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We show how to constrain the physical spectrum of walking technicolor models via precision
measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry
for the S parameter at the effective Lagrangian level—custodial technicolor—and argue that these
models cannot emerge from walking-type dynamics. We suggest that it is possible to have a very light
spin-one axial (vector) boson. However, in the walking dynamics the associated vector boson is heavy
while it is degenerate with the axial in custodial technicolor.
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Walking technicolor (WT) is one of the major frame-
works for constructing natural models that are able to
dynamically break the electroweak symmetry [1–4].
Hence, it is important to show how to phenomenologically
constrain these models using field theoretical tools, a gen-
eral effective Lagrangian, and the LEP data. WT makes use
of near conformal dynamics. Hints of such dynamics were
observed in [5] for minimal walking technicolor (MWT)
theories [6,7]. The phase diagram of strongly coupled
theories as a function of the number of colors, flavors,
and matter representation has been studied using the all-
order (non)supersymmetric beta function in [8,9], as well
as the truncated Schwinger-Dyson equation [7]. All the
analyses point to the existence of a critical number of
flavors above which asymptotically free gauge theories
develop an infrared stable fixed point.

A comprehensive, low-energy Lagrangian describing
MWT has been constructed in [10]. It incorporates the
knowledge of the underlying gauge theory via dispersion
relations. More phenomenological approaches simply as-
sume the existence of underlying dynamics of WT-type
[11] and then guess the spectrum of the lightest resonances
and couplings. We will show that when WT dynamics is
taken into account, via the modified Weinberg sum rules
(WSR) [12,13] together with the LEP constraints, [14–18]
it allows us to relate the spectrum of spin-one resonances
with their couplings to the weak gauge bosons. We will
argue that it is not possible to achieve the spectrum pro-
posed in [11] within walking dynamics with a small S
parameter [14]. We suggest instead what kind of strongly
coupled dynamics can accommodate a degenerate and very
light vector spectrum that is not at odds with precision
measurements.

We start from the observation that although WT theories
are near an infrared stable fixed point, they develop the
Fermi scale nonperturbatively. This implies a well-defined,

low-energy spectrum with the lightest resonances directly
affecting the electroweak observables. This fact does not
mean that the heavier resonances, or more generally the
walking dynamics, are not relevant. Via dispersion rela-
tions the entire spectrum of the underlying theory will still
affect the spectrum and couplings of the lightest ones. Our
low-energy spectrum consists of the lightest spin-one reso-
nances besides the Goldstones (bosons). The effect of
walking on the lightest spin-one resonances is modeled
via modified WSRs [12,13]. The three basic ingredients we
use are (i) asymptotic freedom of the underlying gauge
theory, (ii) the existence of a discrete spectrum of particles
governed by the Fermi scale, and (iii) the effects of the
walking dynamics on the couplings and spectrum of the
lowest resonances incorporated via dispersion relations.

In practice, we consider a general low-energy effective
theory consistent with the modified sum rules, and impose
the associated small S parameter [14]. This amounts to
assuming the existence of WT with a small positive S and
deducing new constraints. To be precise we take the value
of S to be the largest possible one allowed at one sigma by
experimental constraints for a heavy Higgs [18]. MWT
models are explicit examples possessing an intrinsic small
S due to the fact that a very low number of flavors is needed
to be near the conformal window [6]. In [19], the reader
will find the most complete catalogue of MWT and WT
theories which can be used to break the electroweak sym-
metry with a small S. Here we are interested in the further
constraints imposed from the precision parameters pro-
posed in [18].

We will also be able to constrain models proposed in
[20,21] which, at the effective Lagrangian level, possess an
explicit custodial symmetry for the S parameter. We will
refer to this class of models as custodial technicolor (CT).
The new custodial symmetry is present in the breaking
electroweak symmetry strongly models [22–24] which
will therefore be constrained as well. In this case, we
expect our constraints to be similar to the ones also dis-
cussed in [25].

The effective Lagrangian introduced in [10] correctly
describes all of the symmetries and interactions relevant
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for the constraints. The states present are the Goldstones
(bosons), their chiral partners, and the lightest spin-one
states. The walking dynamics are expressed by imposing
the modified WSRs on the effective Lagrangian spectrum
and coefficients. The first WSR implies

 F2
V � F

2
A � F2

�; (1)

where F2
V and F2

A are the vector and axial mesons decay
constants. This sum rule holds for walking and running
dynamics. The second sum rule receives important contri-
butions from throughout the near conformal region and
reads

 F2
VM

2
V � F

2
AM

2
A � a

8�2

d�R�
F4
�; (2)

where a is expected to be positive, and O�1� and d�R� are
the dimensions of the representation of the underlying
fermions [10,13]. In the case of running dynamics, the
right-hand side of the previous equation vanishes. a is a
nonuniversal quantity depending on the details of the
underlying gauge theory. a is a function of the amount of
walking which is the ratio of the scale above which the
underlying coupling constant starts running divided by the
scale below which chiral symmetry breaks. Any other
approach trying to model walking should reduce to ours.
We can interpolate between the walking and the running
behavior of the underlying gauge theory.

Once the hypercharge of the underlying technifermions
is fixed, all of the derived precision parameters defined in
[18] are solely functions of the gauge couplings, masses of
the gauge bosons and the first excited spin-one states, and
one more parameter �:

 Ŝ �
�2� ���g2

2~g2 ; (3)

 W �
g2

2~g2

M2
W

M2
AM

2
V

�M2
A � ��� 1�2M2

V�; (4)

 Y �
g02

2~g2

M2
W

M2
AM

2
V

��1� 4y2�M2
A � ��� 1�2M2

V�; (5)

 X �
gg0

2~g2

M2
W

M2
AM

2
V

�M2
A � ��� 1�2M2
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T̂ � Û � V � 0. g and g0 are the weak and hypercharge
couplings.MW is the gauge boson mass. y is the coefficient
parameterizing different hypercharge choices of the under-
lying technifermions [10]. ~g is the technistrong vector
mesons coupling to the Goldstones (bosons) in the techni-
color limit, i.e. a � 0. It was realized in [20,21] and further
explored in [10] that for walking theories, i.e. a � 0, the
WSRs allow for a new parameter � which in the techni-
color limit reduces to �0 � ~g2v2=2M2

A, with F2
� � v2�1�

�2=�0� the electroweak vacuum expectation value and

MA�V� the mass of the axial (vector) lightest spin-one field.
To make direct contact with the WSRs and for the reader’s
convenience, we recall the relations:

 F2
V �

2M2
V

~g2 ; F2
A � 2

M2
A

~g2 �1� ��
2: (7)

We have kept the leading order in the electroweak cou-
plings over the technistrong coupling ~g in the expressions
above while we used the full expressions [10] in making
the plots.

How do we study the constraints? From the expressions
above we have four independent parameters, ~g, �,MV , and
MA at the effective Lagrangian level. Imposing the first
WSR and assuming a fixed value of Ŝ leaves two indepen-
dent parameters which we choose to be ~g andMA. From the
modified second WSR we read the value of a=d�R�.

Walking technicolor.—We will first constrain the spec-
trum and couplings of theories of WT with a positive value
of the Ŝ parameter compatible with the associated preci-
sion measurements at the one sigma level. More specifi-
cally, we will take Ŝ ’ 0:0004 which is the highest possible
value compatible with precision data for a very heavy
Higgs [18]. Of course the possible presence of another
sector can allow for a larger intrinsic Ŝ. We are interested
in the constraints coming from W and Y after having fixed
Ŝ. The analysis can easily be extended to take into account
sectors not included in the new strongly coupled dynamics.
The first general observation, made in [10], is that a light
spin-one spectrum can be achieved only if the axial is much
lighter than the associated vector meson. The second is that
WT models, even with small Ŝ, are sensitive to the W-Y
constraints as can be seen from the plots in Fig. 1. Since X
is a higher derivative of Ŝ it is not constraining. We find that
WT dynamics with a small ~g coupling and a light axial
(vector) boson are not preferred by electroweak data. Only
for values of ~g larger than or about 8 the axial (vector)
meson can be light, i.e. of the order of 200 GeV. However,
WT dynamics with a small intrinsic S parameter do not
allow the spin-one vector partner to be degenerate with the
light axial, but predict it to be much heavier (see Fig. 2). If
the spin-one masses are very heavy then the spectrum has a
standard ordering pattern, i.e. the vector meson is lighter
than the axial meson. We also show the associated value of
a in Fig. 2. We were the first to predict very light axial
(vector) mesons in [10] on the base of the modified WSRs,
even lighter than the associated vector mesons. Eichten and
Lane put forward a similar suggestion in [11]. We find that
WT dynamics alone compatible with precision electro-
weak data can accommodate a light spin-one axial reso-
nance only if the associated vector partner is much heavier
and in the regime of a strong ~g coupling a. We find tension
with the data at a level superior to the 95% confidence level
for (a) WT models featuring theMA ’ MV spectrum with a
common and very light mass and (b) WT models with an
axial (vector) meson lighter than 300 GeV and a ~g smaller
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than 4, and an axial (vector) meson with a mass lighter than
or around 600 GeV and a ~g smaller than 2.

Custodial technicolor.—This is the case for which
MA � MV � M and � � 0. The effective Lagrangian ac-
quires a new symmetry, relating a vector and an axial field,
which can be interpreted as a custodial symmetry for the S
parameter [20,21]. The only nonzero parameters are now:

 W �
g2

~g2

M2
W

M2 ; (8)

 Y �
g02

2~g2

M2
W

M2 �2� 4y2�: (9)

A CT model cannot be achieved in walking dynamics and

must be interpreted as a new framework. In other words,
CT does not respect the WSRs; hence, it can only be
considered as a phenomenological-type model in search
of a fundamental strongly coupled theory. To make our
point clearer, note that a degenerate spectrum of light spin-
one resonances (i.e. M< 4�F�) leads to a very large Ŝ �
g2F2

�=4M2. We needed only the first sum rule together
with the statement of degeneracy of the spectrum to derive
this Ŝ parameter. This statement is universal and it is true
for WT and ordinary technicolor. The Eichten and Lane
[11] scenario of almost degenerate and very light spin-one
states can only be achieved within near CT models. A very
light vector meson with a small number of techniflavors
fully gauged under the electroweak can be accommodated
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FIG. 2 (color online). In the left panel, we plot the ratio of the vector over axial mass as a function of the axial mass for a WT theory
with an intrinsic small S parameter. The vector and axial spectrum is close only when their masses are of the order of the TeV scale,
and around 2 TeVand onwards the vector is lighter than the axial. The right panel shows the value a=d�R� as function of the axial mass.
In both plots, the solid line, dashed line, and dotted line correspond, respectively, to ~g � 8, 4, 2.
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FIG. 1 (color online). The ellipses in the WY plane correspond to the 95% confidence level obtained scaling the standard error
ellipse axis by a 2.447 factor. The three segments in each plot, meant to be all on top of each other, correspond to different values of ~g.
The solid line corresponds to ~g � 8, the dashed line to ~g � 4, and the dotted line to ~g � 2. The lines are drawn as function of MA with
the point closest to the origin obtained for MA � 600 GeV, while the point further away corresponds to MA � 150 GeV. We assumed
Ŝ � 0:0004 for WT while Ŝ is 0 in CT by construction.
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in CT. This scenario was considered in [26,27] and our
constraints apply here.

We find that in CT it is possible to have a very light and
degenerate spin-one spectrum if ~g is sufficiently large, of
the order, say, of 8 or larger as in the WT case.

We constrained the electroweak parameters intrinsic to
WT or CT; however, in general, other sectors may contrib-
ute to the electroweak observables. An explicit example is
the new heavy lepton family introduced in [19].

To summarize, we have suggested a way to constrain
WT theories with any given S parameter. We have further
constrained relevant models featuring a custodial symme-
try protecting the S parameter. When increasing the value

of the S parameter while reducing the amount of walking,
we recover the technicolor constraints [14]. We found
bounds on the lightest spectrum of WT and CT theories
with an intrinsically small S parameter. Our results are
applicable to any dynamical model of electroweak sym-
metry breaking featuring near conformal dynamics á la
walking technicolor.
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