt

regarding the apparently conflicting results of chaos in spinning compact binaries at the second-order

post-Newtonian approximation of general relativity from previous literatures. It is shown with a number of

examples that no single physical parameter or initial condition can be described as responsible for causing

chaos, but a complicated combination of all parameters and initial conditions is responsible. In other

words, a universal rule for the dependence of chaos on each parameter or initial condition cannot be found

in general. Chaos does not depend only on the mass ratio, and the maximal spins do not necessarily bring

the strongest effect of chaos. Additionally, chaos does not always become drastic when the initial spin

vectors are nearly perpendicular to the orbital plane, and the alignment of spins cannot trigger chaos by

itself.
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I. INTRODUCTION

Inspiralling compact binaries, made of neutron stars
and/or black holes, are the most promising sources for
gravitational-wave detectors such as LIGO and VIRGO.
The successful analysis of the experimental data requires
that signals should be drawn out of a lot of instrumental
noise by matching observational data with a bank of theo-
retical templates. This is a match-filtering technique.
However, the onset of chaos would make the implementa-
tion of this technique impractical. In this sense, the dy-
namical behavior of the system becomes a fascinating and
interesting topic. There have been a number of articles in
this field [1–13].

There are distinct results of chaos and order in spinning
compact binaries in the existing Refs. [1,2,5–7,9–11].
These results seem to be cloudy and confusing, even
apparently conflictive. They originate from different ap-
proximations to the relativistic two-body problem, meth-
ods for diagnosing chaos, dynamical parameters, and
initial conditions. To clarify these doubts, we shall intro-
duce more information for each case.

(i) Different equations of motion. A detailed discussion
of the problem was given by Levin [12]. A conser-
vative binary system composed of a nonspinning
black hole and a spinning companion has three ap-
proximations: (1) the full relativistic system with the
extreme-mass-ratio limit of a spinning particle orbit-
ing a Schwarzschild black hole [1], (2) the post-
Newtonian (PN) Lagrangian formulation with one-
body spinning [2,8], and (3) the PN Hamiltonian
formulation with one-body spinning [10,11].
Clearly, case (2) along with case (3) just approaches
case (1) when the mass ratio becomes extreme. In

spite of that, there are different dynamical behaviors
among the three approximations. The leading two
approximations exhibit chaos [1,2], and the third
does not at 2PN order [10,11]. As an illustration,
chaos in case (1) happens only when the test particle
around the Schwarzschild black hole has an unphysi-
cally large spin. For comparable-mass binaries, ei-
ther the Lagrangian formulation or the Hamiltonian
formulation is often considered. It is worth empha-
sizing that the two approaches are only approxi-
mately equal, but not exactly. A typical difference
between them lies in the fact that the constants of
motion are approximately accurate to some specific
PN order for the former, while they are exactly
conserved for the latter. Although there are such
slight differences in the constants of motion between
the two formulations, there is completely different
dynamics in some sense. For instance, both the
binary consisting of comparable-mass compact ob-
jects with one physically spinning body and the
binary consisting of equal-mass compact objects
with two arbitrary spins in the 2PN Lagrangian for-
mulation do admit chaos [2,6–8], but their counter-
parts in the 2PN Hamiltonian formulation do not
because they are actually integrable in the two sim-
plified cases [10,11]. In all other situations, both the
2PN Lagrangian and the 2PN Hamiltonian favor the
existence of chaos.

(ii) Indicators of chaos. There have been many methods
to distinguish between ordered and chaotic motion.
The method of the Poincaré surface is easy to quan-
tify chaos when the number of the dimension of
phase space minus the number of all constants of
motion is not more than 3. The Poincaré surface is
obtained by plotting a point in a certain two-
dimensional (2D) plane of phase space each time*xwu@ncu.edu.cn
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the orbit crosses a surface on which the other coor-
dinates are fixed. A smooth curve, composed of the
collection of points, represents the regular motion.
On the other hand, the motion is chaotic if the points
fill an area in this plane. However, this method of
identifying chaos is less than ideal to describe the
dynamics of a higher dimensional phase space. In
this case, the largest Lyapunov exponent, as a mea-
sure of the average exponential deviation of two
nearby orbits, is often used. In classical physics,
there are two different techniques concerning its
calculation. A rigorous method is called the varia-
tional method with a tangent vector, a solution of the
variational equations [14]. It is necessary to rescale
the size of the tangent vector from time to time so
that overflows can be avoided. As an emphasis, it is
cumbersome to derive the variational equations in
general. In view of this, an alternative procedure to
the variational method is to use the distance dðtÞ at
time t in the phase space between two nearby tra-
jectories as an approximation to the norm of the
tangent vector. This approach is named as the two-
particle method [14]. The method is valid if initial
separation dð0Þ is sufficiently small and the renor-
malization is sufficiently frequent. By plotting
ln�ðtÞ vs lnt with �ðtÞ ¼ ð1=tÞ ln½dðtÞ=dð0Þ�, one
can see that a negative constant slope shows the
regularity of the orbit. If the slope tends gradually
to zero, the bounded system turns out to be chaotic.
This is practically attributed to a limit method for
getting reliable Lyapunov exponents. On the other
hand, there is a slightly different treatment by plot-
ting ln½dðtÞ=dð0Þ� vs t instead of ln�ðtÞ vs lnt. Now,
�, as the slope of the fit line ln½dðtÞ=dð0Þ� ¼ �t, is
the largest Lyapunov exponent. Here, it is necessary
to perform a least-squares fit on the simulation data.
This is a fit method. There should have been no
difference in the computation of Lyapunov expo-
nents between the fit method and the limit method,
but it is easier and faster to get a fit slope than a
stabilizing limit value [15]. It should be noted that a
sufficiently long integration time is needed to get
reliable Lyapunov exponents, especially for the
limit method. Under this circumstance, a quicker
and more sensitive indicator, the fast Lyapunov
indicator of Froeschlé and Lega (FLI) [16], is rec-
ommended. This indicator means the natural loga-
rithm of the length of a deviation vector, which
stretches exponentially with time for a chaotic orbit
but linearly for an ordered orbit. Thus, it allows one
to distinguish between the ordered and chaotic
cases. In addition, the frequency analysis method
of Laskar [17] is much faster at detecting chaos
from order than the method of the Lyapunov expo-
nent. Of course, there are other equally fast, or

faster, methods to find chaos, for example, the
method of the dynamical spectra of Voglis et al.
[18], and the method of the smaller alignment index
of Skokos [19]. For more information, see a com-
parison of the various methods in pages 277–280 of
the book entitled ‘‘Order and Chaos in Dynamical
Astronomy’’ by Contopoulos [20]. These methods,
except for the method of the Poincaré surface, are
independent of the dimension of phase space.
General relativity has a time-redefinition ambiguity
that apparently allows any chaos to be defined away
by virtue of a spacetime coordinate transformation.
There is a long history about the reliability of
Lyapunov exponents in a curved space. A typical
example is that Lyapunov exponents in the mix-
master cosmology depend on the choice of time
variable [21–24]. Thus it is important enough to
find a gauge invariant measure of chaos. Several
independent groups have managed to work out this
problem. Imponente & Montani [25] projected a
geodesic deviation vector in the Jacobi metric on
an orthogonal tetradic basis and obtained positive
Lyapunov exponents of the mixmaster cosmology.
So did Motter [26], who addressed directly the issue
of the invariance of Lyapunov exponents. These
invariant definitions of Lyapunov exponents are
mainly focused on the time evolution of the gravi-
tational field itself. On the other hand, for the geo-
desic or nongeodesic motion of particles in a given
relativistic gravitational field, Wu & Huang [27]
gave an invariant definition of Lyapunov exponents
by refining the classical two-particle method. In
their method, space projection operations are
adopted, and coordinate time is chosen as an inde-
pendent variable. This technique works well in the
study of the chaotic dynamics in a superposed Weyl
spacetime [28]. Wu et al. [29] introduced another
invariant two-particle approach of Lyapunov expo-
nents without projection operations and with proper
time as the independent variable for a geodesic flow.
If proper time and coordinate time do not satisfy an
approximately logarithmic relation, the two kinds of
invariant two-particle methods should be equivalent
[29]. They also constructed the invariant FLI of two
nearby trajectories. As to a spinning compact binary
system with the PN equations of motion in coordi-
nate time, it belongs to the nongeodesic case.
According to the nongeodesic motion of the spin-
ning binaries and the 2PN bodies’ metrics in the
center-of mass (CM) frame [30–33], one can easily
note that the former invariant two-particle approach
to Lyapunov exponents and its corresponding in-
variant FLI become possible applications in the
dynamics of this system. Besides these invariant
indicators, the fractal basin boundary method is
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regarded as a coordinate invariant approach that
gives a conclusion of chaos without ambiguity of
spacetime coordinates. Although the system in the
2PN Lagrangian formulation is conservative, the
coalescence of the black holes may occur. It should
be emphasized that the coalescence is not a conse-
quence of energy loss, but these chaotic orbits hap-
pen to veer too close at some stage and merge. In
this sense, the method of fractal basin boundaries is
still a suitable tool. Usually, a basin is a 2D space
ð�1; �2Þ, where �1 and �2 are two initial spin angles.
In this basin �1 and �2 are varied, and the other
initial variables are fixed. As a result, one can
determine whether the resulting orbits coalesce,
escape to infinity, or remain stable and bounded.
By color-coding each behavior and drawing points
in the ð�1; �2Þ plane, one does observe the onset of
chaos if the basin boundaries are fractal [2–4,6–8].
However, the fractal method has some limitations;
for example, it makes no distinction between cha-
otic and ordered bound stable orbits in a nonfractal
region of the basin, and gives no indication of the
chaotic time scale either.
Now let us recall the existing references [2–8] on
this chaos problem in the conservative 2PN
Lagrangian formulation of spinning compact bi-
naries by means of the related qualitative techniques
above. Because of different methods adopted, there
was initially some debate about the presence or
absence of chaos in the system. With the help of
the fractal basin boundary method, an earlier paper
of Levin [2] depicted that spinning, compact,
comparable-mass binaries are shown to be chaotic
in the PN expansion of the two-body system for
some range of parameters. Furthermore, the authors
of [5] employed the classical limit method to cal-
culate Lyapunov exponents along the fractal of
Ref. [2] and presented contradictory results. As
they claimed, ‘‘Varying the binary mass ratio, spin
magnitudes, misalignment angles, eccentricity, and
initial separation over wide ranges, we consistently
find the same regular, nonchaotic behavior for all
trajectories.’’ In brief, a main result of [5] is that
chaos in compact binary systems should be ruled
out. Cornish & Levin [6,7] refuted the claims by
showing that the 2PN equations of motion do admit
orbits near the boundary with positive Lyapunov
exponents. They explained the disagreement be-
tween their results and those in Ref. [5], and pointed
out that ‘‘The reason for the discrepancy seems to be
that the authors of [5] define the maximum exponent
as ‘the Cartesian distance between the dimension-
less 12-component coordinate vectors � � � of two
nearby trajectories.’ � � � , the result does depend on
the rescaling and can give false answers.’’ Recently,

Wu & Xie [15] did not think that the rescaling was
an exact source of the incorrect result that there
were no positive Lyapunov exponents and of the
corresponding false conclusion that chaos was ruled
out in Ref. [5]. In fact, the method for computing
Lyapunov exponents in Refs. [6,7] is slightly differ-
ent from that in Ref. [5]. References [6,7] deal with
the fit method in the Newtonian frame. As stated
above, the fit method is greatly superior to the limit
method in the speed of identifying chaos. Wu & Xie
[15] described that an integration time problem is
regarded as the source of the erroneous null results
in Ref. [5]. The limit method would get unreliable
Lyapunov exponents in a short integration time.
Especially for coalescing binaries, the limit method
is no longer a good tool to identify chaos. On the
contrary, the fit method can find chaos in the 2PN
Lagrangian approximation. Similarly, Hartl &
Buonanno [9] applied the same method to confirm
the existence of chaos in the 2PN Hamiltonian for-
mulation through positive Lyapunov exponents. For
an illustration, the Lyapunov exponents calculated
in [15] are taken from the invariant two-particle
method [27] and should not have any possible am-
biguity from coordinates. Meanwhile, chaos in the
Lagrangian approximation was again confirmed us-
ing the invariant FLI of two nearby orbits in a
curved spacetime [15]. Additionally, chaos in this
formulation was found with the frequency map
analysis [13]. In a word, it can be concluded from
[15] that chaos does not seem to be ruled out in real
binaries.

(iii) The choice of dynamical parameters and initial
conditions. As stated above, spinning compact bi-
naries have 12 degrees of freedom containing a 3D
position, a 3D velocity, and two 3D spins. In addi-
tion, several parameters that may affect the dynam-
ics are as follows: mass ratio, magnitudes of spins,
spin alignments with respect to the orbital plane,
eccentricity of the orbit, and radius of the orbit.
Some effects of the parameters on the dynamics
were discussed in Refs. [2,8,9,13]. The main results
are listed here. (1) Levin [8] claimed that the mass
ratio primarily affects the cone of precession. A
smaller mass ratio means a wider precessional
angle. Meanwhile the author pointed out that it is
unclear whether the mass ratio impacts the regular-
ity of motion. On the other hand, Hartl & Buonanno
[9] surveyed some mass configurations, such as
ð20þ 25ÞM�, ð10þ 10ÞM�, ð20þ 10ÞM�, and
ð15þ 5ÞM�. They described that chaotic orbits
occur only for the ð10þ 10ÞM� and ð20þ 10ÞM�
cases. (2) The transition to chaos occurs as the spin
magnitudes and misalignments are increased. In
particular, the binaries become dramatically cha-
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otic when the spins are perpendicular to the orbital
angular momentum [8]. This can also be seen in
Ref. [13]. But there is an entirely different opinion.
As shown in Ref. [9], chaotic orbits are mainly
concentrated on initial spin vectors nearly antia-
ligned with the orbital angular momentum for the
ð10þ 10ÞM� configuration, while they are located
at other initial spin directions for the ð20þ 10ÞM�
configuration. (3) Levin [8] found that large eccen-
tricity does not cause chaos alone. On the contrary,
Hartl & Buonanno [9] did think that chaos ap-
peared in highly eccentric orbits. There are appar-
ently conflicting descriptions about chaotic regions
and parameters to the binaries between in Ref. [8]
and in Ref. [9].

As mentioned above, the debates in (i) and (ii) have been
given satisfactory answers by several authors, but those in
(iii) have not yet. Thus, an important motivation of the
present paper is to clarify these doubts regarding chaotic
regions and parameters to black hole pairs in Refs. [8,9]. In
our opinion, the reason for the apparently conflicting re-
sults is that each of the physical parameters or initial
conditions is taken solely to be responsible for causing
chaos in the two references. We do believe that all these
results should not conflict as long as a complicated combi-
nation of all parameters and initial conditions can be
adopted as a criterion for chaos. For a representative ex-
ample to argue these points of view, we consider only the
2PN Lagrangian formulation of spinning compact binaries.
We continue to trace chaos and order in this model with the
invariant FLI along the previous work [15]. On one hand,
the superiority of this indicator in the application is de-
scribed sufficiently so that we can take the opportunity to
examine the method of fractal basin boundaries adopted in
a series of articles [2,6–8,12] about chaos in this
formulation. On the other hand, we shall focus on the
transition to chaos with one or two of the parameters
varied. As an emphasis, we are interested in investigating
the regularity or chaoticity of stable orbits within the
integration time considered rather than that of unstable
orbits at the basin boundaries. Above all, some details
neglected in the existing references will be addressed.
For example, we shall study whether chaos depends on
the mass ratio, and also whether the maximal spin magni-
tudes always increase the strength of the chaotic behavior
in any term.

The paper is structured in the following manner. In
Sec. II, we exhibit the related invariant chaos indicators
in spinning compact binaries. Then we use the invariant
FLI to explore the effects of various parameters on the
dynamical transition to chaos in Sec. III. Finally, the
summary follows in Sec. IV. Throughout the work we
use geometric units c ¼ G ¼ 1 and take the signature of
a metric as ð�;þ;þ;þÞ. Greek subscripts run from 0 to 3,
and Latin indices range from 1 to 3.

II. INVARIANT INDICATORS FOR IDENTIFYING
CHAOS IN BLACK HOLE PAIRS

Invariant chaos indicators should be independent of the
choice of spacetime coordinates for a given relativistic
dynamical problem. This is a basic requirement of full
general relativity. In order to construct the invariant chaos
indicators in black hole binaries, we need the bodies’
motions and metrics in the CM frame. For this purpose,
we list some basic characteristics of spinning compact
binaries, for example, the equations of the relative motion,
the relation between the relative motion and the bodies’
motions, and the bodies’ metrics. Then, we introduce both
the invariant Lyapunov exponent and the invariant FLI of
two nearby trajectories.

A. Equations of the relative motion

For a relativistic system of two pointlike particles with
masses m1 and m2ðm1 � m2Þ, and the total mass M ¼
m1 þm2, the relative position x and velocity v from
body 2 to body 1 evolve according to the Lagrangian
formulation at 2PN order in harmonic coordinates:

€x ¼ að0Þ
N þ að1Þ

PN þ að1:5Þ
SO þ að2Þ

PN þ að2Þ
SS : (1)

The explicit forms of a can be found in Ref. [34]. The
superscripts stand for the order of the PN expansion, and
the subscripts represent the type of contributions to the
relative acceleration, which are from the Newtonian (N)
and PN, and the spin-orbit (SO) and spin-spin (SS) cou-
plings. In addition, the two spins satisfy

_S 1 ¼ �1 � S1; _S2 ¼ �2 � S2; (2)

with

�1 ¼ 1

r3

��
2þ 3�

2

�
LN � S2 þ 3ðn � S2Þn

�
;

�2 ¼ 1

r3

��
2þ 3

2�

�
LN � S1 þ 3ðn � S1Þn

�
:

(3)

Here we specify that the mass ratio � ¼ m2=m1, and the
Newtonian orbital angular momentum LN ¼ �ðx� vÞ
with the reduced mass � ¼ m1m2=M, radius r ¼ jxj and
unit radial vector n ¼ x=r. Thus Eqs. (1) and (2) do
completely determine the evolution of the relative one-
body problem with 12 degrees of freedom in the phase
space. Equation (2) implies that the individual spin mag-
nitudes, S1 and S2, are always constants of motion. For
physically realistic spins, two spin magnitudes are S1 ¼
�1m

2
1 and S2 ¼ �2m

2
2 with dimensionless spin parameters

0 � �1, �2 � 1. There are also other quantities conserved
at 2PN order as follows: the total energy E and the angular
momentum J ¼ Lþ S1 þ S2, where L is the orbital an-
gular momentum.
It is worth noting that the relative coordinate x is nothing

but a separation between the body coordinates y1 and y2 in
the CM frame, namely, x ¼ y1 � y2. Meanwhile,
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v ¼ v2 � v1, where v1 and v2 denote the body velocities.
Inversely, the relative motion can determine the motion of
each body. In other words, both y1 and y2 can be given by
ðx;vÞ. See the next subsection for details.

B. Center-of-mass coordinates

Besides the related parameters above, we define mass
parameters � ¼ m1m2=M

2 and �m ¼ ðm1 �m2Þ=M, and
dimensionless spin parameters [31]

� þ ¼ ðS1=m
2
1 þ S2=m

2
2Þ=2; (4)

� � ¼ ðS1=m
2
1 � S2=m

2
2Þ=2: (5)

The 2PN-accurate relationship between the individual CM
coordinates y1 and y2, and the relative variables ðx;vÞ is
written as

y1 ¼ ðm2=Mþ ��mP Þxþ ��mQv

�M�v� ð�þ þ �m��Þ; (6)

y2 ¼ ð�m1=Mþ ��mP Þxþ ��mQv

�M�v� ð�þ þ �m��Þ: (7)

In Eq. (6), the last term, the 1.5PN term, can be found in
Ref. [31], and P and Q at the 2PN order are of the type
[32]

P ¼
�
v2

2
�M

2r

�
þ

�
3

8
v4 � 3

2
�v4

þM

r

�
� _r2

8
þ 3

4
� _r2 þ 19

8
v2 þ 3

2
�v2

�

þM2

r2

�
7

4
� �

2

��
; (8)

Q ¼ �7M _r=4; (9)

where the relative velocity magnitude v ¼ jvj and the
radial velocity _r ¼ n � v. As to v1 and v2, they are from
derivatives of y1 and y2 with respect to coordinate time t,
respectively, where all the terms higher than 2PN order are
dropped. It should be pointed out that each body has a
metric that governs its evolution.

C. Metric of body 1 in the CM frame

In the light of the body coordinates y1 and y2 and the
body velocities v1 and v2, Faye et al. [33] provided the
3PN harmonic-coordinate metric coefficients of a body in
the CM frame. As mentioned above, here we keep them to
the 2PN order. They take the following forms:

g00 ¼ �1þ 2V � 2V2 þ 8

�
X̂ þ ViVi þ V3

6

�
; (10)

g0i ¼ �4Vi � 8R̂i; (11)

gij ¼ �ijð1þ 2V þ 2V2Þ þ 4Ŵij: (12)

Each of the potentials is split into the nonspin (NS) piece
given by Ref. [30] and the spin (S) part listed in Ref. [31],
say,

V ¼ VNS þ VS; . . . ; (13)

Ŵ ij ¼ Ŵij;NS þ Ŵij;S: (14)

Additionally, the proper time � of body 1 satisfies the
following equation:

d�

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðg00 þ 2g0iv

i
1 þ gijv

i
1v

j
1Þ

q
: (15)

The superscript i denotes the ith component of the velocity
for body 1. Then body 1 has its 4-velocity

U ¼
�
dt

d�
; v1

1

dt

d�
; v2

1

dt

d�
; v3

1

dt

d�

�
: (16)

In terms of Eqs. (6) and (7), the dynamical behaviors of
the bodies’ motions should be equivalent to those of the
relative motion. This requires that chaos indicators be
invariant for various spacetime coordinates. With the aid
of the metric g��, the invariant Lyapunov exponent of two

nearby trajectories [27] can be constructed and used to
study the dynamics of orbits around body 1.

D. The invariant Lyapunov exponent

According to the theory of observation in general rela-
tivity, Wu & Huang [27] employed proper time � of an
‘‘observer’’ and a proper configuration space distance
�Lð�Þ between the observer and his ‘‘neighbor’’ particles
to define an invariant Lyapunov exponent:

	 ¼ lim
�!1�ð�Þ; (17)

where

�ð�Þ ¼ 1

�
ln
�Lð�Þ
�Lð0Þ ; (18)

with the proper distance between the two nearby trajecto-
ries

�Lð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h���x

��x�
q

: (19)

In addition, let the space projection operator of the ob-
server be h�� ¼ g�� þU�U�, and the deviation vector
from the observer to the neighbor be �x�.
In fact, this technique is just a directly modified and

refined version of the classical Lyapunov exponent with
two nearby trajectories [14]. A point to note is that the
coordinate time t is chosen as a common time variable in
the equations of motion for the two particles, but the proper
time � is from integration of Eq. (15). As �� lnt, this
method is invalid [29]. But this case does not appear in
spinning compact binaries.
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On the other hand, the invariant Lyapunov exponent is
not suitable for the study of comparable-mass compact
binaries with spins in the case of the merger, as mentioned
in Ref. [15]. Thus, we shall particularly focus on the
application of the invariant FLI.

E. The invariant fast Lyapunov indicator

The so-called fast Lyapunov indicator (FLI) of
Froeschlé & Lega [16] has been widely used to survey
various orbital problems; e.g., see Ref. [35]. However,
there is generally great difficulty in deriving the variational
equations corresponding to the tangential vector for com-
plicated problems, especially for relativistic gravitational
systems. To avoid this, Wu et al. [29] refined the original
idea and proposed the invariant FLI with two nearby
trajectories, where a renormalization technique within a
sufficiently long time span is adopted.

Body 1, as an observer, uses the above proper distance
�L to his neighboring orbit at his proper time � to measure
the invariant FLI of two nearby trajectories in a curved
spacetime, defined as

FLI ð�Þ ¼ log10
�Lð�Þ
�Lð0Þ ; (20)

where �Lð0Þ ¼ 10�9 is an ideal choice of the starting
proper distance [29]. By plotting FLIð�Þ vs log10�, one
can see that the exponential stretching indicates the onset
of chaos, while the linear growth turns out to be regular.
Reference [29] gives the numerical setup of this indicator
in the following.

Utilizing a fifth-order Runge-Kutta-Fehlberg algorithm
of an adaptive coordinate time step, we numerically inte-
grate Eqs. (1), (2), and (15) together 2 times with two
groups of slightly different initial conditions. In other
words, the coordinate time t is taken as a common integra-
tion time variable in connection with the relative motion
and the bodies’ motions, and the numerical integration is
used to solve the equations of the relative motion. But
chaos is measured by one of the two bodies in the CM
frame. An important point to note is that the saturation of
bounded chaotic orbits appears when�L ¼ 1. For the sake
of its disappearance, the rescaling is not introduced until
�L reaches the value of 0.1. Let kðk ¼ 0; 1; 2; � � �Þ be the
sequential number of renormalization; then a detailed al-
gorithm of the FLI is

FLI k ¼ �k½1þ log10�Lð0Þ� þ log10
�Lð�Þ
�Lð0Þ ; (21)

where �Lð0Þ � �Lð�Þ � 0:1.
Zhu et al. [36] attained success in the analysis of the

dynamics of Newtonian core-shell systems with the FLI of
two nearby orbits. In addition, we had already applied the
invariant FLI to conduct a first-step investigation into the
dynamics of spinning compact binaries in [15]. Next, we
shall continue to discuss its applications in this problem.

III. APPLICATIONS OF THE INVARIANT FLI

Following Ref. [15], we employ the invariant FLI to give
a detailed discussion on the transition of the dynamics of
spinning compact binaries from regular motion to chaos
with variations of dynamical parameters or initial condi-
tions. In particular, we plan to search for chaos by scanning
initial spin angles.
To illustrate the use of the invariant FLI, we begin by

regenerating Fig. 3 of Ref. [15] in our Fig. 1, where the
FLIs of three orbits vary with the proper time. Initial
conditions and parameters of the three orbits are as follows.
�1: ðx;vÞ ¼ ð5:5M; 0; 0; 0; 0:4; 0Þ, � ¼ 1=3, �{ ¼ 1 ({ ¼
1, 2), and spin angles �1 ¼ 
=2 and �2 ¼ 
=6 so that
initial spin configurations S{ ¼ ðS{ sin�{; 0; S{ cos�{Þ. �2:
ðx;vÞ ¼ ð5:0M; 0; 0; 0; 0:399; 0Þ, � ¼ 1, �{ ¼ 1, �1 ¼
38	, and �2 ¼ 70	. �3 is the same as �2 but only 0.399
is replaced by 0.428. In practice, the initial radius r is equal
to the first component x of the initial relative coordinates
for each case. In order to get their corresponding neighbor-
ing orbits, we add a very small deviation, �x ¼ 10�9M, to
the x only. As shown in Fig. 1, �1 and �2 are chaotic, but �3

becomes ordered. The results are consistent with those of
[7]. Obviously, chaos of �1 gets rather stronger than that of
�2. In particular, the three orbits can be distinguished
clearly as the proper time arrives at 105M.
Hereafter, each orbit continues computing until � ¼

105M. It is shown with many numerical experiments that
FLI ¼ 6 is a threshold between ordered and chaotic at this
time. All orbits with FLIs> 6 show chaos, while ones with
FLIs � 6 show regular. Here we do not consider coales-
cing orbits during this time, but pay attention to stable
orbits. Of course, increasing the integration time would
reduce the number of stable orbits. Since the invariant FLI

FIG. 1. Same as Fig. 3 of Ref. [15], which describes the
invariant FLI as a function of proper time for each of the three
orbits. Orbits �1 and �2 are chaotic, while orbit �3 is not.
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has explicit merits, we shall borrow it to further gain an
insight into the dynamics of spinning compact binaries.

A. Varying initial radii

Let us trace a dynamical sensitivity to the variations of
some initial variables of the compact objects by taking �1,
�2, and �3 as basic references.

Let us create a family of orbits with the same parameters
and initial conditions as those of �1 but with the initial
radius r altered from 5:4M to 6M. In terms of different
values of FLIs, Fig. 2(a) shows that chaotic orbits are
clustered at small radius regions of r lower than 5:58M.
When different initial conditions and parameters _y, �1, �2,
and� are used, one can see the same fact from Figs. 2(b)–2
(f). There are two main reasons for this result. A smaller
possible radial separation corresponds to greater contribu-
tions to the PN terms in the equations of motion so that the
nonlinear effects become stronger. On the other hand, it
gives rise to the stronger spin coupling, as hinted in Eq. (3).

For an illustration, the presence of chaos in low-radius
regions was already mentioned by Hartl & Buonanno [9],

who used another approximation, the PN ADM-
Hamiltonian formulation, for the same problem.

B. Varying initial eccentricities

Now, we observe the dynamical evolution with the
second initial component _y of the relative velocity vector
v running from the interval [0.39, 0.633] according to
Fig. 3(a), where a number of orbits are consistent with
�2 in the parameters and initial conditions except _y.
Without question, �2 and �3 are still two of the orbits
tested. Similar to Fig. 2, Fig. 3(a) shows that the onset of
chaos is also at lower velocities, less than about 0.42. In
practice, the variation of _y at the starting time corresponds
to that of initial eccentricity when all the parameters and
the other initial conditions are fixed. _y ¼ 0:447 21 means
the initial eccentricity e ¼ 0, which just corresponds to a
quasicircular orbit of Newtonian two-body problems. Of
course, the chaoticity of quasicircular orbits in relativistic
two-body problems is possible for particular parameters
and initial conditions (see Ref. [9]). In addition, e becomes
small with the growth of _y when _y < 0:447 21, or large

FIG. 2. FLI as a function of initial radius r for various parameters and other initial conditions.
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with the increase of _y when _y > 0:447 21. In particular, we
have e ¼ 1 for _y ¼ 0:632 45. In addition, e ¼ 0:2 for �2,
while e ¼ 0:084 08 for �3. For details, see Fig. 3(b), which
plots FLI vs initial eccentricity e rather than FLI vs _y as in
Fig. 3(a). Clearly, chaotic orbits are mainly concentrated
on e 
 0:2. However, Fig. 3(c) shows that chaos does
occur near e ¼ 0 when we change the initial radius and
spin angles, i.e. r ¼ 5:3M, �1 ¼ �2 ¼ 
=2. On the other
hand, it can still be seen from Fig. 3(d) that chaotic orbits
are approximately located in e ¼ 0:2when r ¼ 5:5M,� ¼
1=3, �1 ¼ 0:91, and �2 ¼ 2:45. Of course, the relation for
chaos dependence of initial eccentricity should vary if the
parameters and the other initial conditions are different.

Meanwhile, Fig. 3 seems to tell us that any initially large
eccentricity does not bring chaos. Here we provide some
details of the choice of the initial velocity _y for a given

initial eccentricity. In the various cases tested, we get _y ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ eÞ=rp
or _y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� eÞ=rp

from the equation of e ¼
jr _y2 � 1j. In general, black hole binaries do not coalesce
fast for highly initial eccentricity with a larger starting

velocity of _y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ eÞ=rp
. In fact, all ordered orbits

with high eccentricities in Fig. 3 just correspond to this
case. On the contrary, for highly initial eccentricity with a

smaller starting velocity of _y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� eÞ=rp
, the merger of

black hole binaries appears so quickly that we have no way
to detect chaos from order. In this sense, we cannot say that
highly initial eccentricity with a smaller starting velocity
does not cause chaos. It has been reported that highly
eccentric chaotic orbits with some particular parameters

and initial conditions do exist in the corresponding ADM-
Hamiltonian formulation [9].
The above facts show that eccentricity alone is not

responsible for causing chaos. The result is the same as
that of [8].

C. Varying binary mass ratio

Levin [8] investigated an effect of the binary mass ratio
� on the bulk shape of the precession and gravitational
wave modulation. As a result, the smaller the mass ratio is,
the more prominent the effect of the precession becomes.
Still, it is unclear how much the mass ratio impacts the
appearance of chaos. This is what we want to explore.
Hereafter we specify all orbits with initial conditions

and parameters: x ¼ r, y ¼ z ¼ _x ¼ _z ¼ 0, �1 ¼ �2 ¼ 1
(except Fig. 5), and with the others marked in each panel.
As shown in Fig. 4(a) with r ¼ 6M, _y ¼ 0:399, �1 ¼ 0,
and �2 ¼ 2:23 radians, the dynamics is typically ordered
for many values of �. It can be seen that a transition to
chaos happens only when � 
 1. However, the case is
entirely different when we adopt r ¼ 5:5M, _y ¼ 0:4, �1 ¼

=2, and �2 ¼ 
=6 in Fig. 4(b), which shows that chaos
exists for most values of �. It is emphasized that chaos
occurs neither for the maximum mass ratio nor for the
minimum mass ratio. On the other hand, there are different
dynamical transitions with variations of� if r, _y, �1, and �2
are changed into other fixed values like those given by
Figs. 4(c) and 4(d).
Therefore, it can be concluded from Fig. 4 that the mass

ratio, �, cannot be used only as a criterion for causing

FIG. 3. (a) FLI as a function of initial velocity _y. (b) same as (a) but for initial eccentricity e in place of _y. (c) and (d) relate to the
cases of distinct parameters and initial conditions adopted.
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chaos or order. Chaos does not necessarily become strong
when the mass ratio increases. There are various cases
about the transitivity to chaos with the binary mass ratio
varying for different combinations of fixed initial condi-
tions and other parameters. A tentative interpretation of
this is that the system studied has so many degrees of
freedom and parameters that the dynamical features de-
pend on not only � but also the others. Once � is varied
(but the others are fixed and permitted to be chosen as
various possible values), it is not surprising to see the
different dynamical behaviors above.

D. Varying spin magnitudes

Levin [8] as well as Hartl & Buonanno [9] studied the
effect of spins. They pointed out that the larger the magni-
tude of the second spin becomes, the more irregular the
motion is. Now let us use the invariant FLI to check this
fact.

We take �1 ¼ �2 ¼ �, and then let � range from 0.1 to
1. As expected, there is an abrupt transition to chaos in
Fig. 5(a) when � exceeds 0.86. It is worth emphasizing that
chaos is incurred dramatically as � increases. Only when
�2 ¼ 
=6 in Fig. 5(a) is replaced by �2 ¼ 
=2 are chaotic
orbits in Fig. 5(b) mainly focused on the range of � near
0.45. Still, there remains a rather small chaotic belt close to
the maximal spins. If we set r ¼ 5M, _y ¼ 0:428, �1 ¼
38	, and �2 ¼ 70	, chaos occurs when � is nearly located
in the middle of the interval. More details can be seen in
Fig. 5(c). On the other hand, chaos is completely absent for
any spin magnitudes when we employ r ¼ 5:2M instead of

r ¼ 5M, as shown in Fig. 5(d). With different parameters
and initial conditions adopted, the dependence of chaos on
� is altered at once [see Figs. 5(e) and 5(f)].
In our opinion, the maximal spins are not necessary to

bring the strongest chaos. As stated in the above subsec-
tion, the spin magnitudes, as one of various factors that
affect chaos, are not very sufficient to determine what
dynamical feature the system has. Note that the result in
the present paper should not be in conflict with those in
Refs. [2,8], where only some particular conditions and
parameters are considered.

E. Varying initial spin directions

In this subsection, we concentrate on demonstrating
some dynamical sensitivity to the initial spin alignments.
To do this, we fix the first initial spin angle �1 of S1, and
vary the second initial spin angle �2 of S2 in ½0; 
�. Let us
choose � ¼ 1=3, r ¼ 6M, _y ¼ 0:395, and �1 ¼ 
=2. It is
shown in Fig. 6(a) that chaos is mainly trapped in the
values of �2 
 
=2. This seems to confirm the result of
Refs. [2,8]. Of course, there is also a small chaotic region
around �2 
 
. If we change only the value of �1 and
obtain �1 ¼ 2, we find in Fig. 6(b) that there is a different
dynamical sensitivity to the initial spin angle �2. In par-
ticular, the chaotic orbits are mainly clustered at values of
�2 around 2.25 rather than 
=2 when we take � ¼ 1, r ¼
6M, _y ¼ 0:399, and �1 ¼ 
=2 in Fig. 6(c). The case is also
different in Fig. 6(d).
Clearly, the invariant FLI has been an invaluable and a

computationally quicker tool to survey phase space for

FIG. 4. FLI as a function of binary mass ratio �. Specifically for panel (c), the blank interval with the binary mass ratios in the range
of �ð0:3–0:7Þ represents the unstable coalescing orbits within the time considered. The FLIs of the merging orbits are not given.
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chaos by scanning huge numbers of orbits. Naturally, it is
easy and suitable to study the dynamical structure of the
ð�1; �2Þ plane. Let the two initial spin angles run in the
interval ½0; 
� with a span of �� ¼ 0:01 radian, respec-
tively. Now, we have Figs. 7(a)–7(d) which give all the
starting points in the plane according to distinct values of
FLIs so that ordered and chaotic regions can be distin-
guished. The initial conditions in the ð�1; �2Þ plane are
color-coded black if FLIs> 6 and gray if FLIs � 6.
Black indicates chaos, but gray shows regular. By compar-
ing Figs. 7(a) and 7(b) or Figs. 7(c) and 7(d), we find again
that the dynamical structures differ greatly for the different
mass ratios. It should be pointed out that the structures in
Figs. 7(b) and 7(d) are symmetric since the pairs are of the
same mass. As mentioned above, smaller initial radii lead
still to the onset of stronger chaos. In addition, it can easily
be seen that there is no chaos at all when the spins in
each panel are nearly aligned with the orbital angular
momentum, i.e. at the values near �1 ¼ �2 ¼ 0. On the
other hand, Eqs. (2) and (3) seem to show that the initial
spins perpendicular to the orbital plane turn out to have

the strong effects of the spin couplings. This seems to
imply that the motion in the system becomes more irregu-
lar in this case. In fact, there is a stronger chaotic belt
around �1 ¼ �2 ¼ 
=2 of Fig. 7(a). The result coincides
basically with that of [8]. However, an important point
to note is that the conservative system preserves only the
spin magnitudes, rather than the spin directions. Therefore,
there should be other chaotic regions in Fig. 7(a) when
different combinations of other parameters and initial con-
ditions are employed. In particular, it is no surprise that
chaos disappears in a neighboring region of the point
ð
=2; 
=2Þ on the ð�1; �2Þ plane in Figs. 7(c) and 7(d).
As mentioned in the Introduction, Hartl & Buonanno [9]
observed other cases from the PN Hamiltonian formula-
tion, too.
In fact, each of Figs. 7(a), 7(b), and 7(d) shows fractal

boundaries at the basins between stability (color coded
black and gray) and merger (color coded white) in a slice
through phase space. As Levin [2,8,12] pointed out, the
fractal basin boundaries provide unambiguous signals of
chaos. However, there is an exceptional case in which all

FIG. 5. FLI as a function of dimensionless spin parameters � ¼ �1 ¼ �2.
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the orbits of Fig. 7(c) are stable. This implies that the
fractal basin boundary method is no longer fit for identify-
ing the presence of chaos. Generally speaking, our method
for establishing chaos contains the kernel of the fractal

basin boundary method. Above all, the FLI is more uni-
versal in application, and gives more dynamical details
than the fractal basin boundary method.

FIG. 7. Scans of many groups of initial points in the ð�1; �2Þ plane. The black area with FLIs> 6 indicates chaos, but the gray area
with FLIs � 6 shows regular. As an illustration, 314� 314 orbits are computed in each of the panels, and initial conditions (white
area) correspond to unstable merging pairs during the time scale integrated. Of course, the white regions should contain chaotic orbits
as well as ordered ones. In particular, all the orbits in panel (c) are stable. This implies that the fractal basin boundary method becomes
useless.

FIG. 6. FLI as a function of initial spin alignment �2.
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In the light of the above statements, we do not think that
the initial spins perpendicular to the orbital plane can
necessarily produce the strongest effect of chaos. There
should be various ordered and chaotic regions on the
ð�1; �2Þ plane if different combinations of other parameters
and initial conditions are used. It should be worth noting
that the results are not opposite to those in Refs. [2,8,9]
with some particular parameters and initial conditions.

IV. CONCLUSIONS

For conceptual clarity, it is physically significant to
apply the invariant indicators of chaos, which are indepen-
dent of the choice of spacetime coordinates, to study the
orbital dynamics of relativistically gravitational systems.
For spinning compact binaries, the coordinate time should
be used in order to connect the relative motion of the
bodies and their internal motions. In terms of this point
and the 2PN metric of body 1 in the CM frame, we are able
to construct the invariant indicators that measure the dy-
namical features of body 1 and, equivalently, the ones of
the relative motion. In this sense, it seems to be most
preferable to adopt the invariant Lyapunov exponent with
two nearby trajectories [27]. Considering the too-slow
convergence of the Lyapunov exponent for the case of
comparable-mass binaries, we recommend the invariant
FLI of two nearby trajectories in a curved spacetime
[29], viewed as a very fast and valid technique to detect
chaos from order.

A main contribution of the present paper is to discuss
some applications of the invariant FLI in the study of
dynamical transitions to chaos with the variations of pa-
rameters and initial conditions for the relativistic two-body
system at 2PN order. Above all, this paper clarified some
doubt regarding the apparently conflicting results of chaos
in the system from previous literatures. With this indicator
we have successfully estimated effects of varying initial
radii and velocities/eccentricities, varying binary mass
ratios, varying spin magnitudes, and varying initial spin
angles on the qualitative changes in the dynamical behav-
iors from nonchaotic to chaotic. For the specific choice of
parameters and initial conditions, we recover some results
of Levin [8] or Hartl & Buonanno [9], which are as follows:
(1) chaotic orbits are mainly clustered at initial low-radius

regions; (2) eccentricity alone is not responsible for chaos;
(3) the maximal spins increase the strength of chaos;
(4) chaos becomes drastic when the initial spin vectors
are nearly perpendicular to the orbital plane. However,
when different combinations of the dynamical parameters
and initial conditions are considered, a universal rule for
the dependence of chaos on a single parameter or initial
condition cannot be found in general. That is to say, chaos
does not depend only on the mass ratio. In addition, the
maximal spins do not necessarily bring the strongest chaos.
On the other hand, there are other large chaotic regions far
away from the point ð
=2; 
=2Þ in the �1-�2 plane. Even
chaos disappears in the region near the point ð
=2; 
=2Þ. A
fundamental reason is that a spinning compact binary
system has so many degrees of freedom and parameters
that only one physical parameter or initial condition is
necessary but not sufficient to determine what dynamical
behavior the system has. In short, no single physical pa-
rameter or initial condition can be described as responsible
for causing chaos, but rather a complicated combination of
all parameters and initial conditions is needed.
It should be emphasized that the invariant FLI is a

simple and firm tool to scan the global structure of phase
space of the complicated spinning compact binary systems.
In particular, the FLI is more universal to use, and gives
more dynamical details than the fractal basin boundary
method. As a result, the onset of the chaotic behavior for
these systems at the 2PN expansion has been confirmed
again.
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