
Constraints on scalar-tensor models of dark energy from observational and local gravity tests

Shinji Tsujikawa,1,5,* Kotub Uddin,2,+ Shuntaro Mizuno,3,‡ Reza Tavakol,2,x and Jun’ichi Yokoyama3,4,k
1Department of Physics, Gunma National College of Technology, Gunma 371-8530, Japan

2Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
3Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

4Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa 277-8568, Japan
5Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

(Received 7 March 2008; published 21 May 2008)

We construct a family of viable scalar-tensor models of dark energy (DE) which possess a phase of late-

time acceleration preceded by a standard matter era, while at the same time satisfying the local gravity

constraints (LGC). The coupling Q between the scalar field and the nonrelativistic matter in the Einstein

frame is assumed to be constant in our scenario, which is a generalization of fðRÞ gravity theories

corresponding to the coupling Q ¼ �1=
ffiffiffi
6

p
. We find that these models can be made compatible with local

gravity constraints even when jQj is of the order of unity through a chameleon mechanism, if the scalar-

field potential is chosen to have a sufficiently large mass in the high-curvature regions. We show that these

models generally lead to the divergence of the equation of state of DE, which occurs at smaller redshifts as

the deviation from the �CDM model becomes more significant. We also study the evolution of matter

density perturbations and employ them to place bounds on the coupling jQj as well as model parameters

of the field potential from observations of the matter power spectrum and the cosmic microwave

background (CMB) anisotropies. We find that, as long as jQj is smaller than the order of unity, there

exist allowed parameter regions that are consistent with both observational and local gravity constraints.

DOI: 10.1103/PhysRevD.77.103009 PACS numbers: 98.70.Vc, 95.36.+x

I. INTRODUCTION

The origin of dark energy (DE) has persistently posed
one of the most serious mysteries in modern cosmology
[1,2]. The first step toward understanding the nature of DE
is to clarify whether it is a simple cosmological constant or
it originates from other sources that dynamically change in
time. The dynamical DE models can be distinguished from
cosmological constant by studying the variation of the
equation of state of DE ( ¼ wDE) as well as the evolution
of density perturbations. The scalar-field models of DE
such as quintessence [3] and k-essence [4] predict a wide
variety of variations in wDE, but still the current observa-
tional data are not sufficient to rule out such models unless
the equation of state shows a peculiar evolution. Moreover,
the scalar field is required to have a light mass m� com-

parable to the present Hubble parameter (m� � 10�33 eV),

in order to give rise to an accelerated expansion. This
requirement is generally difficult to reconcile with fifth-
force experiments unless there exists some mechanism by
which the interaction range of the scalar-field mediated
force can be made shorter.

There exists another class of dynamical DE models that
modify Einstein gravity. The simplest models that belong
to this class are those that are based on the so-called fðRÞ

gravity theories in which the Lagrangian density f is a
function of the Ricci scalar R. It is well known that theories
of the type fðRÞ ¼ Rþ �R2 can give rise to an inflationary
expansion in the early universe because of the dominance
of the �R2 term [5]. In the context of DE, the model

fðRÞ ¼ R��2ðnþ1Þ=Rn (n > 0) was proposed to explain
the late-time accelerated expansion due to the dominance

of the term �2ðnþ1Þ=Rn [6] (see also Refs. [7]). It was
found, however, that this model is plagued by a number
of problems such as the instability of matter perturbations
[8] as well as the absence of a matter-dominated epoch [9].
In the past few years there has been a burst of activity in

the search for viable fðRÞ DE models [10–19]. In Ref. [11]
the conditions for the cosmological viabilities of fðRÞ DE
models (having a matter era followed by an accelerated
epoch) were derived without specifying the form of fðRÞ.
A number of general conditions are required on general
viability and stability grounds. For the existence of a
prolonged saddle matter era, the quantity m ¼ Rf;RR=f;R
needs to be positive and close to 0. To avoid antigravity, f;R
is required to be positive in regions R � R1, where R1ð>0Þ
is a Ricci scalar at a de-Sitter attractor responsible for the
accelerated expansion. Also, to ensure that density pertur-
bations do not exhibit violent instabilities, we require
f;RR > 0 [13,14]. The conditions f;RR > 0 and f;R > 0
(for R> R1) have been shown to also ensure the absence
of ghosts and tachyons [15].
The local gravity constraints (LGC) should also be

satisfied for the viability of fðRÞ models [20]. The fðRÞ
gravity in the metric formalism is equivalent to scalar-
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tensor theory with no scalar kinetic term, namely, the
Brans-Dicke model with a potential and !BD ¼ 0 [21]. If
the mass of the scalar-field degree of freedom always
remains as light as the present Hubble parameter H0, one
cannot satisfy the LGC due to the appearance of the long-
ranged fifth force. It is possible to design the field potential
so that the mass of the field is heavy in a large-curvature
region where local gravity experiments are carried out.
Then the interaction range of the fifth force becomes short
in such a high-density region, which allows the possibility
of the models being compatible with LGC.

In fact a number of viable models based on fðRÞ theories
have been proposed [15–18] that can satisfy both the
cosmological and local gravity constraints discussed
above. In the high-density region (R � Rc) these
models have asymptotic behavior fðRÞ ’ R��Rc½1�
ðR=RcÞ�2n� (�> 0, Rc > 0, n > 0), where Rc is of the
order of the present Ricci scalar. Inside a spherically
symmetric body with an energy density �m, the field
acquires a minimum at R ’ �m with a mass much heavier
than H0. In this case the body has a thin shell inside it so
that the effective coupling between the field and the matter
decreases through the so-called chameleon mechanism
[12,22–25]. The bounds on the model parameters of such
models derived from solar-system and equivalence prin-
ciple constraints are given by n > 0:5 and n > 0:9, respec-
tively [25]. For viable fðRÞmodels there are also a number
of interesting observational signatures such as the diver-
gence of the equation of state of DE [18,26] and the
peculiar evolution of matter perturbations [15,16,18,19].
This is useful to distinguish fðRÞ gravity models from the
�CDM model.

In the Einstein frame the fðRÞ gravity corresponds to a

constant coupling Q ¼ �1=
ffiffiffi
6

p
between dark energy and

the nonrelativistic fluid [9] (see Eq. (10) for the definition
of Q). Basically, this is equivalent to the coupled quintes-
sence scenario [27] with a specific coupling. Our aim in
this paper is to generalize the analysis to scalar-tensor
theories with the action (13) in which the coupling Q is
an arbitrary constant. We regard the Jordan frame as a
physical one in which the usual matter conservation law
holds. The dark energy dynamics in scalar-tensor theories
has been investigated in many papers [28–32] after the
pioneering works of Refs. [33,34]. If the mass of the field
� is always of the order of H0, the solar-system constraint
!BD > 4:0� 104 [35] gives the bound jQj< 2:5� 10�3.
Previous studies dealing with the compatibility of the
scalar-tensor DE models with LGC have restricted their
analysis to this small coupling region [30,31]. We wish to
extend the analysis to the case in which the coupling jQj is
larger than the above massless bound. In fact one can
design the potential Vð�Þ so that the mass of the field is
sufficiently heavy in the high-density region to satisfy LGC
through the chameleon mechanism. We shall construct
such a viable field potential inspired by the case of the

fðRÞ gravity and place experimental bounds on model
parameters in terms of the function of Q.
We shall also study the variation of the equation of state

for DE and the evolution of density perturbations in such
scalar-tensor theories. Interestingly, we find that the diver-
gent behavior of wDE is also present as in the case of fðRÞ
gravity. We also estimate the growth rate of matter pertur-
bations and show that the nonstandard evolution of pertur-
bations manifests itself from a certain epoch (depending
upon model parameters) during the matter era. This is
useful to place constraints on model parameters using the
data of large scale structure and CMB.
This paper is organized as follows. In Sec. II we consider

a class of scalar-tensor theories with constant coupling Q.
In Sec. III we study the background cosmological dynam-
ics and consider the case of constant as well as varying �
(the slope of the potential in the physical frame). In this
section we also introduce a family of potentials which are
natural generalizations of a viable family of models in fðRÞ
gravity. In Sec. IV we discuss the LGC under the chame-
leon mechanism and place experimental bounds on pa-
rameters of viable scalar-tensor models using solar-
system and equivalence principle constraints. In Sec. V
we study the evolution of the equation of state of DE and
show that the divergence of wDE previously found in fðRÞ
theories is also present in the class of scalar-tensor models
considered here which are compatible with LGC. In
Sec. VI we discuss the evolution of density perturbations
and place constraints on the coupling and model parame-
ters employing the predicted difference in the slopes of the
power spectra between large scale structure and the CMB.
Finally, we conclude in Sec. VII. The stability analysis
which is crucial to derive the background cosmological
scenario is briefly summarized in the appendix. In the
appendix we also clarify the stability condition of a de
Sitter point that appears in the presence of the coupling Q
for varying �.

II. SCALAR-TENSOR THEORIES

We start with a class of scalar-tensor theories, which
includes the pure fðRÞ theories as well as the quintessence
models as special cases, in the form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
fð’;RÞ � 1

2
�ð’Þðr’Þ2

�
þ Smðg��;�mÞ: (1)

Here, f is a general differentiable function of the scalar
field ’ and the Ricci scalar R, � is a differentiable function
of ’, and Sm is a matter Lagrangian that depends on the
metric g�� and matter fields�m. We also choose units such

that �2 � 8	G ¼ 1, and restore the gravitational constant
G when it makes the discussion more transparent.
The action (1) can be transformed to the so-called

Einstein frame under the conformal transformation [36]:
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~g�� ¼ e2�g��; (2)

where

� ¼ 1

2
lnF; F ¼ @f

@R
: (3)

In the following we shall consider F to be positive in order
to ensure that gravity is attractive.

We shall be considering theories of the type

fð’;RÞ ¼ Fð’ÞR� 2Vð’Þ; (4)

for which the conformal factor � depends upon ’ only.
Introducing a new scalar field � by

� ¼
Z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2

�
F;’

F

�
2 þ �

F

s �
d’; (5)

the action in the Einstein frame becomes [36]

SE ¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
1

2
~R� 1

2
ð~r�Þ2 �Uð�Þ

�
þ Smð~g��F

�1;�mÞ; (6)

where a tilde represents quantities in the Einstein frame
and

U ¼ V

F2
: (7)

In fðRÞ gravity theories without the field ’, the confor-
mal factor � depends only on R. Introducing a new scalar
field to be

� ¼
ffiffiffi
6

p
2

lnF; (8)

the action in the Einstein frame is given by (6) with the
potential [36]

U ¼ RF� f

2F2
: (9)

Hence, the fðRÞ gravity can be cast in the form of scalar-
tensor theories of the type (1) with (4), by identifying the
potential in the Jordan frame to be V ¼ ðRF� fÞ=2.

In order to describe the strength of the coupling between
dark energy and a nonrelativistic matter, we introduce the
following quantity:

Q ¼ �F;�

2F
: (10)

From Eq. (8) one has F ¼ e2�=
ffiffi
6

p
which shows that the

fðRÞ gravity corresponds to

Q ¼ �1=
ffiffiffi
6

p
: (11)

In what follows we shall study a class of scalar-tensor
theories where Q is treated as an arbitrary constant. This
class includes a wider family of models, including fðRÞ
gravity, induced gravity, and quintessence models. Using

Eqs. (5) and (10) we have the following relations:

F ¼ e�2Q�; � ¼ ð1� 6Q2ÞF
�
d�

d’

�
2
: (12)

Then action (1) in the Jordan frame together with (4) yields

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
FR� 1

2
ð1� 6Q2ÞFðr�Þ2 � V

�
þ Smðg��;�mÞ: (13)

In fðRÞ gravity the kinetic term of the field� vanishes with
the potential given by V ¼ ðRF� fÞ=2. Note that in the
limit, Q ! 0, the action (13) reduces to the one for a
minimally coupled scalar field � with a potential Vð�Þ.
It is informative to compare (13) with the following

action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2

R�!BD

2

ðr
Þ2 � V

�
þ Smðg��;�mÞ; (14)

which corresponds to Brans-Dicke theory with a potential
V. Setting 
 ¼ F ¼ e�2Q�, one easily finds that two ac-
tions are equivalent if the parameter !BD is related with Q
via the relation

3þ 2!BD ¼ 1

2Q2
: (15)

Under this condition, the theories given by (13) are equiva-
lent to the Brans-Dicke theory with a potential V.
In the following sections we shall in turn consider the

evolution of the background dynamics in homogeneous
settings, the local gravity constraints, and the matter den-
sity perturbations.

III. HOMOGENEOUS COSMOLOGY

In what follows we shall discuss cosmological dynamics
for the action (13) in the flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) spacetime ds2 ¼ �dt2 þ
a2ðtÞdx2, where t is cosmic time and aðtÞ is the scale factor.
As a source of the matter action Sm, we consider a non-
relativistic fluid with energy density �m and a radiation
with energy density �rad. Then the evolution equations in
the Jordan frame are given by

3FH2 ¼ 1
2ð1� 6Q2ÞF _�2 þ V � 3H _Fþ �m þ �rad;

(16)

2F _H ¼ �ð1� 6Q2ÞF _�2 � €FþH _F� �m � 4
3�rad;

(17)

_�m þ 3H�m ¼ 0; (18)

_� rad þ 4H�rad ¼ 0; (19)
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where H � _a=a and a dot represents a derivative with
respect to t.

Taking the time-derivative of Eq. (16) and using
Eq. (17), we obtain

ð1� 6Q2ÞF
�
€�þ 3H _�þ _F

2F
_�

�
þ V;� þQFR ¼ 0;

(20)

where the Ricci scalar is given by

R ¼ 6ð2H2 þ _HÞ: (21)

We regard the Jordan frame as a physical one, since the
usual matter conservation holds in this frame [see
Eq. (18)].

In order to study the cosmological dynamics, it is con-
venient to introduce the following dimensionless phase
space variables:

x1 �
_�ffiffiffi
6

p
H
; x2 � 1

H

ffiffiffiffiffiffi
V

3F

s
; x3 � 1

H

ffiffiffiffiffiffiffiffi
�rad

3F

r
: (22)

Then the constraint equation (16) yields

�m � �m

3FH2
¼ 1� ð1� 6Q2Þx21 � x22 � 2

ffiffiffi
6

p
Qx1 � x23:

(23)

We also define the following quantities:

�rad � x23; �DE � ð1� 6Q2Þx21 þ x22 þ 2
ffiffiffi
6

p
Qx1:

(24)

Equation (23) then yields the relation �m þ�rad þ
�DE ¼ 1.

From Eqs. (17) and (20) we obtain

_H

H2
¼ � 1� 6Q2

2
½3þ 3x21 � 3x22 þ x23 � 6Q2x21

þ 2
ffiffiffi
6

p
Qx1� þ 3Qð�x22 � 4QÞ; (25)

€�

H2
¼ 3ð�x22 �

ffiffiffi
6

p
x1Þ þ 3Q½ð5� 6Q2Þx21 þ 2

ffiffiffi
6

p
Qx1

� 3x22 þ x23 � 1�: (26)

Using these relations, we obtain the following autono-
mous equations:

dx1
dN

¼
ffiffiffi
6

p
2

ð�x22 �
ffiffiffi
6

p
x1Þ þ

ffiffiffi
6

p
Q

2
½ð5� 6Q2Þx21 þ 2

ffiffiffi
6

p
Qx1

� 3x22 þ x23 � 1� � x1
_H

H2
; (27)

dx2
dN

¼
ffiffiffi
6

p
2

ð2Q� �Þx1x2 � x2
_H

H2
; (28)

dx3
dN

¼ ffiffiffi
6

p
Qx1x3 � 2x3 � x3

_H

H2
; (29)

where N � lnðaÞ is the number of e-foldings and � is
defined by

� � �V;�

V
: (30)

The exponential potential Vð�Þ ¼ V0e
��� gives a constant

value of �. Generally, however, � is dependent on�, where
the field � is a function of x1, x2, and x3 through the
definition of x2 and Eq. (25). Hence Eqs. (27)–(29) are
closed. The effective equation of state is given by

weff � �1� 2

3

_H

H2

¼ �1þ 1� 6Q2

3
ð3þ 3x21 � 3x22 þ x23 � 6Q2x21

þ 2
ffiffiffi
6

p
Qx1Þ � 2Qð�x22 � 4QÞ: (31)

In what follows we shall first discuss the case of constant
� and then proceed to consider the varying � case.

A. Constant �

If � is a constant, one can derive the fixed points of the
system by setting the r.h.s. of Eqs. (27)–(29) to be zero. In
the absence of radiation (x3 ¼ 0), we obtain the following
fixed points:
(a) � matter-dominated era (�MDE [27])

ðx1; x2Þ ¼
� ffiffiffi

6
p

Q

3ð2Q2 � 1Þ ; 0
�
; �m ¼ 3� 2Q2

3ð1� 2Q2Þ2 ;

weff ¼ 4Q2

3ð1� 2Q2Þ : (32)

(b1) Kinetic point 1

ðx1; x2Þ ¼
�

1ffiffiffi
6

p
Qþ 1

; 0

�
; �m ¼ 0;

weff ¼ 3� ffiffiffi
6

p
Q

3ð1þ ffiffiffi
6

p
QÞ :

(33)

(b2) Kinetic point 2

ðx1; x2Þ ¼
�

1ffiffiffi
6

p
Q� 1

; 0

�
; �m ¼ 0;

weff ¼ 3þ ffiffiffi
6

p
Q

3ð1� ffiffiffi
6

p
QÞ :

(34)
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(c) Scalar-field dominated point

ðx1; x2Þ ¼
� ffiffiffi

6
p ð4Q� �Þ

6ð4Q2 �Q�� 1Þ ;�
6� �2 þ 8Q�� 16Q2

6ð4Q2 �Q�� 1Þ2
�
1=2

�
;

�m ¼ 0; weff ¼ � 20Q2 � 9Q�� 3þ �2

3ð4Q2 �Q�� 1Þ :

(35)

(d) Scaling solution

ðx1; x2Þ ¼
� ffiffiffi

6
p
2�

;

�
3þ 2Q�� 6Q2

2�2

�
1=2

�
;

�m ¼ 1� 3� 12Q2 þ 7Q�

�2
; weff ¼ � 2Q

�
:

(36)

(e) de Sitter point (present for � ¼ 4Q)

ðx1; x2Þ ¼ ð0; 1Þ; �m ¼ 0; weff ¼ �1: (37)

Note that, when x3 � 0 we have a radiation fixed point
ðx1; x2; x3Þ ¼ ð0; 0; 1Þ.

One can easily confirm that the de Sitter point exists for

� ¼ 4Q, by setting _� ¼ 0 in Eqs. (16), (17), and (20). This
de Sitter solution appears in the presence of the coupling
Q. Note that this is the special case of the scalar-field
dominated point (c).

Now given a value for �, and using the stability con-
ditions for the above fixed points given in the appendix, the
cosmological dynamics can be specified. We shall briefly
discuss the cases Q ¼ 0 and Q � 0 in turn.

1. Q ¼ 0

When Q ¼ 0 (i.e., F ¼ 1, which corresponds to a stan-
dard minimally coupled scalar field), the eigenvalues �1

and �2 of the Jacobian matrix for perturbations about the
fixed points reduce to those derived in Ref. [37] with � ¼ 1
(see Ref. [38] for earlier works). In this case the matter-
dominated era corresponds to either the point (a) or (d).
The point (a) is a saddle node because �1 ¼ �3=2 and
�2 ¼ 3=2. The point (d) is stable for �2 > 3, in which case
�m < 1. The late-time accelerated expansion (weff <
�1=3) can be realized by using the point (c), whose
condition is given by �2 < 2. Under this condition the
point (c) is a stable node. Hence, if �2 < 2, the saddle
matter solution (a) is followed by the stable accelerated
solution (c) [note that in this case�m < 0 for the point (d)].
The scaling solution (d) can have a matter era for �2 � 1,
but in this case the epoch following the matter era is not of
an accelerated nature.

2. Q � 0

We next consider the case of nonzero values of Q. Here
we do not consider the special case of � ¼ 4Q. If the point
(a) is responsible for the matter-dominated epoch, we
require the condition Q2 � 1. We then have �m ’ 1þ
10Q2=3> 1 and weff ’ 4Q2=3, for the �MDE. When
Q2 � 1 the scalar-field dominated point (c) yields an

accelerated expansion provided that � ffiffiffi
2

p þ 4Q<

�<
ffiffiffi
2

p þ 4Q.1 Under these conditions the �MDE point
is followed by the late-time acceleration. It is worth noting

that in the case of fðRÞ gravity (Q ¼ �1=
ffiffiffi
6

p
) the �MDE

point corresponds to �m ¼ 2 and weff ¼ 1=3. In this case
the universe in the matter era prior to late-time acceleration

evolves as a / t1=2, which is different from the evolution in
the standard matter-dominated epoch [9].
We note that the scaling solution (d) can give rise to the

equation of state, weff ’ 0 for jQj � j�j. In this case,
however, the condition weff <�1=3 for the point (c) gives
�2 & 2. Then the energy fraction of the pressureless matter
for the point (d) does not satisfy the condition �m ’ 1. In
summary the viable cosmological trajectory corresponds to
the sequence from the�MDE to the scalar-field dominated

point (c) under the conditions Q2 � 1 and � ffiffiffi
2

p þ 4Q<

�<
ffiffiffi
2

p þ 4Q.

B. Varying �

When the time scale of the variation of � is smaller than
that of the cosmic expansion, the fixed points derived
above in the case of constant � can be regarded as the
‘‘instantaneous’’ fixed points [39]. We shall briefly con-
sider the cases of Q ¼ 0 and Q � 0 in turn.

1. Q ¼ 0

We begin with a brief discussion of the Q ¼ 0 case. If
the condition �2 < 2 is satisfied throughout the cosmic
evolution, the cosmological trajectory is similar to the
constant � case discussed above except for the fact that
the fixed points are regarded as the instantaneous ones. In
this case the saddle matter solution (a) is followed by the
accelerated point (c).
When �2 � 1 the scaling solution (d) is stable with

�m ’ 1. Hence the cosmological trajectory during the
matter era chooses the scaling solution (d) rather than the
saddle point (a). If j�j decreases at late times, such that it
satisfies the acceleration condition �2 < 2, the trajectory
stops following the solution represented by the matter point
(d) to follow the scalar-field dominated point (c).2 A rep-
resentative model of this type is provided by the double

1Note that under the condition Q2 � 1 and in the case where
the dynamics is in the accelerated epoch, the condition jQ�j< 1
is also satisfied.

2Note that the de Sitter solution (e) exists only for � ¼ 0, i.e.,
for the case of cosmological constant (V ¼ const).
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exponential potential, Vð�Þ ¼ V0ðe��1� þ e��2�Þ, with
�2
1 � 1 and �2

2 < 2 [40]. The assisted quintessence models
in Ref. [41] also lead to a similar cosmological evolution.

2. Q � 0

We shall now proceed to consider the case of nonzeroQ.
If j�j is initially much larger than unity and decreases with
time, it happens that the solutions finally approach the de
Sitter solution (e) with � ¼ 4Q. As we shall show in the
appendix, the de Sitter point (e) is in fact stable even for the
variable � case, if the potential satisfies the condition
Qðd�=dFÞ> 0 or d�=d�< 0 at the de Sitter point.

In the context of fðRÞ gravity, it has been shown that the
model,

fðRÞ ¼R��Rc½1�ðR=RcÞ�2n� ð�> 0;Rc > 0;n> 0Þ;
(38)

is a good example which can be consistent with cosmo-
logical and local gravity constraints [18]. Note that the
models proposed by Hu and Sawicki [16] and Starobinsky
[15] reduce to this form of fðRÞ in the high-curvature
region (R � Rc). In this model the field � is related to

the Ricci scalar R via the relation e2�=
ffiffi
6

p
¼ 1�

2n�ðR=RcÞ�ð2nþ1Þ. Hence, the potential V ¼ ðFR� fÞ=2
can be expressed in terms of the field � as

Vð�Þ ¼ �Rc

2

�
1� 2nþ 1

ð2n�Þ2n=ð2nþ1Þ ð1� e2�=
ffiffi
6

p
Þ2n=ð2nþ1Þ

�
:

(39)

The parameter � is then given by

� ¼ � 4nffiffiffi
6

p ð2n�Þ2n=ð2nþ1Þ e
2�=

ffiffi
6

p

�
�
1� 2nþ 1

ð2n�Þ2n=ð2nþ1Þ ð1� e2�=
ffiffi
6

p
Þ
��2n=ð2nþ1Þ

� ð1� e2�=
ffiffi
6

p
Þ�1=ð2nþ1Þ: (40)

In the deep matter-dominated epoch in which the condition
R=Rc � 1 is satisfied, the field� is very close to zero. For
n and � of the order of unity, j�j is much larger than unity
during this stage. Hence the matter era is realized by the
instantaneous fixed point (d). As R=Rc gets smaller, j�j
decreases to the order of unity. If the solutions reach the

point � ¼ 4Q ¼ �4=
ffiffiffi
6

p
and satisfy the stability condition

d�=dF < 0 the final attractor corresponds to the de Sitter
fixed point (e).

For the theories with general couplings Q, let us con-
sider the following scalar-field potential:

Vð�Þ ¼ V0½1� Cð1� e�2Q�Þp�
ðV0 > 0; C > 0; 0< p< 1Þ; (41)

as a natural generalization of Eq. (39). The slope of the

potential is given by

� ¼ 2CpQe�2Q�ð1� e�2Q�Þp�1

1� Cð1� e�2Q�Þp : (42)

When Q> 0, the potential energy decreases from V0 as �
increases from 0. On the other hand, ifQ< 0, the potential
energy decreases from V0 as � decreases from 0. In both
cases we have Vð�Þ ! V0ð1� CÞ in the limits� ! 1 (for
Q> 0) and � ! �1 (for Q< 0).
In the model (41) the field is stuck around the value

� ¼ 0 during the deep radiation and matter epochs. In
these epochs one has R ’ �m=F from Eqs. (16), (17),
and (21), by noting that V0 is negligibly small compared
to �m or �rad. Using Eq. (20), we obtain the relation V;� þ
Q�m ’ 0. Hence, in the high-curvature region the field �
evolves along the instantaneous minimum given by

�m ’ 1

2Q

�
2V0pC

�m

�
1=ð1�pÞ

: (43)

We stress here that a range of minima appears depending
upon the large energy density �m of the nonrelativistic
matter. As long as the condition �m � V0pC is satisfied,
we have j�mj � 1 from Eq. (43).
Since from Eq. (42) j�j � 1 for field values around

� ¼ 0, the instantaneous fixed point (d) can represent the
matter-dominated epoch provided that jQj � j�j. The de-
viation from Einstein gravity manifests itself when the
field begins to evolve towards the end of the matter era.
The variable F ¼ e�2Q� decreases in time irrespective of
the sign of the coupling strength and hence 0< F < 1.
This decrease of F is crucial to the divergent behavior of
the equation of state of DE, as we will see in Sec. V.
The de Sitter solution corresponds to � ¼ 4Q, i.e.,

C ¼ 2

ð1� F1Þp�1½2þ ðp� 2ÞF1�
; (44)

where F1 is the value of F at the point (e). Provided that the
solution of this equation exists in the region 0<F1 < 1,
for given values of C and p, the de Sitter point exists. From
Eq. (42) we obtain

d�

d�
¼ � 4CpQ2Fð1� FÞp�2½1� pF� Cð1� FÞp�

½1� Cð1� FÞp�2 :

(45)

When 0<C< 1, one can easily show that the function
gðFÞ � 1� pF� Cð1� FÞp is positive in the region 0<
F < 1 giving d�=d�< 0. Hence, the conditions for a
stable de Sitter point is automatically satisfied. In this
case the solutions approach the de Sitter attractor after
the end of the matter era.
When C> 1, the function gðFÞ becomes negative for

values of F that are smaller than the critical value Fcð<1Þ.
The de Sitter point (e) is stable under the condition 1�
pF1 >Cð1� F1Þp. Using Eq. (44) we find that this stabil-
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ity condition translates to

F1 >
1

2� p
: (46)

If this condition is violated, the solutions choose another
stable fixed point as an attractor. In fðRÞ gravity, for
example, the solutions can reach the stable accelerated

point (d) characterized by,m ¼ �r� 1 and ð ffiffiffi
3

p � 1Þ=2<
m< 1 [11], where m � Rf;RR=f;R and r � �Rf;R=f.

In summary, when 0<C< 1, the matter point (d) can
be followed by the stable de Sitter solution (e) for the
model (41). In Fig. 1 we plot the evolution of �DE, �m,
�rad, and weff for Q ¼ 0:01, p ¼ 0:2, and C ¼ 0:7.
Beginning from the epoch of matter-radiation equality,
the solutions first dwell around the matter point (d) with
weff ’ 0 and finally approach the de Sitter attractor (e) with
weff ’ �1. We have also numerically confirmed that � is
initially much larger than unity and eventually approaches
the value � ¼ 4Q.

IV. LOCAL GRAVITY CONSTRAINTS

In this section we shall study the local gravity con-
straints (LGC) for the scalar-tensor theories given by the
action (13). In the absence of the potential Vð�Þ the Brans-
Dicke parameter !BD is constrained to be !BD > 4:0�
104 from solar-system experiments [35]. Note that this
bound also applies to the case of a nearly massless field
with the potential Vð�Þ in which the Yukawa correction

e�Mr is close to unity (whereM is the scalar-field mass and
r is an interaction length). Using the bound !BD > 4:0�
104 in Eq. (15), we find

jQj< 2:5� 10�3 ðfor the massless caseÞ: (47)

This is a strong constraint under which the cosmological
evolution for such theories is difficult to be distinguished
from the Q ¼ 0 case.
Let us then consider the case in which the massM of the

field� is sufficiently heavy so that the interaction range of
the field (� 1=M) becomes short so as to satisfy LGC. In

the context of fðRÞ gravity (Q ¼ �1=
ffiffiffi
6

p
) it was in fact

shown that the LGC can be satisfied by constructing mod-
els in which M is large enough in a high-dense region
where local gravity experiments are carried out [15–19]. In
these models the mass M tends to become lighter with the
decrease of the Ricci scalar R towards the present epoch. In
what follows, we shall construct viable models, based on
scalar-tensor theories whose couplings Q are of order
unity, which are consistent with LGC.

A. Chameleon mechanisms

In Refs. [12,16,24,25] it was explicitly shown that in
fðRÞ gravity a spherically symmetric body forms a thin
shell inside the body through a chameleon mechanism
[22,23]. Generally this happens in a nonlinear regime
where the mass M of a scalar-field degree of freedom is
heavy so that the usual linear analysis based on the inequal-

ity, j�Rj � jRð0Þj, is invalid (where �R is a perturbation

about a background value Rð0Þ). In what follows we shall
briefly review the chameleon mechanism for the theory
given in Eq. (13) and then place constraints on viable
models consistent with LGC.
Let us consider the Einstein frame action (6). The varia-

tion of this action with respect to � leads to the following
equation of motion:

~h��U;� ¼ �Q ~T; (48)

where ~T ¼ e4Q�T and T ¼ g��T��, with T�� being en-

ergy momentum tensor of the matter in the Jordan frame.
We take a spherically symmetric spacetime with a radius ~r
from the center of symmetry. In this setup Eq. (48) be-
comes

d2�

d~r2
þ 2

~r

d�

d~r
¼ dUeff

d�
; (49)

where

Ueffð�Þ ¼ Uð�Þ þ eQ��	: (50)

Here, �	 is related with the energy density � � �T in the
Jordan frame via the relation �	 ¼ e3Q��, which is con-
served in the Einstein frame [23] (i.e., �	~r3 ¼ constant).
We consider a configuration in which the spherically

symmetric body has a constant density �	 ¼ �	
A inside the

-1.0

-0.50

0.0

0.50

1.0

0 2 4 6 8 10

N

Ωrad

Ω
m

Ω
DE

weff

FIG. 1. The evolution of �DE, �m, �rad, and weff for the
model (41) with parameters Q ¼ 0:01, p ¼ 0:2, and C ¼ 0:7
and initial conditions x1 ¼ 0, x2 ¼ 2:27� 10�7, x3 ¼ 0:7, and
x4 � 1 ¼ �5:0� 10�13.
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body (~r < ~rc) and that the energy density outside the body
(~r > ~rc) is given by �

	 ¼ �	
Bð� �	

AÞ. Then the mass of this
body is given byMc ¼ ð4	=3Þ~r3c�	

A ¼ ð4	=3Þr3c�A. Let us
denote the field value at the minimum of the effective
potential Ueffð�Þ corresponding to the density �	

A (�	
B) by

�A (�B). That is, they are given by

U;�ð�AÞ þQeQ�A�	
A ¼ 0 and

U;�ð�BÞ þQeQ�B�	
B ¼ 0;

(51)

respectively. Under the condition �	
A � �	

B the mass
squared m2

A � U00
effð�AÞ is much larger than m2

B �
U00

effð�BÞ.
In solving for a static spherically symmetric field con-

figuration, we impose the boundary conditions d�ð~r ¼
0Þ=d~r ¼ 0 and �ð~r ! 1Þ ¼ �B, so that the field � is
nonsingular at ~r ¼ 0 and that the force on a test body
vanishes at a sufficiently large distance. Then � starts to
roll down the potential where the term dUeff=d� becomes
important.

If the field value at the center �ð~r ¼ 0Þ is close enough
to the equilibrium value �A with j�ð~r ¼ 0Þ ��Aj �
j�Aj, the thin-shell solution is realized [23]. In this case
the field does not move away from�ð~r ¼ 0Þ practically up
to a radius ~r1 which satisfies �~rc=~rc � ð~rc � ~r1Þ=~rc � 1.
At ~r ¼ ~r1, the field starts to roll down the potential and we
find jU;�ð�Þj � jQeQ��	

Aj for ~r1 < ~r < ~rc. Under the

condition jQ�Aj � 1 (as we will confirm later) the right-
hand side (r.h.s.) of Eq. (49) is approximately given by
dUeff=d� ’ Q�	

A. Outside the body (~r > ~rc) the gradient
energies on the left-hand side (l.h.s.) of Eq. (49) become
important because the energy density drops down from �	

A

to �	
B. Taking into account the mass term mB of the

effective potential Ueff , one has dUeff=d� ¼ m2
Bð��

�BÞ on the r.h.s. of Eq. (49).
We match the solutions of Eq. (49) at ~r ¼ ~rc with the

boundary conditions � ¼ �A, d�=d~r ¼ 0 at ~r ¼ ~r1, and
�ð~r ! 1Þ ¼ �B. Then the following solution is obtained
in the region ~r > ~rc [23,25]:

�ð~rÞ ’ �QMc

4	

�
1�

�
~r1
~rc

�
3
�
e�mBð~r�~rcÞ

~r
þ�B; (52)

where�
~r1
~rc

�
2 ’ 1��B ��A

3Q�c

; �c � Mc

8	~rc
¼ GMc

~rc
: (53)

In deriving the relation (52), we assumed the condition
mB~rc � 1. Since we are in the thin-shell regime, we obtain
the following relation from Eq. (53):

�~rc
~rc

’ �B ��A

6Q�c

: (54)

Then the solution outside the body (~r > ~rc) is given by

�ð~rÞ ’ �Qeff

4	

Mce
�mBð~r�~rcÞ

~r
þ�B;

where Qeff � 3Q
�~rc
~rc

:

(55)

Thus, when the body has a thin shell, the effective coupling
jQeff j in the thin shell becomes much smaller than unity,
even if jQj itself is of the order of 1.
If the field value at ~r ¼ 0 is not close to�A (i.e., j�ð~r ¼

0Þ ��Aj * j�Aj), the field rapidly rolls down the potential
at ~r1 ’ 0. Setting ~r1 ¼ 0 in Eq. (52), we obtain the solution
(55) withQeff replaced byQ. This is the thick-shell regime
in which the effective coupling is not small as to satisfy the
LGC.
The presence of the fifth-force interaction mediated by

the field � leads to a modification to the spherically
symmetric metric. Under the weak field approximation,
the spherically symmetric metric in the Jordan frame is
given by [12,25]

d s2 ¼ �
�
1� 2GeffMc

r

�
dt2 þ

�
1þ 2�GeffMc

r

�
dr2

þ r2ðd
2 þ sin2
d�2Þ; (56)

where the effective gravitational ‘‘constant’’ Geff and the
post-Newtonian parameter � are given by

Geff ’ G

�
1�

ffiffiffi
6

p
3

Qeffe
�mBðr�rcÞ

�
;

� ’ 1þ ð ffiffiffi
6

p
Qeff=3Þð1þmBrÞe�mBðr�rcÞ

1� ð ffiffiffi
6

p
Qeff=3Þe�mBðr�rcÞ :

(57)

Note that we have used the approximation ~r ’ r that is
valid in the region jQ�j � 1.
Provided that the condition mBr � 1 holds in an envi-

ronment in which local gravity experiments are carried out,

we have � ’ ð1þ ffiffiffi
6

p
Qeff=3Þ=ð1�

ffiffiffi
6

p
Qeff=3Þ. Hence, if

jQeff j is much smaller than unity through the chameleon
mechanism, it is possible to satisfy the following severest
solar-system constraint that comes from a time-delay effect
of the Cassini tracking [42]:

j�� 1j< 2:3� 10�5: (58)

Using the thin-shell parameter, this bound translates into

�rc
rc

<
4:7� 10�6

jQj : (59)

If the body does not have a thin shell for jQj of the order of
unity, the condition (58) is not satisfied. In fðRÞ gravity, for
example, we have � ¼ 1=2 for Qeff ¼ Q ¼ �1=

ffiffiffi
6

p
.

B. Solar-system constraints

In fðRÞ gravity, the models (38) can satisfy LGC be-
cause the mass M of the field potential (39) is sufficiently
heavy in the high-density region whose Ricci scalar R is
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much larger than Rc. Since the field mass M� inside the

body is much heavier than that outside the body, most of
the volume element within the core does not contribute to
the field profile at r > rc except for the thin-shell regime
around the surface of the body (note that this contribution
is proportional to e�M‘, where ‘ is a distance from the
volume element to a point outside the body). In the case of
general couplings Q, the models presented in Eq. (41) can
be compatible with LGC. Under the condition jQ�j � 1,
one has U;� ’ �2V0QpCð2Q�Þp�1 for the potential U ¼
V=F2 in the Einstein frame. Then from Eq. (51) we obtain
the field values at the potential minima inside/outside the
body:

�A ’ 1

2Q

�
2V0pC

�A

�
1=ð1�pÞ

; �B ’ 1

2Q

�
2V0pC

�B

�
1=ð1�pÞ

;

(60)

which satisfy j�Aj � j�Bj. Note that these are analogous
to the field value �m derived in Eq. (43) in the cosmologi-
cal setting. In order to realize the accelerated expansion at
the present epoch, V0 needs to be roughly the same order as
the square of the present Hubble parameter H0, so we have
V0 �H2

0 � �0, where �0 ’ 10�29 g=cm3 is the present

cosmological density. Note that the baryonic/dark matter
density in our galaxy corresponds to �B ’ 10�24 g=cm3.
This then shows that the conditions, jQ�Aj � 1 and
jQ�Bj � 1 are in fact satisfied provided that C is not
much larger than unity.

The field mass squared M2
� � d2U=d�2 at � ¼ �A is

approximately given by

M2
�ð�AÞ ’ 1� p

ð2ppCÞ1=ð1�pÞ Q
2

�
�A

V0

�ð2�pÞ=ð1�pÞ
V0: (61)

This means thatM�ð�AÞ can be much larger thanH0 due to

the condition �A � V0. Therefore, while the mass M� is

not different from the order of H0 on cosmological scales,
it increases in the regions with a higher energy density.

Let us place constraints on model parameters by using
the solar-system bound (59). In so doing, we shall consider
the case where the solutions finally approach the de Sitter
point (e). Since we have �rc=rc ’ �B=ð6Q�cÞ with �B

given in Eq. (60), the bound (59) translates into

ð2V0pC=�BÞ1=ð1�pÞ < 1:2� 10�10jQj; (62)

where we have used the value �c ¼ 2:12� 10�6 for the
Sun. At the de Sitter point (e), one has 3F1H

2
1 ¼ V0½1�

Cð1� F1Þp�withC given in Eq. (44). Hence, we obtain the
following relation:

V0 ¼ 3H2
1

2þ ðp� 2ÞF1

p
: (63)

Substituting this in Eq. (62) we find

�
R1

�B

�
1=ð1�pÞð1� F1Þ< 1:2� 10�10jQj; (64)

where R1 ¼ 12H2
1 is the Ricci scalar at the de Sitter point.

Since the term (1� F1) is smaller than one-half from the

condition (46) we obtain the inequality ðR1=�BÞ1=ð1�pÞ <
2:4� 10�10jQj. We assume that R1 is of the order of the
present cosmological density �0 ¼ 10�29 g=cm3. Taking
the baryonic/dark matter density to be �B ¼ 10�24 g=cm3

outside the Sun we obtain the following bound:

p > 1� 5

9:6� log10jQj : (65)

For jQj ¼ 10�2 and jQj ¼ 10�1 this gives p > 0:57 and
p > 0:53, respectively. The above bound corresponds to
p > 0:50 for the case of fðRÞ gravity, which translates into
the condition n > 0:5 in Eq. (39). This agrees with the
result found in Ref. [25].

C. Equivalence principle constraints

Let us proceed to the constraints from a possible viola-
tion of the equivalence principle (EP). Under the condition
that the neighborhood of the Earth has a thin shell, the
tightest bound comes from solar-system tests of the EP that
make use of the free-fall accelerations of the Moon (aMoon)
and the Earth (a
) toward the Sun [23,25]. The bound on
the differences between the two accelerations is [42]

2
jaMoon � a
j
aMoon þ a


< 10�13: (66)

Since the acceleration induced by a fifth force with the
field profile �ðrÞ and the effective coupling is given by
afifth ¼ jQeff�ðrÞj we obtain [23]

a
 ¼ GM�
r2

�
1þ 3

�
�r

r


�
2 �

��

�
;

aMoon ¼ GM�
r2

�
1þ 3

�
�r

r


�
2 �2

���Moon

�
;

(67)

where �� ’ 2:1� 10�6, �
 ’ 7:0� 10�10, and �Moon ’
3:1� 10�11 are the gravitational potentials of the Sun, the
Earth, and the Moon, respectively. Note that �r
=r
 is the
thin-shell parameter of the Earth. From the bound (66), this
is constrained to be

�r

r


<
8:8� 10�7

jQj : (68)

Note also that the thin-shell condition for the neighborhood
outside the Earth provides the same order of the upper
bound for �r
=r
 [25].
Taking a similar procedure as in the case of the solar-

system constraints discussed above (using the value R1 ¼
10�29 g=cm3 and �B ¼ 10�24 g=cm3), we obtain the fol-
lowing bound:
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p > 1� 5

13:8� log10jQj : (69)

This is tighter than the bound (65). When jQj ¼ 10�2 and
jQj ¼ 10�1 we have p > 0:68 and p > 0:66, respectively.
In the case of fðRÞ gravity the above bound corresponds to
p > 0:65 which translates to n > 0:9 for the potential (39).

In summary, the LGC can be satisfied under the condi-
tion (69) for the potential (41).

D. General properties for models consistent with LGC

In this subsection we shall consider the general proper-
ties of scalar-tensor theories consistent with LGC, without
specifying the form of the field potential. In order to satisfy
the LGC we require that j�B ��Aj is much smaller than
jQ�cj from Eq. (54). Since there is a gap between the
energy densities inside and outside of the spherically sym-
metric body we have j�B ��Aj ’ j�Bj, which implies
j�Bj � jQ�cj. The gravitational potential �c is very
much smaller than unity in settings where local gravity
experiments are carried out, hence this yields the constraint
j�Bj � 1. Cosmologically this means that j�j is much
smaller than unity during matter/radiation epochs. When
jQj � 1 the condition j�Bj � 1 is not necessarily en-
sured, but those cases are excluded by the constraints
from density perturbations unless the model is very close
to the �CDM model (as we shall see later). In the follow-
ing we shall consider the theories with jQj & 1.

In the region j�j � 1 (i.e., F ’ 1), the derivative terms
are negligible in Eq. (20) and the field stays at instanta-
neous minima given by

V;� þQFR ¼ 0; (70)

in the late radiation-dominated and matter-dominated eras.
The condition (70) translates into �=Q ¼ �m=V which
means that �=Q � 1 in the radiation and matter epochs.
This is in fact consistent with the condition jweffj ¼
j2Q=�j � 1 for the existence of a viable matter point
(d). If the de Sitter point (e) is stable, the solutions finally
approach the minimum given by (70), i.e., �=Q ¼ 4.

The sign of � needs to be the same as that of Q in order
to realize the above cosmological trajectory. When Q> 0,
we require � � �V;�=V > 0, i.e., V;� < 0, which means

that the field � evolves along the potential toward larger
positive values from � ’ 0. When Q< 0 the field evolves
toward smaller negative values from � ’ 0.

We illustrate such potentials in Fig. 2. Since the ratio
�=Q decreases from the radiation/matter epochs to the de
Sitter epoch, the derivative d�=d� is negative irrespective
of the sign of Q. We recall that in this case the stability of
the de Sitter point (e) is also ensured. Since d�=d� ¼
�2 � V;��=V, the mass squared

M2 � V;��; (71)

is required to be positive to satisfy the condition d�=d�<

0. Moreover, the massM needs to be heavy enough in order
to satisfy the condition M2 > �2V in radiation/matter
epochs. The model (41) provides a representative example
which satisfies all the requirements discussed above.
It is worth mentioning that for the models that satisfy

LGC, the quantity F ¼ e�2Q� in the matter/radiation eras
is larger than its value at the de Sitter point. It is this
property which leads to an interesting observational sig-
nature for the DE equation of state, as we shall see in the
next section.

V. THE EQUATION OF STATE OF DARK ENERGY

In scalar-tensor DE models, a meaningful definition of
energy density and pressure of DE requires some care. In
this section, following Ref. [28], we shall discuss the
evolution of the equation of state of DE, which could
provide comparisons with observations. In the absence of
radiation, Eqs. (16) and (17) can be written as

3F0H
2 ¼ �DE þ �m; (72)

� 2F0
_H ¼ �DE þ pDE þ �m; (73)

where the subscript ‘‘0’’ represents present values and

0

Q>0Q<0

φ
dS

φ
m

V(φ)

FIG. 2 (color online). This illustration describes a field poten-
tial Vð�Þ that is consistent with LGC. For a coupling Q that is
positive (negative) the potential evolves in the region � � 0
(� � 0). In the figure �m represents the field value during the
radiation/matter eras, which instantaneously changes in time.
The field value �dS corresponds to the one at the de Sitter point.
Note that both �m and �dS are sustained by the presence of the
coupling Q having potential minima characterized by the
condition (70). In the early stages of the cosmological evolution,
the mass M of the field � is heavy for consistency with LGC.
This mass gradually gets smaller as the system approaches the de
Sitter point.
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�DE � 1
2ð1� 6Q2ÞF _�2 þ V � 3H _F� 3ðF� F0ÞH2;

(74)

pDE � 1
2ð1� 6Q2ÞF _�2 � V þ €Fþ 2H _F

þ ðF� F0Þð3H2 þ 2 _HÞ; (75)

which satisfy the usual conservation equation

_� DE þ 3Hð�DE þ pDEÞ ¼ 0: (76)

We define the equation of state of DE to be

wDE � pDE

�DE

¼ weff

1� ðF=F0Þ�m

; (77)

where �m and weff are defined in Eqs. (23) and (31),
respectively. Integrating Eq. (18), we obtain

�m ¼ 3F0�
ð0Þ
m H2

0ð1þ zÞ3; (78)

where �ð0Þ
m is the present energy fraction of the nonrela-

tivistic matter and z � a0=a� 1 is the redshift. On using
Eqs. (72) and (73), we find

wDE ¼ � 3r� ð1þ zÞðdr=dzÞ
3r� 3�ð0Þ

m ð1þ zÞ3 ; (79)

where r ¼ H2ðzÞ=H2
0 . Note that this is the same equation as

the one used in Einstein gravity [2]. By defining the energy
density �DE and the pressure pDE as given in Eqs. (74) and
(75), the resulting DE equation of statewDE agrees with the
usual expression which can be used to confront the models
with SNIa observations.

From Eq. (77) we find that wDE becomes singular at the
point �m ¼ F0=F. This happens for models in which F
increases from its present value F0 as we go back in time.

From Eq. (12) it is clear that F decreases in time forQ _�>
0. We note that even when the system crosses the point
�m ¼ F0=F physical quantities such as the Hubble pa-
rameter remain to be continuous.

The models (41) satisfy this condition regardless of the
sign of Q, which means that the divergent behavior of wDE

indeed occurs. We recall that in the context of fðRÞ gravity
(Q ¼ �1=

ffiffiffi
6

p
) the models fðRÞ ¼ R��2ðnþ1Þ=Rn (n >

0) correspond to a scalar-field potential that decreases

toward larger �, i.e., _�> 0 [6]. Hence, the divergence of
wDE does not occur in such models because of the decrease
of F toward the past.

For the models that satisfy j�j � 1 initially such that j�j
decreases with time, the solutions are in the regime around
the instantaneous fixed point (d) during the matter era and
finally approach either the scalar-field dominated point (c)
or the de Sitter point (e). In Fig. 3 we plot the evolution of
wDE for the case Q ¼ 0:1 and C ¼ 0:95, with three differ-
ent values of p. In these cases the final attractor corre-
sponds to the de Sitter point (e) satisfying the relation

� ¼ 0:4. During the deep matter era the solutions evolve
along the instantaneous fixed point (d) with �m close to 1
(because � � 1). After � decreases to the order of unity,
the solutions approach the de Sitter solution (e) with�m ¼
0 and wDE ¼ weff ¼ �1.
Figure 3 clearly shows that wDE exhibits a divergence at

a redshift zc that depends on the values of p. When p ¼
0:3, for example, the divergence occurs around the redshift,
zc ¼ 3. For compatibility with LGC we require p > 0:53
from solar-system constraints and p > 0:66 from EP con-
straints, as we showed in the previous section. In those
cases the critical redshift zc gets larger, which is out of the
observational range of current SNIa observations.
Nevertheless, the equation of state wDE shows a peculiar
evolution that changes from wDE <�1 to wDE >�1 at a
redshift around zc ¼ Oð1Þ. This cosmological boundary
crossing, similar to the divergence of wDE, is attributed to
the fact that F increases as we go back to the past. It is
worth noting that this is a common feature among viable
models that are consistent with LGC, as we have illustrated
in the previous section.
Note that in the limit Q ! 0 the potential Vð�Þ ap-

proaches a constant value Vð�Þ ! V0ð1� CÞ. Hence, the
models are hardly distinguishable from the �CDM model.
In these cases the critical redshift zc also goes to infinity.
Thus, the effect of modified gravity is more apparent for
larger jQj and smaller p. In fðRÞ gravity, for example, the
model given by Eq. (39) can give rise to the redshift zc as
close as a few [18] while satisfying the LGC (p > 0:65).
These cases are particularly interesting to place tight
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FIG. 3. Figure depicting the evolution of wDE for Q ¼ 0:1
and C ¼ 0:95 with three different values of p (0.3, 0.55, 0.7).
The redshift zc at which the divergence of wDE occurs decreases
for smaller p.
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bounds on model parameters from future high-precision
observations.

VI. MATTER DENSITY PERTURBATIONS

In this section we discuss the evolution of matter density
perturbations and the resulting spectra for scalar-tensor
theories. Considering as our background spacetime the
flat FLRWmetric, the perturbed metric including the scalar
metric perturbations � and � in the longitudinal gauge is
given by [43]

d s2 ¼ �ð1þ 2�Þdt2 þ a2ðtÞð1� 2�Þdxidxj: (80)

In the following we shall neglect radiation and consider
only the pressureless matter. The components of the energy
momentum tensor of the pressureless matter are given by

T0
0 ¼ �ð�m þ ��mÞ; T0

i ¼ ��mvm;i; (81)

where vm is related to the velocity potential V through
vm ¼ �ðV � bÞ. In the Fourier space matter perturbations

satisfy the following equations of motion [19,34,44]:

� ¼ _v; (82)

ð��m=�mÞ
 ¼ 3 _�� k2

a2
v; (83)

where v � avm is a covariant velocity perturbation and k
is a comoving wave number. We shall introduce the fol-
lowing gauge-invariant density contrast:

�m ¼ ��m

�m

þ 3Hv: (84)

The evolution equation for �m is then given by

€�m þ 2H _�m þ k2

a2
� ¼ 3 €Bþ 6H _B; (85)

where B ¼ Hvþ�.
In Fourier space the scalar metric perturbations in scalar-

tensor theories satisfy the following equations [44]:

k2

a2
�þ 3HðH�þ _�Þ ¼ � 1

2F

�
! _�� _�þ 1

2
ð!;�

_�2 � F;�Rþ 2V;�Þ��� 3H� _Fþ
�
3 _H þ 3H2 � k2

a2

�
�F

þ ð3H _F�! _�2Þ�þ 3 _FðH�þ _�Þ þ ��m

�
; (86)

H�þ _� ¼ 1

2F
ð! _���þ � _F�H�F� _F�þ �mvÞ; (87)

��� ¼ �F

F
; (88)

� €�þ
�
3H þ!;�

!
_�

�
� _�þ

�
k2

a2
þ

�
!;�

!

�
;�

_�2

2
þ

�
2V;� � F;�R

2!

�
;�

�
��

¼ _� _�þ
�
2 €�þ 3H _�þ!;�

!
_�2

�
�þ 3 _�ðH�þ _�Þ þ 1

2!
F;��R; (89)

where ! ¼ ð1� 6Q2ÞF and

�R ¼ 2

�
�3ðH�þ _�Þ
 � 12HðH�þ _�Þ þ

�
k2

a2
� 3 _H

�
�� 2

k2

a2
�

�
: (90)

As long as the massM defined in Eq. (71) is sufficiently
heavy to satisfy the conditionsM2 � R andM2 > �2V (in
order to ensure d�=d�< 0), one can approximate
ðð2V;� � F;�RÞ=2!Þ;� ’ M2=! in Eq. (89). While this
quantity becomes negative for Q2 > 1=6 this does not
imply that the perturbation �� exhibits a negative insta-
bility. In fact we shall illustrate below that due to the
perturbation �R on the r.h.s. of Eq. (89), the effective
mass produced is positive.

Generally, the solution of Eq. (89) consists of the sum of
the matter-induced mode ��ind sourced by the matter
perturbation and the oscillating mode ��osc (scalarons

[5]), i.e., �� ¼ ��ind þ ��osc. The oscillating mode cor-
responds to the solution of Eq. (89) without the matter
perturbation.
In order to derive the approximate perturbation equa-

tions on subhorizon scales, we use the approximation
according to which the terms containing k2=a2, ��m, �R,
andM2 dominate in Eqs. (86)–(89). This method was used
in Refs. [2,34,45] in the nearly massless case (M2 & H2).
In the context of fðRÞ gravity this approximation was
shown in Ref. [19] to be extremely accurate even in the
massive case (M2 � H2) as long as the oscillating degrees
of freedom do not dominate over the matter-induced mode.
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In order to extract the peculiar features of the matter
perturbations in scalar-tensor tensor theories, let us first
concentrate on the matter-induced mode. Under the above-
mentioned approximation, we have �Rind ’ �2ðk2=a2Þ�
½�þ ðF;�=FÞ��ind� from Eqs. (88) and (90), where the

subscript ‘‘ind’’ represents a matter-induced mode. Then
from Eq. (89) we find

��ind ’ 2QF

ðk2=a2Þð1� 2Q2ÞFþM2

k2

a2
�: (91)

Using Eqs. (86) and (88) we obtain

k2

a2
� ’ ���m

2F

ðk2=a2Þð1� 2Q2ÞFþM2

ðk2=a2ÞFþM2
;

k2

a2
� ’ ���m

2F

ðk2=a2Þð1þ 2Q2ÞFþM2

ðk2=a2ÞFþM2
:

(92)

In the limit M2=F � k2=a2 one has ðk2=a2Þ� ’
���m=2F ’ �4	G��m, which recovers the standard
Poisson equation. In the limit M2=F � k2=a2 one has
ðk2=a2Þ� ’ �ð��m=2FÞð1þ 2Q2Þ, where the effect of
the coupling Q becomes important.

From Eq. (87) we find that v is of the order of FH�=�m.
Using the fact that ðk2=a2Þ� is of the order of�ð1=FÞ��m

we can estimate that j3Hv=ð��m=�mÞj � ðaHÞ2=k2 � 1.
Hence we have �m ’ ��m=�m in Eq. (84). Similarly the
terms on the r.h.s. of Eq. (85) can be neglected relative to
those on the l.h.s., which leads to the following equation
for matter perturbations:

€�m þ 2H _�m � 4	Geff�m�m ’ 0; (93)

where the effective ‘‘cosmological’’ gravitational constant
is given by

Geff ¼ 1

8	F

ðk2=a2Þð1þ 2Q2ÞFþM2

ðk2=a2ÞFþM2
: (94)

We can rewrite Eq. (93) by using the derivative with
respect to N:

d2�m

dN2
þ

�
1

2
� 3

2
weff

�
d�m

dN

� 3

2
�m

ðk2=a2Þð1þ 2Q2ÞFþM2

ðk2=a2ÞFþM2
�m ’ 0: (95)

We also define the effective gravitational potential
�eff � ð�þ�Þ=2, which is directly linked with the
Integrated-Sachs-Wolfe (ISW) effect in CMB and the
weak lensing in distant galaxies [13]. From Eq. (92) we
obtain the relation

�eff ’ � a2

2k2
�m

F
�m: (96)

In order to confront models with weak lensing observa-
tions, it is convenient to introduce the anisotropic parame-
ter � defined by � � ð���Þ=� [45,46]. From Eq. (92)

we obtain

� ’ 4Q2ðk2=a2ÞF
ðk2=a2Þð1� 2Q2ÞFþM2

; (97)

which vanishes in the limitM2=F � k2=a2 but approaches
a value � ! 4Q2=ð1� 2Q2Þ, in the limit M2=F � k2=a2.
We also introduce another parameter � � qð1þ �=2Þ,
where q is defined to be ðk2=a2Þ� � �ð1=2Þq�m�m. We
then have � ’ 1=F, which shows that the effective poten-
tial can be written as �eff ’ �ða2=2k2Þ�m�m�. Hence,
unlike the case of the Einstein gravity the weak lensing
potential in these scalar-tensor models of gravity are af-
fected by the changes of � as well as �m.
During the matter era the field� sits at the instantaneous

minima characterized by the condition (70). This is analo-
gous to the situation considered in subsection IVB where
for models (41) the field value at the potential minimum
and the mass squared M2

� are given by Eqs. (60) and (61),

respectively. Hence, we have the relations � / �1=ðp�1Þ
m

and M2 / M2
� / �ð2�pÞ=ð1�pÞ

m during the matter-dominated

epoch. The field � can initially be heavy to satisfy
the condition M2=F � k2=a2 for the modes relevant to
the galaxy power spectrum (0:01h Mpc�1 & k &
0:2h Mpc�1). Depending upon the model parameters and
the mode k, the mass squaredM2 can be smaller than k2=a2

during the matter era.
Next, let us consider the behavior of the oscillating

mode. Using Eqs. (86) and (88) under the condition
k2=a2 � H2 the gravitational potentials for ��m ¼ 0 are
expressed by ��osc. Then from Eq. (90) the perturbation
�R corresponding to the oscillating mode is given by

�Rosc ’ 6Q

�
� €�osc þ 3H� _�osc þ k2

a2
��osc

�
: (98)

Substituting this relation in Eq. (89), we find

� €�osc þ 3H� _�osc þ
�
k2

a2
þM2

F

�
��osc ’ 0; (99)

which is valid in the regimes M2 � fR; �2Vg.
Equation (99) clearly shows that the effective mass for
the oscillating mode is positive even for Q2 > 1=6.
In the following we shall confirm that as long as the

oscillating mode does not initially dominate over the
matter-induced mode, it remains subdominant throughout
the cosmic history. We shall discuss the two cases: (i)
M2=F � k2=a2 and (ii) M2=F � k2=a2, separately.

A. The case M2=F � k2=a2

In this regime the matter perturbation equation (95)
reduces to the standard one in Einstein gravity. During
the matter era with weff ’ 0 and �m ’ 1, we have the
following solutions:

�m / a / t2=3; �eff ¼ constant: (100)
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For the model (41) the matter-induced mode of the

field perturbation evolves as ��ind / ��m=M
2 /

tð2ð4�pÞÞ=ð3ð1�pÞÞ. When the frequency !� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þM2=F

p
changes adiabatically (i.e., j _!�=!

2
�j �

1), the WKB solution to Eq. (99) is given by

��osc / a�3=2 1ffiffiffiffiffiffiffiffiffiffi
2!�

p cos

�Z
!�dt

�
: (101)

For the model (41), in the regime M2=F � k2=a2,

this oscillating mode evolves as ��osc /
tp=ð2ð1�pÞÞ cosðct�1=ð1�pÞÞ, where c is a constant.

Now since the background field � during the matter era

evolves as � / t2=ð1�pÞ, we find

��=� ’ c1t
2=3 þ c2t

�ðð4�pÞ=ð2ð1�pÞÞÞ cosðct�ð1=ð1�pÞÞÞ:
(102)

This indicates that the matter-induced mode dominates
over the oscillating mode with time. While the solution
of the oscillating mode in Eq. (102) is valid only in the
WKB regime (j _!�=!

2
�j � 1), we have checked that ��

approaches a constant value with oscillations at the later
stage in which the WKB approximation is violated. Hence,
as long as the oscillating mode is not overproduced in the
early universe, it remains subdominant relative to the
matter-induced mode. Note that this property also holds
during the radiation-dominated epoch.

B. The case M2=F � k2=a2

In this regime the effective gravitational constant (94) is
given by Geff ¼ ð1þ 2Q2Þ=8	F, which shows that the
effect of modified gravity becomes important. From
Eqs. (95) and (96) we obtain

�m / tð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ48Q2

p
�1Þ=6; �eff / tð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ48Q2

p
�5Þ=6; (103)

which grow faster than the solutions given in Eq. (100).
This leads to changes in the matter power spectrum of the
large-scale structure (LSS) as well as in the ISW effect in
the CMB.

The field perturbation �� is the sum of the matter-
induced mode given in Eq. (91) and the oscillating mode
��osc given in Eq. (99). Using the WKB solution (101) for
the latter mode, we have

�� ¼ c1t
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ48Q2

p
�5Þ=6 þ c2t

�2=3 cosðct1=3Þ: (104)

Since the frequency has a dependence j _!�=!
2
�j ’ H /

1=t, the WKB approximation tends to be accurate at late
times. Equation (104) shows that the matter-induced mode
dominates over the oscillating mode with time.

C. The matter power spectra

The models (41) have a heavy mass M which is much
larger than H in the deep matter-dominated epoch, but

which gradually decreases to become of the order of H
around the present epoch. Depending on the modes k, the
system crosses the point M2=F ¼ k2=a2 at t ¼ tk during
the matter era. In the context of fðRÞ gravity this indeed
happens for the modes relevant to the galaxy power spec-

trum [18,19]. Since for the model (41) M evolves as M /
t�ðð2�pÞ=ð1�pÞÞ during the matter era, the time tk has a scale

dependence given by tk / k�ðð3ð1�pÞÞ=ð4�pÞÞ. When t < tk,
the evolution of �m is given by Eq. (100), but for t > tk its
evolution changes to the form given by (103).
We define the growth rate of the matter perturbation to

be

s �
_�m

H�m

; (105)

which is s ¼ 1 in the regime M2=F � k2=a2. After the
system enters the regime M2=F � k2=a2 during the
matter-dominated epoch, we have

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 48Q2

p � 1

4
: (106)

During the matter era the mass squared is approximately
given by

M2 ’ 1� p

ð2ppCÞ1=ð1�pÞ Q
2

�
�m

V0

�ð2�pÞ=ð1�pÞ
V0: (107)

Using the relation �m ¼ 3F0�
ð0Þ
m H2

0ð1þ zÞ3, we find that

the critical redshift zk at time tk can be estimated as

zk ’
��

k

a0H0

1

Q

�
2ð1�pÞ 2ppC

ð1� pÞ1�p

� 1

ð3F0�
ð0Þ
m Þ2�p

V0

H2
0

�
1=ð4�pÞ � 1; (108)

where a0 is the present scale factor. The critical redshift
increases for larger k=ða0H0Þ. The matter power spectrum,
in the linear regime, has been observed for the scales
0:01h Mpc�1 & k & 0:2h Mpc�1, which corresponds to
30a0H0 & k & 600a0H0. In Fig. 4 we plot the evolution
of the growth rate s for the mode k ¼ 600a0H0 and the
coupling Q ¼ 1:08 with three different values of p. We
find that, in these cases, the critical redshift exists in the
region zk * 1 and that zk increases for smaller p. When
p ¼ 0:7 we have zk ¼ 3:9 from Eq. (108), which is con-
sistent with the numerical result in Fig. 4. The growth rate s
reaches to a maximum value smax and then begins to
decrease around the end of the matter era.
McDonald et al. [47] derived the constraint s ¼ 1:46�

0:49 around the redshift, z ¼ 3, from the measurement of
the matter power spectrum from the Lyman-� forests. The
more recent data reported by Viel and Haehnelt [48] in the
redshift range 2< z < 4 show that even the value s ¼ 2
can be allowed in some of the observations. The likelihood
analysis using these data for the coupled quintessence
scenario gives the constraint s & 1:5 [49]. If we use the
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criterion s < 2 for the analytic estimation (106), we obtain
the bound Q< 1:08. Figure 4 shows that smax is smaller
than the analytic value s ¼ 2 (which corresponds to Q ¼
1:08). When p ¼ 0:7, for example, we have that smax ¼
1:74. For the values of p that are very close to 1, smax can be
smaller than 1.5. However these cases are hardly distin-
guishable from the �CDM model. In any case the current
observational data on the growth rate s is not enough to
place tight bounds on Q and p.

The growth of matter perturbations continues to the time
t� characterized by the condition €a ¼ 0. At time t� the
matter power spectrum P�m

¼ ðk3=2	2Þj�mj2 shows a dif-
ference compared to the �CDM model given by

P�m
ðt�Þ

P�CDM
�m

¼
�
t�
tk

�
2ð½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ48Q2

p
�1Þ=6��ð2=3ÞÞ

/ k½ð1�pÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ48Q2

p
�5Þ�=ð4�pÞ: (109)

The CMB power spectrum is also affected by the non-
standard evolution of �eff given in Eq. (103). This mainly
happens for low multipoles because of the ISW effect.
Since the smaller scale modes in CMB relevant to the
galaxy power spectrum are hardly affected by this modifi-
cation, there is a difference between the spectral indices of
the matter power spectrum and of the CMB spectrum on
the scales, k > 0:01h Mpc�1:

�nðt�Þ ¼ ð1� pÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 48Q2

p � 5Þ
4� p

: (110)

This reproduces the result in the fðRÞ gravity derived in
Ref. [15]. In Ref. [18] it was further shown that this
analytic estimation agrees well with numerical results ex-
cept for large values of p close to unity. This reflects the
fact that for larger p the redshift z ¼ zk at time t ¼ tk gets
smaller (being of the order of zk ¼ Oð1Þ) so the approx-
imations used in deriving the solution (103), based on
weff ¼ 0 and �m ¼ 1, break down. In Ref. [18] it was
also found that the difference �nðt0Þ integrated to the
present epoch does not show significant difference com-
pared to (110).
At present we do not have any observationally signifi-

cant evidence for the presence of a difference between the
spectral indices of the CMB and the matter power spectra
[50]. In Fig. 5 we plot the constraints coming from the
criterion, �nðt�Þ< 0:05. If jQj is smaller than 0.1, this
condition is trivially satisfied. For larger jQj the constraints
on the values of p tend to be stronger. In the fðRÞ gravity
we obtain the bound p > 0:78, which is stronger than the
constraint coming from the violation of the equivalence
principle. If we adopt the criterion �nðt�Þ< 0:03, the
bound on p becomes tighter: p > 0:87. Meanwhile, if
jQj is smaller than the order of 0.1, the EP constraint gives
the tightest bound. If we use the criterion s < 2 for the
analytic estimation (106) then the coupling jQj is bounded
from above (Q< 1:08).
In Fig. 5 we show the allowed parameter space consis-

tent with current observational and experimental con-
straints. The constraints coming from the ISW effect in
the CMB due to the change in evolution of the gravitational
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FIG. 4. The evolution of the growth rate s of matter perturba-
tions in terms of the redshift z for Q ¼ 1:08 and k ¼ 600a0H0

with three different values of p. For smaller p the critical
redshift zk gets larger. The growth rate s reaches a maximum
value and begins to decrease after the system enters the accel-
erated epoch. For smaller p the maximum value of s tends to
approach the analytic value given in Eq. (106).
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FIG. 5 (color online). The allowed region of the parameter
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conditions �nðt�Þ< 0:05 and s < 2 as well as the solar-system
constraint (65) and the EP constraint (69).
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potential do not provide tighter bounds compared to those
shown in Fig. 5.

VII. CONCLUSIONS

We have considered a class of dark energy models based
on scalar-tensor theories given by the action (13). In these
theories, expressed in the Einstein frame, the scalar field�
is coupled to the nonrelativistic matter with a constant
coupling Q. The action (13) is equivalent to the Brans-
Dicke theory with a field potential V, where the Brans-
Dicke parameter !BD is related to the coupling Q via the
relation 3þ 2!BD ¼ 1=2Q2. These theories include the
fðRÞ gravity theories and the quintessence models as spe-

cial cases where the coupling is given byQ ¼ �1=
ffiffiffi
6

p
(i.e.,

!BD ¼ 0) and Q ¼ 0 (i.e., !BD ! 1), respectively.
We began by studying the background cosmological

dynamics in a homogeneous and isotropic setting, without
specifying the field potential Vð�Þ but under the assump-
tion that the slope of the potential, � � �V;�=V, is con-

stant. The varying � case can also be studied by treating the
fixed points as instantaneous ones. We found that for a
range of values of the coupling constant jQj not much
smaller than unity the matter era can be realized by the
solution corresponding to the point (d) in Eq. (36) subject
to the condition �=Q � 1. Interestingly the presence of a
nonzero coupling Q leads to a de-Sitter solution charac-
terized by the condition V;� þQFR ¼ 0 (i.e., � ¼ 4Q),

which can lead to late-time acceleration. (The condition for
the stability of this de Sitter solution is given by d�=d�<
0 at the fixed point.)

In the absence of the scalar-field potential, solar-system
tests constrain the coupling Q to have values in the range
jQj< 2:5� 10�3. The presence of the potential, on the
other hand, allows the LGC to be satisfied for larger values
of jQj, if the field is sufficiently heavy in the high-
curvature region where gravity experiments are carried
out. We found that even when jQj is of the order of 1, a
thin shell can form inside a spherically symmetric body
such that the effective coupling jQeffj defined in Eq. (55)
becomes much smaller than 1.

We then considered a family of models given by the
scalar-field potentials (41) which generalize the corre-
sponding potential in the fðRÞ theory, while at the same
time satisfying the LGC for appropriate choices of the
parameters. In particular we found that as p approaches
unity, the mass of the field� becomes larger, thus allowing
the LGC to be satisfied more easily [see Eq. (61)]. Using
the constraints coming from solar-system tests as well as
compatibility with the equivalence principle, we obtained
the bounds p > 1� 5=ð9:6� log10jQjÞ and p > 1�
5=ð13:8� log10jQjÞ, respectively. In the fðRÞ gravity, for
example, these constraints correspond to p > 0:50 and p >
0:65, respectively.

During radiation/matter eras the field� needs to be very
close to 0 for the compatibility with LGC, which results in

F ¼ e�2Q� ’ 1. Figure 5 summarizes the regions of the
parameter space in the ðp;QÞ plane where the correspond-
ing potentials lead to models compatible with the LGC.
For these models we found that the quantity F tends to

increase from its present value as we go into the past,
which results in the equation of state wDE of dark energy
becoming singular when �m ¼ F0=F. This behavior is
similar to that found for fðRÞ theories.
We also studied the evolution of density perturbations

for these models in order to place constraints on the
coupling Q as well as on the parameters of the field
potential. In the deep matter era the mass M of the scalar
field is sufficiently heavy to make these models compatible
with LGC, but it gradually gets smaller as the Universe
enters the accelerated epoch. For the models compatible
with the galaxy power spectrum, there exists a ‘‘general
relativistic’’ phase during the matter era characterized by
the condition M2=F � k2=a2. At this stage the matter
perturbation �m and the effective gravitational potential

�eff evolve as �m / t2=3 and�eff ¼ constant, respectively,
as in the case of Einstein gravity. Around the end of the
matter-dominated epoch, the deviation from the Einstein
gravity can be seen once M2=F becomes smaller than
k2=a2. The evolution of perturbations during this ‘‘scalar-
tensor’’ regime is given by Eqs. (103). Under the criterion

s ¼ _�m=H�m < 2 of the growth rate of matter perturba-
tions with the use of the analytic estimation (106), we
obtain the bound Q< 1:08. The difference �n of the
spectral indices of the CMB and the matter power spectra
gives rise to another constraint on the model parameter p
and the coupling Q.
Figure 5 illustrates the bounds derived from the condi-

tions �n < 0:05 and s < 2, as well as those from local
gravity constraints. The models with p close to 1 satisfy all
these requirements. It will be certainly of interest to place
more stringent constraints on the values of p and Q by
using the recent data of matter power spectrum, CMB, and
lyman alpha forest. Moreover, the future survey of weak
lensing may find some evidence of an anisotropic stress
between gravitational potentials � and �, which can be a
powerful tool to distinguish modified gravity models from
the �CDM cosmology.
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APPENDIX A: STABILITYANALYSIS

In this appendix, we briefly summarize the results of the
stability analysis which are necessary to obtain the back-
ground cosmological dynamics discussed in Sec. III.

1. Stability of the fixed points

When � is a constant, one can analyze the stability of the
critical points (a)–(e) [i.e., Eqs. (32)–(37)] by considering
small perturbations �x1 and �x2 around them [2]. We write
the equations for perturbations in the form

d

dN

�x1
�x2

� �
¼ M

�x1
�x2

� �
; (A1)

and derive eigenvalues �1 and �2 of the matrix M to
assess the stability of fixed points. They are given by

(a)

�1 ¼ � 3� 2Q2

2ð1� 2Q2Þ ; �2 ¼ 3þ 2Q�� 6Q2

2ð1� 2Q2Þ : (A2)

(b1)

�1 ¼ 3ð ffiffiffi
6

p þ 4Q� �Þffiffiffi
6

p þ 6Q
; �2 ¼ 3þ ffiffiffi

6
p

Q

1þ ffiffiffi
6

p
Q
: (A3)

(b2)

�1 ¼ 3ð ffiffiffi
6

p � 4Qþ �Þffiffiffi
6

p � 6Q
; �2 ¼ 3� ffiffiffi

6
p

Q

1� ffiffiffi
6

p
Q
: (A4)

(c)

�1 ¼ � 6� �2 þ 8Q�� 16Q2

2ð1� 4Q2 þQ�Þ ;

�2 ¼ � 3� �2 þ 7Q�� 12Q2

1� 4Q2 þQ�
:

(A5)

(d)

�1;2 ¼ 3ð2Q� �Þ
4�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð6Q2 � 2Q�� 3Þð12Q2 þ �2 � 7Q�� 3Þ

3ð2Q� �Þ2
s �

: (A6)

(e)

�1 ¼ �2 ¼ �3: (A7)

2. Stability of the de Sitter point for the variable �

While the point (e) is stable for constant �, it is not
obvious that this property also holds for a varying �. In
what follows we shall discuss the stability of the de Sitter
point.

It is convenient to consider the variable �ð�Þ as a
function of Fð�Þ, i.e., � ¼ �ðFÞ. We define a variable,
x4 � F, that satisfies the following equation

dx4
dN

¼ �2
ffiffiffi
6

p
Qx1x4; (A8)

where the r.h.s. vanishes at the de Sitter point (e).
Considering the 3� 3 matrix for perturbations �x1, �x2,
and �x4 around the point (e), we obtain the eigenvalues

�1 ¼ �3; �2;3 ¼ � 3

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3
F1Q

d�

dF
ðF1Þ

s �
;

(A9)

where F1 � Fð�1Þ is the value of F at the de Sitter point
with the field value �1. Since F1 > 0, we find that the de
Sitter point is stable for

Q
d�

dF
ðF1Þ> 0; i:e:;

d�

d�
ð�1Þ< 0: (A10)

We checked that this agrees with the stability condition
derived in Refs. [51] by considering metric perturbations
about the de Sitter point.
In fðRÞ gravity this condition translates into d�=dF < 0.

Since in this case, F ¼ e2�=
ffiffi
6

p
¼ df=dR and V ¼ ðRF�

fÞ=2, we have � ¼ �Rf;R=
ffiffiffi
6

p
V. Then, together with the

fact that Rf;R ¼ 2f holds for the de Sitter point, the

condition d�=dF < 0, is equivalent to R< f;R=f;RR. For
positive R this gives

0<
Rf;RR
f;R

< 1; (A11)

which agrees with the stability condition for the de Sitter
point derived in Ref. [11].
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