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We provide a generic but physically clear discussion of the clustering properties of dark energy models.

We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than

the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence

necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different

gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and

that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally,

we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter.
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I. INTRODUCTION

Observations in the last decade have gradually been
providing evidence suggesting that not only most of the
universe’s energy is in a dark, unknown form, but indeed
the dominant component of this dark sector violates the
strong energy condition—the latter being required to ex-
plain the recent acceleration of the Universe. From a purely
phenomenological point of view, the simplest candidate for
this task is Einstein’s cosmological constant (leading to the
so-called �CDM or concordance model), and indeed this
is in decent agreement with most of the existing data.
However, from a fundamental physics point of view, the
vacuum energy density suggested by observations is many
orders of magnitude smaller than the most optimistic ex-
pectations, so that models where dark energy is dynamical
(for example, being due to a scalar field) are arguably the
more likely ones.

While there is, in some sense, a single constant dark
energy model, the number of possible dynamical dark
energy models is clearly infinite. Moreover, the standard
observational techniques in use for probing dark energy are
not ideal, in the sense that they do not measure directly the
theoretically relevant quantities, and they allow for several
important degeneracies to remain when comparing theory
and observation. Both of these mean that even in an era of
precision cosmology there is ample room for building
phenomenological models of increasing complexity,
whose differences when it comes to cosmological observ-
ables can be quite small, and hence are not easy to distin-
guish even with good data.

One may legitimately ask if these are merely ‘‘epi-
cycles’’ which are doomed to be replaced by something

entirely different and much simpler. While a fairly strong
case can legitimately be made for a positive answer to this
question, what should replace them still remains to be
determined. What one can certainly say at this stage is
that increasingly elaborate mathematics should not be
used as an excuse to obscure simple physics. In other
words, if one builds more elaborate models on the basis
of preexisting paradigms, then the broad general features
of the original paradigm will still be present and can
seldom be avoided, even if there are differences in the
specific details.
The goal of the present paper (which is a follow-up and

in the same spirit of [1]) is to present a physically clear
discussion of the clustering properties of dynamical dark
energy models, specifically those where the dark energy is
due to a classical scalar field with a perfect fluid form. We
shall be relating our discussion to other recent literature,
contrasting the different approaches in order to clarify
crucial issues. We will provide an explicit simple proof
that in quintessence-type models the dark energy fluctua-
tions, on scales smaller than the Hubble radius, are of the
order of the perturbations to the Newtonian gravitational
potential, and hence necessarily small on cosmological
scales. We show that the often used homogeneous approxi-
mation is unrealistic and does not provide useful informa-
tion, at least on subhorizon scales. Moreover, we illustrate
two physically simple points that are often obscured by
unnecessary mathematics: the fact that fluctuations com-
parable to the Newtonian gravitational potential can be
obtained by a mere gauge transformation, and that the
so-called dark energy mutation is a trivial artifact of an
effective, single fluid description. Finally, we discuss the
particular case where there is a coupling between the dark
energy and dark matter fluids. Throughout this paper we
shall work in natural units and use a metric signature
ð�;þ;þ;þÞ.
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II. SCALAR FIELDS

We shall be interested in the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
LðX;�Þ; (1)

where L is the Lagrangian for a real scalar field � and

X ¼ �1
2r��r�� (2)

is the kinetic term. We shall generically consider the case
of a classical scalar field � governed by an arbitrary
Lagrangian of the form LðX;�Þ. We can write the
energy-momentum tensor for this model in a perfect fluid
form

T�� ¼ ð"þ pÞu�u� þ pg��; (3)

by means of the following identifications:

u� ¼r��ffiffiffiffiffiffi
2X

p ; "¼ 2Xp;X �p; p¼LðX;�Þ: (4)

In Eq. (3), u� is the 4-velocity field describing the motion
of the fluid (for timeliker��), while " and p are its proper

energy density and pressure, respectively. Observe that
from this it trivially follows that if p ¼ pðXÞ, then " ¼
"ðXÞ. Unfortunately it is not always possible to invert "ðXÞ
and obtain Xð"Þ, but when it is the fluid has an explicit
isentropic equation of state p ¼ pð"Þ.

In the special case whereLðX;�Þ ¼ fðXÞ � Vð�Þ (with
f and V being arbitrary functions of X and �, respec-
tively), the mass of the scalar field is defined as

m2 � @2V

@�2
: (5)

For a viable dark energy model one typically requires a
mass smaller than the Hubble parameter H, m & H, at
least for a canonical scalar field with fðXÞ ¼ X. On small
(effectively subhorizon, & m�1) scales, pressure and den-
sity fluctuations are related through �p ¼ c2s�" where the
sound speed is given in linear theory by [2]

c2s ¼ p;X

";X
¼ L;X

L;X þ 2XL;XX

: (6)

If fðXÞ ¼ X we have a canonical scalar field which has a
constant sound speed of unity. However, we have the free-
dom to choose the function f in order to obtain very
different sound speeds. An example of an algebraically
simple but physically interesting class of functions is
fðXÞ / Xn, which yields c2s ¼ 1=ð2n� 1Þ. In particular,
when n ¼ 1, the scalar corresponds to a standard massless
scalar field, when n ¼ 2, to background radiation, and so
on (if V ¼ 0). In the limit n ! 1, the scalar can be
interpreted as dust (in other words, pressureless nonrela-
tivistic matter).

On the other hand, the scalar field equation of state is
defined by

w � p

"
¼ L

2XL;X �L
¼ fðXÞ � Vð�Þ

2Xf;X � fþ Vð�Þ : (7)

Observe that by carefully choosing Vð�Þ we may indepen-
dently specify w and c2s . This simple point will be impor-
tant for some of what follows. Finally, we can also
differentiate Eq. (7) and substitute Eq. (6) to find

w;X ¼ ðc2s � wÞ ";X
"

; (8)

which shows that w ¼ c2s is sufficient to ensure that the
equation of state has no dependence on X. It is not, how-
ever, necessary as it also occurs whenever the energy
density itself has no such dependence (";X ¼ 0); the cos-

mological constant is a simple example.

III. HOMOGENEOUS APPROXIMATION

Many aspects of the evolution of dark energy perturba-
tions have been studied in great detail, particularly in the
context of standard quintessence scenarios. These are char-
acterized by two main components, dark matter (DM) and
dark energy (DE), and the latter is usually modeled as a
canonical scalar field with fðXÞ ¼ X. As shown in the
previous section, dark energy in these models is charac-
terized by c2s ¼ 1 (and w��1). However, in many of
these studies, only the homogeneous case has been inves-
tigated [3–5]. For our present purposes, the key feature of
this approximation is that pressure gradients are com-
pletely absent.
Although the homogeneous approximation greatly sim-

plifies the analysis, it is not difficult to see, even in the
absence of any detailed comparisons, that the correspond-
ing results are unrealistic. Indeed, such an approximation
can only be considered reliable when uniform perturba-
tions on scales larger than the Hubble radius are consid-
ered, which is clearly not the situation of greater physical
interest. Still, before proceeding to our main analysis, we
will briefly review the homogeneous case (in which dark
matter and dark energy collapse together), so as to provide
a useful comparison point.
Let us assume that the energy-momentum tensors of DE

and DM are separately conserved, in other words, that they
are minimally coupled (we will discuss the coupled case
later in this paper). If we consider the evolution of a region
of physical volume V , we can write

d"DE þ ð1þ wÞ"DE dVV ¼ 0; (9)

d"DM þ "DM
dV

V
¼ 0; (10)

so that

�DE ¼ ð1þ wÞ�DM; (11)

where w ¼ pDE="DE is the dark energy equation of state,
� ¼ ð"� �"Þ= �" is the contrast, and �" denotes the average
density.
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Simple as this is, it is sufficient to highlight an important
consequence of this approximation. For generic values of
the equation of state parameter w (viz., values not incredi-
bly close to w ¼ �1), large fluctuations in the dark matter
component will inevitably be accompanied by significant
fluctuations in the dark energy component. As we will see
in the next section, this is in fact not the case for realistic
subhorizon perturbations since the homogeneous approxi-
mation is not valid in that limit.

IV. LINEAR FLUCTUATIONS

An order-of-magnitude estimate of the perturbations in
the dark energy component can be obtained by considering
linear theory. We will therefore consider a standard dark
matter fluid with wDM ¼ 0 and a dark energy fluid with an
arbitrary equation of state w and sound speed c2s . Unless
otherwise stated we shall be working in the comoving
synchronous gauge, which is comoving with the dark
matter, that is uiDM ¼ 0.

The linear evolution of scalar perturbations is described
by

€�DMþH _�DM� 3
2H

2½�DM�DMþð1þ3c2sÞ�DE�DE�¼ 0;

(12)

_� DE þ 3H ðc2s � wÞ�DE þ ð1þ wÞð�� _�DMÞ ¼ 0;

(13)

_�þH ð1� 3c2sÞ�þ c2s
1þ w

r2�DE ¼ 0; (14)

where a dot denotes an � conformal time derivative (with
d� ¼ dt=a and H ¼ aH ¼ _a=a), �i ¼ "i="c ("c ¼
3H2=8�G being the critical density), and we have also
defined

� ¼ r � ~vDE ¼ aðuiDEÞ;i: (15)

From Eqs. (12)–(14) it is simple to show that, on scales
much smaller than the Hubble radius (that is kH � 1)
and assuming for simplicity that the dark matter fluctua-
tions are the only source for the dark energy fluctuations,
we can write

c2s
1þ w

r2�DE � _�� €�DM � 3

2
H 2�DM�DM

¼ 4�Ga2��DM: (16)

If we now consider a density perturbation of comoving
wave number k one immediately finds that

c2sk
2�DE

1þ w
� 4�Ga2�"DM: (17)

Equivalently, we can write this as a function of the char-
acteristic scale of the perturbation L� a=k,

�DE

1þ w
�GM

L
; (18)

where we have taken the sound speed c2s ¼ 1 and also
defined M ¼ �"DML

3. This shows that any fluctuations
in the dark energy component are of the order of the
perturbations to the Newtonian gravitational potential
and thus necessarily very small on cosmological scales.
This result agrees with those of [6,7], but has been obtained
in a physically clearer way.
Indeed, with hindsight this result is hardly surprising. A

simple way to understand it is to observe that in the
standard quintessence scenario, in order to have w��1,
one requires jX=Vj � 1. It then follows that the amplitude
of the fluctuations on subhorizon scales must necessarily
be small in this type of models. For this not to be the case,
the kinetic term X would wave to be substantial and we
would no longer have a dark energy fluid. The only way to
get around this restriction is to consider other classes of
dynamical dark energy models.
However, this is not yet the full story. It must be empha-

sized that fluctuations of this same order are also associated
with different gauge choices. For example, by considering
a gauge transformation from a local inertial frame comov-
ing with the dark matter fluid (which we will denote as
frame I) to the local inertial cosmological frame (denoted
by frame II, with a vanishing cosmic microwave back-
ground dipole), one obtains

� � "DE;II � "DE;I
"DE;I

¼ 	2
Dð1þ wv2

DÞ � 1; (19)

and this can be approximately written

�� ð1þ wÞv2
D � ð1þ wÞGM

L
; (20)

where vD is the velocity of the dark matter fluid with

respect to frame II and 	D ¼ ð1� v2
DÞ�1=2. In the last

step we have made the reasonable assumption that the
main contribution for the dipole is directly related to the
local Newtonian gravitational potential induced by a mass
perturbation M with length scale L. Perturbations of com-
parable magnitude may be similarly obtained by consider-
ing other possible gauge choices.

V. DARK ENERGY MUTATION

The analysis of the previous section shows that if the
sound speed of the dark energy fluid is significant, then the
dark energy perturbations must necessarily be small.
However, for very small values (c2s � 0) the above state-
ment is no longer true, so this case warrants a separate
treatment. In this section we shall therefore consider a
model with a null sound speed c2s ¼ 0, by requiring the
pressure p to be constant, and study the behavior of a
region of physical volume V .
Energy-momentum conservation trivially implies

d½ð"þ pÞV � ¼ 0; (21)

and consequently ð"þ pÞ / V�1. The equation of state
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can be written in the form

w ¼ p

"
¼ 1

CV�1 � 1
; (22)

whereC is a constant. This simple calculation shows thatw
will depend on the physical volumeV of the region under
consideration and, consequently, on the density perturba-
tions. This effect is just a coarse-graining issue, in the sense
commonly discussed in condensed matter systems. We see
that in low-density regions, where V is very large, w�
�1, but in collapsed regions the value of w can be much
smaller (in modulus) and even approach zero: indeed, in
the limit V ! 0, we have w ! 0.

The most noticeable consequence emerging from this
analysis is that if density perturbations are present, then it
necessarily follows that w cannot be a constant. This effect
has been pointed out in [8] and dubbed ‘‘dark energy
mutation’’. However, there is nothing surprising about it,
and indeed its physical explanation is rather prosaic. This
model turns out to be the simplest example of unified dark
energy models studied in [1,9,10], and it has been shown to
be totally equivalent (to any order) to�CDM. In fact, there
is no way to distinguish the single fluid interpretation made
above from the standard interpretation with canonical
components, dark matter, and a cosmological constant,
having respectivelywDM ¼ 0 and wDE ¼ �1. Dark energy
mutation, in this case, is just an artifact of our single fluid
description.

VI. COUPLED MODELS

In the so-called concordance model, a range of obser-
vational data is used to postulate the existence of two dark
fluids (DE and DM) for which so far there is no direct
experimental backing. In the context of general relativity,
the most common attitude is to model DE and DM as two
minimally coupled fluids. The direct opposite to this is to
treat them as different manifestations of a single fluid
[unified dark energy (UDE) models]. An intermediate
approach, on the other hand, is to view them as coupled
fluids. In this case, however, if the coupling is very strong,
we naturally expect the distinction of DE and DM as two
different fluids to become somewhat blurred. In other
words, we expect that, to a certain extent, strongly coupled
fluids will behave as if a single fluid. As far as we are aware
today, this bridge between strongly coupled models and
UDE has not been significantly explored.

Following the recent literature [1,10–15], we shall as-
sume that the two dark fluids are coupled through the
Lagrangian

L ¼ X � Vð�Þ þ hð�ÞLDM: (23)

(� in this context is normally called a ‘‘chameleon’’ field
[11,16–18].) Note that according to the discussion in
Sec. II, the dark matter component may be described by
a scalar field ’ with a Lagrangian

L DM / Yn; (24)

in the limit of large n, where

Y ¼ �1
2r�’r�’: (25)

Indeed, for a fixed value of n, ’ has an equation of state
parameter wDM ¼ ð2n� 1Þ�1 and, therefore, pDM ¼
wDM"DM becomes negligible for large n. It follows that
we can rewrite (23) as

L ¼ X � Vð�Þ þ gð�Þ"DM; (26)

where gð�Þ ¼ wDMhð�Þ is a rescaled coupling constant. It
is easy to check (by varying the action in relation to ’) that
the dark matter component evolves independently from the
chameleon field. On the other hand, the evolution of � is
given by

h� ¼ @Veff

@�
; (27)

where

Veff ¼ Vð�Þ � gð�Þ"DM; (28)

and therefore is affected by how dark matter evolves. (Note
here that although Veff ’ V, @Veff=@� can be very different
from @V=@�.) As for the energy-momentum tensor asso-
ciated with (23), it is a simple matter to show (by varying
the action in relation to g��) that

T��ð�;’Þ ¼ r��r��þ ðX� Vð�ÞÞg��

þ hð�Þ½g��Y
n þ nYn�1r�’r�’�: (29)

Obviously, this energy-momentum tensor does not, in
general, describe a perfect fluid. However, in the so-called
adiabatic regime (described, in detail, in [14,15]), it is
assumed that the gradients of � are both negligible in
T�� and the equation of motion (27). Thus, in this regime,

Eq. (29) reduces to

T�� ’ ðhYn � VÞg�� þ nhYn�1r�’r�’; (30)

which can be immediately written in a perfect fluid form, if
we make the following definitions:

u� ¼ r�’ffiffiffiffiffiffi
2Y

p ; "eff ¼ h"DM þ V;

peff ¼ �Veff ’ �V:

(31)

The effective equation of state is then

weff ¼ peff

�eff
’ �Vð�Þ
Vð�Þ þ h"DM

: (32)

Is it an isentropic fluid, though? Yes. Since the adiabatic
regime is also characterized by the condition @Veff=@� ¼
0, the value of � is univocally related to "eff . Hence, peff

only depends on the value of "eff and therefore the fluid is
isentropic [although, in general, we will not have an ex-
plicit peff ¼ peffð"effÞ equation of state].
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Now, the value of

m2
eff �

@2Veff

@�2
; (33)

determines the length scales for which the adiabatic regime
is valid. Specifically, this is the case for large scale pertur-
bations with L � m�1

eff , while for scales much smaller than

this, the approximation is no longer valid. We thus con-
clude that above a certain scale, sufficiently coupled mod-
els behave as a single isentropic fluid but not below. Why is
this relevant? It is relevant because the background evolu-
tion in UDEmodels described by a single isentropic fluid is
expected to be strongly affected by nonlinear effects which
severely complicate the analysis of this type of models. On
the other hand, it is still unclear if the differentiated be-
havior above or below L�m�1

eff may help to relax the

averaging problem [10] that affects UDE models. For the
sake of argument, suppose the majority of the nonlinear
clustering occurs for scales smaller than m�1

eff ; since now

they are confined to a nonisentropic part of the fluid, it is
possible that they may not greatly affect the large scale
evolution of the universe. If, on the other hand, significant
clustering does extend beyond this scale, then nonlineari-
ties will still be a major problem in strongly coupled
models (at least for models not sufficiently close to a
�CDM model).

Finally, note that at recent epochs,

jVð�Þj � jgð�Þ"DMj; (34)

and, in the adiabatic regime

V 0ð�Þ � g0ð�Þ"DM ’ 0; (35)

where 0 denotes @=@�. It follows that

��������
V 0ð�Þ
Vð�Þ

���������
��������
g0ð�Þ
gð�Þ

��������’
��������
G0ð�Þ
Gð�Þ

��������: (36)

Given the stringent astrophysical and laboratory con-
straints on variations of Newton’s constant G, the above
relation imposes strong constraints on the shape of the
potential in the region explored by the field in recent times.

VII. CONCLUSIONS

In this paper we studied in some detail the clustering
properties of dynamical dark energy models. We have
shown that in standard quintessence models, contrary to
recent claims, dark energy fluctuations on subhorizon
scales are of the order of the perturbations to the
Newtonian gravitational potential and, consequently, very
small on cosmological scales. We have also pointed out
that the homogeneous approximation is not an adequate
framework to study the evolution of dark energy fluctua-
tions on small scales.
We have also explored the extent to which coupled

models can be interpreted as unified models. Our analysis
makes it clear that the nonlinear instability that plagues
unified dark energy models [1] should also apply to these
so-called chameleon models. A more detailed analysis of
this scenario is warranted, but we leave it for future work.
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