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A nonperturbative renormalization group approach is used to calculate scaling functions for an Oð4Þ
model in d ¼ 3 dimensions in the presence of an external symmetry-breaking field. These scaling

functions are important for the analysis of critical behavior in the Oð4Þ universality class. For example,

the finite-temperature phase transition in QCD with two flavors is expected to fall into this class. Critical

exponents are calculated in local-potential approximation. Parametrizations of the scaling functions for

the order parameter and for the longitudinal susceptibility are given. Relations from universal scaling

arguments between these scaling functions are investigated and confirmed. The expected asymptotic

behavior of the scaling functions predicted by Griffiths is observed. Corrections to the scaling behavior at

large values of the external field are studied qualitatively. These scaling corrections can become large,

which might have implications for the scaling analysis of lattice QCD results.
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I. INTRODUCTION

The investigation of phase transitions and critical phe-
nomena has been an important motivation in the develop-
ment of the renormalization group (RG) [1–9], and it
remains one of the core areas of the application of RG
methods. Because of the universal behavior of different
systems in the vicinity of a critical point, the results of
relatively simple systems, such as spin models with an
OðNÞ-symmetry, play an important role in the analysis of
phase transitions in much more complicated systems.

Among the systems of interest is also QCD, where
scaling behavior appears in various contexts. An example
is the scaling behavior observed for the chiral phase bound-
ary in the plane of temperature and number of massless
quark flavors, near the critical number of flavors above
which QCD is still asymptotic free but chirally symmetric
in the infrared regime [10,11]. For two light quark flavors,
the phase transition at finite temperature is expected to fall
into theOð4Þ universality class [12]. While the dynamics of
the non-Abelian gauge fields and quarks in QCD are
difficult to describe in detail and require a nonpertubative
treatment, universality arguments can be brought to bear
on the analysis of the behavior near the phase transition.
QCD lattice simulations remain indispensable as nonper-
turbative calculations in which all fermionic and gauge
degrees of freedom are taken into account. However, since
quark masses are large and explicitly break the symmetry,
and since the simulation volumes are finite, the observation
of critical behavior on the lattice is difficult. Strictly speak-
ing, a phase transition cannot even occur in a finite volume.

For this reason, the finite-volume behavior and the scal-
ing behavior with an external symmetry-breaking field of a
theory in the same universality class are of great interest for
the analysis of the critical behavior in lattice simulations.
Different methods can be used to study the scaling behav-

ior in simpler model systems. However, since long-range
fluctuations are essential for the critical behavior, even here
a nonperturbative approach is needed. Renormalization
group methods are a natural choice for this problem. The
RG approach used in this paper allows one to study quan-
tum field theories in an effective-potential framework in
infinite as well as finite volume. It also allows the inclusion
of an external symmetry-breaking field so that the depen-
dence on the strength of such a field can be studied. A
natural upper bound for the possible size of the field in such
a calculation is set by the ultraviolet cutoff of the theory.
For a spin model, such as the Ising model, such an external
field corresponds to an external magnetic field H, whereas
in QCD the bare quark masses fill the role of the symmetry-
breaking field. In the case of a spontaneously broken
symmetry, the external field controls the mass of the
pseudo-Goldstone modes; in QCD, this is the mass of the
pions. The renormalization group allows us to vary the
external parameters of a given theory, such as volume size
or external symmetry breaking, over a wide range in pa-
rameter space, from a rather deformed theory to the theory
of physical interest. This makes it possible to close a gap
between scaling behavior in a finite volume and with a
given external field and the scaling behavior in the limit of
interest.
Even though current lattice calculations are performed

in large volumes and close to the physical value of the pion
mass, it remains difficult to extract the order of the phase
transition, and this question is still not conclusively settled
[13–15]. Usually, only the known critical exponents are
used as input for a finite-size scaling analysis of lattice
data. Including information about the scaling function as
well would increase the power of the analysis [16–19]. The
question of the size of the scaling region also remains open,
at least for staggered fermions current volumes might still
be to small to observe finite-size scaling [20].
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The main results of the present paper are accurate deter-
minations of the scaling functions of an Oð4Þ symmetric
model in three dimensions over a wide parameter range for
the external symmetry-breaking field. Scaling functions for
the order parameter and the longitudinal susceptibility are
calculated, and the relations between these functions are
investigated. We also investigate qualitatively scaling cor-
rections for large values of the external field. The discus-
sion of finite-size scaling functions from a finite-volume
calculation [21,22] is the subject of a forthcoming paper.
The discussion of other OðNÞ-symmetric models will also
be postponed to a future publication.

The paper is organized as follows: In Sec. II, we provide
an overview over the scaling behavior in the three-
dimensional Oð4Þ model, known results for the scaling
function and relations between the different forms of the
scaling function. The RG method is introduced in Sec. III
and technical details and the setup of our calculation are
discussed. We determine the critical exponents for our
calculation in Sec. IV to ensure a consistent analysis of
our results. A comparison to values from other methods
allows one to assess the systematic errors inherent in our
calculation. Our main results for the scaling functions are
presented in Sec. V for the order parameter and Sec. VI for
the susceptibility. Section VII contains a brief discussion of
the masses of the longitudinal and transverse fluctuations,
m� and m�, and we present our concluding remarks in
Sec. VIII.

II. SCALING IN THE Oð4Þ MODEL IN d ¼ 3

Scaling behavior can be observed in the vicinity of a
critical point. Critical behavior is characterized by a di-
verging correlation length � ! 1. Close to a critical point,
there is no relevant length scale due to the critical long-
range fluctuations, and such a system is invariant under a
change of length scale. As a consequence, the behavior of
thermodynamic observables in the vicinity of the critical
point is characterized by critical exponents which are
universal for systems in the same universality class.

The critical behavior is governed by the singular part of
the free energy, and the behavior of thermodynamic vari-
ables can be derived from the free energy. We consider an
Oð4Þ model with an external symmetry-breaking field H
and the temperature T as the two relevant coupling con-
stants. The invariance of the singular free energy density
under a rescaling of the length with a factor ‘ close to the
critical point can be expressed as

fsðt; hÞ ¼ ‘�dfsð‘yt t; ‘yhhÞ: (1)

Possible corrections to the scaling behavior due to irrele-
vant couplings are neglected. The dimensionless couplings
t and h are defined as

t ¼ T � Tc

T0

and h ¼ H

H0

; (2)

and the critical point is located at ðT;HÞ ¼ ðTc; 0Þ or
ðt; hÞ ¼ ð0; 0Þ. The critical exponents can be expressed in
terms of yt and yh and are connected by a number of
scaling laws, so that there are only two independent ones

yt ¼ 1

�
; yh ¼ �

��
; �¼ ð2��Þ�; �¼�ð�� 1Þ;

�¼ 1

2
ðd� 2þ�Þ�; �d¼�ð1þ�Þ: (3)

The critical exponent � governs the behavior of the
correlation length � and the critical exponent � governs
the behavior of the (longitudinal) susceptibility 	 as the
critical temperature is approached,

�� jtj��; 	� jtj��: (4)

The critical exponents � and � describe the behavior of
the order parameter M as the critical point is approached
from either the h or the t direction

Mðt ¼ 0; hÞ ¼ h1=�;

Mðt; h ¼ 0Þ ¼ ð�tÞ� for t < 0:
(5)

In the usual convention, which we will use in our analysis,
the normalization constants H0 and T0 are determined by
these two relations.
Starting from the scaling form of the free energy (1), the

scaling behavior of the order parameter M and the longi-
tudinal susceptibility 	 can be derived using their thermo-
dynamic definitions

M ¼ �@fs
@H

(6)

	 ¼ @M

@H
(7)

by choosing the scaling factor ‘ in an appropriate way. The
most intuitive and most commonly used form of the scaling
functions is obtained by choosing ‘yhh ¼ 1. The free en-
ergy density then becomes a function of h and the scaling

variable z ¼ t=ðh1=ð��ÞÞ only, and the order parameter can
be expressed as

M ¼ h1=�fðzÞ , M

h1=�
¼ fðzÞ; z � t

h1=ð��Þ
; (8)

where fðzÞ is a universal scaling function. With the nor-
malization (5), fðzÞ has the properties fð0Þ ¼ 1 and fðzÞ !
ð�zÞ� for z ! �1.
From the definition of the longitudinal susceptibility 	,

it follows that its behavior can also be described in terms of
a scaling function f	ðzÞ, which in turn is determined from

the scaling function of the order parameter and its deriva-
tive
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	 ¼ 1

H0

h1=��1 1

�

�
fðzÞ � z

�
f0ðzÞ

�
, H0h

1�1=�	 ¼ f	ðzÞ

¼ 1

�

�
fðzÞ � z

�
f0ðzÞ

�
: (9)

The scaling function for the susceptibility is therefore
completely determined if one knows the critical exponents
and the scaling function for the order parameter. This
relation presents an additional, very nontrivial test for the
scaling behavior.

While the scaling function fðzÞ expressed in terms of the
scaling variable z is convenient for visualizing the behavior
of the order parameter, it is not the most stringent test of the
scaling behavior as it is relatively insensitive to scaling
violations. In addition, we find that it is not very convenient
for parametrizing the scaling behavior. Better for this
purpose is the Widom-Griffiths parametrization [23,24]
of the equation of state as y ¼ yðxÞ in terms of the scaling
variables

x � t

M1=�
; y � h

M�
: (10)

(For definiteness, we will take H � 0 andM � 0 through-
out.) This parametrization can be obtained from the scaling
form of the free energy (1) by taking ‘yt t ¼ 1. It is equiva-
lent to the first one, and the two parametrizations are
related by

fðzÞ ¼ 1

y1=�
; z ¼ x

y1=ð��Þ
: (11)

With the normalization (5), the function y ¼ yðxÞ satisfies
the normalization conditions yð0Þ ¼ 1 and yð�1Þ ¼ 0.

As for the first parametrization, the scaling behavior of
the susceptibility can be expressed in terms of the scaling
function y ¼ yðxÞ, its derivative, and the critical exponents.
One finds

	 ¼ @M

@H
¼ 1

M��1

1

H0

�
�yðxÞ � 1

�
xy0ðxÞ

��1

, ½H0M
��1	��1 ¼ �yðxÞ � 1

�
xy0ðxÞ: (12)

We consider later the inverse rescaled expression
½H0M

��1	��1 to avoid the divergence of the universal
result which appears at x ¼ 0 in this parametrization.

The transverse susceptibility

	T ¼ M

H
(13)

also satisfies a universal scaling relation. With Eq. (8), one
finds that the scaling function is given by the one for the
order parameter, after 	T has been rescaled in the same
way as the longitudinal susceptibility

	T ¼ 1

H0

h1=��1

�
M

h1=�

�
¼ 1

H0

h1=��1fðzÞ , H0h
1�1=�	T

¼ fðzÞ: (14)

Using theWidom-Griffiths scaling form, one finds likewise
that the rescaled susceptibility is given by the scaling
function yðxÞ

	T ¼ 1

H0M
��1

1

y
, ½H0M

��1	T��1 ¼ y: (15)

Since we only recover the scaling function of the order
parameter from these relations, the transverse susceptibil-
ity does not provide any additional test of the scaling
behavior. In our implementation of the model, the relation
(13) follows from the determination of the order parameter
from the minimum of the potential and is explicitly sat-
isfied by construction. For this reason we do not analyze
the scaling relation for 	T separately.
Assuming that the equation of state in the form H ¼

HðM;TÞ is analytic everywhere away from the first-order
line H ¼ 0, T < Tc and the critical point H ¼ 0, T ¼ Tc,
Griffiths showed [24] that for H > 0, T > Tc and M>
M0 > 0 for some valueM0, i.e. x > 0, the equation of state
can be expressed in a convergent expansion as

yðxÞ ¼ X1
n¼1

cnx
��2�ðn�1Þ

¼ x�ðc1 þ c2x
�2� þ c3x

�4� þ . . .Þ: (16)

For asymptotically large values of the scaling variable x,
this expression allows us to determine the critical exponent
� from the leading term and thus provides an additional
check for the consistency of the scaling behavior. It also
suggests a parametrization of the equation of state y ¼ yðxÞ
for large x.
With Griffiths’ expression (16), and using the scaling

law � ¼ �ð�� 1Þ, one finds for the rescaled susceptibility
for large x the expression

½H0M
��1	��1 ¼ �

�
yðxÞ � 1

��
xy0ðxÞ

�

¼ x�ðc1 þ 3c2x
�2� þ 5c3x

�4� þ . . .Þ

¼ X1
n¼1

cnð2n� 1Þx��2�ðn�1Þ; (17)

with the known coefficients cn from (16). Remarkably, this
means that for large x the leading-order terms from the
scaling function of the order parameter yðxÞ ¼ c1x

� þ . . .
and the scaling function of the inverse rescaled suscepti-
bility, �yðxÞ � 1

� xy
0ðxÞ ¼ c1x

� þ . . . should be exactly the

same, provided the scaling laws for the critical exponents
hold.
Close to the coexistence line x ¼ �1, i.e. for T < Tc and

H ! 0, it is argued that the behavior of the system is
dominated by the presence of the massless Goldstone
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modes [25,26]. The longitudinal and transverse suscepti-

bilities then diverge as 	�H�1=2 and 	T �H�1, respec-
tively, and the system is expected to be governed by a
Gaussian fixed point with mean-field values for the critical
exponents. As a consequence, the equation of state is
expected to be of the form

yðxÞ � ð1þ xÞ
; with 
 ¼ 2 for x ! �1; (18)

which is also suggested by a resummation of the � expan-
sion [25]. The region dominated by the Goldstone singu-
larities is estimated to be narrow, ð1þ xÞ & 10�2 and
y & 10�4, and difficult to observe in practice [25,27].

This result can be obtained from the � expansion under
the assumption that the series can be resummed in the form
[25]

yðxÞ ¼ cð1þ xÞ
: (19)

Close to the coexistence line, one expects that 
 ¼ � ¼ 2
takes on its mean-field value associated with the Gaussian
fixed point, whereas for x > 0 the asymptotic behavior can
be identified with the leading behavior of Griffiths’ expan-
sion (16), with the appropriate value of � at the critical
fixed point. The crossover between the behavior governed
by the Gaussian fixed point and by the critical fixed point
can be described in terms of effective critical exponents
[27,28]. A phenomenological fit of the above form will
thus lead to an effective value for the exponent 
 averaged
over the fitting region. We find that such an Ansatz with the
exponent 
 as a free parameter works surprisingly well to
fit our results for x > 0:1.

A parametric representation of the equation of state in
terms of two variables R and �, which takes the known
analytic behavior into account, is given by [29–31]

M ¼ m0R
�mð�Þ (20)

t ¼ Rð1� �2Þ (21)

H ¼ h0R
��hð�Þ: (22)

The functions mð�Þ and hð�Þ are odd functions and regular
at � ¼ 0 and � ¼ 1. �0 is the smallest positive zero of the
function hð�Þ. The variable � can take values between � ¼
0 (asymptotic behavior x ! 1) and � ¼ �0 (coexistence
line x ¼ �1); the value � ¼ 1 corresponds to the critical
temperature (t ¼ 0, x ¼ 0). Expressed in terms of this
parametrization, the scaling variables x and y become

x ¼ 1� �2

�20 � 1

�
mð�0Þ
mð�Þ

�
1=�

(23)

y ¼ hð�Þ
hð1Þ

�
mð�Þ
mð1Þ

���
: (24)

Accordingly, the scaling variable z and the scaling function
fðzÞ are expressed as

z ¼ 1� �2

�20 � 1

�
mð�0Þ
mð�Þ

�
1=�

�
hð1Þ
hð�Þ

�
1=ð��Þ

(25)

fðzÞ ¼ mð�Þ
mð1Þ

�
hð1Þ
hð�Þ

�
1=�

: (26)

Although it has the advantage of incorporating the
known analytic limits, such a parametric representation is
difficult to fit to numerical results: direct matching is
possible only for the limiting behavior, and it is difficult
to take all available data points into account (see e.g. [32]
for an application to lattice Monte Carlo results).
While the determination of the coefficients in the func-

tions mð�Þ and hð�Þ is not independent from the values of
the critical exponents, this parametrization makes the ef-
fect of the critical exponents on the scaling behavior more
explicit.
In the following, we will summarize some results for the

scaling functions found in the literature. The equation of
state in the form y ¼ yðxÞ was calculated in the � expan-
sion to Oð�2Þ by Brézin, Wallace, and Wilson [33], and a
parametrization of the result close to the coexistence point
x ¼ �1 (corresponding to the first-order line H ¼ 0; T <
Tc) is provided by Wallace and Zia [26]. Monte Carlo
simulations of the Oð4Þ-symmetric spin model on the
lattice were used by Toussaint [16] to obtain the scaling
function fðzÞ, and by Engels and Mendes [34] to obtain a
parametrization for the equation of state yðxÞ (see also
[18]). Parisen Toldin et al. [35] used results from several
different field-theoretical methods to obtain the equation of
state in the parametric form (22). Cucchieri and Mendes
determined the parameters in this representation from a fit
to lattice Monte Carlo results [32].
The result obtained from the � expansion [33] for N ¼ 4

in d ¼ 3 becomes after expansion around x ¼ �1 [26]

yðxÞ¼ ð1þxÞf1þ�½A logð1þxÞþB�
þ�2½Clog2ð1þxÞþD logð1þxÞþE�þOð�3Þg

with A¼ 0:125;

B¼�0:0270494; C¼�0:015625;

D¼ 0:148902; E¼ 0:138468:
(27)

This expression is valid for ð1þ xÞ � 1. In [26] it is
argued that due to the presence of the Goldstone modes
the expansion around x ¼ �1 can be inverted to give an
equation of state x ¼ xðyÞ in the form

xðyÞ þ 1 ¼ ~c1yþ ~c2y
1��=2 þ ~d1y

2 þ ~d2y
2��=2 þ ~d3y

2��

þ . . . ; (28)

where the coefficients are determined only to Oð�Þ while
the original expansion is known to Oð�2Þ. For N ¼ 4 and
d ¼ 3 (� ¼ 1) the perturbative result from [26] is
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xðyÞ þ 1 ¼ ~c2y
1=2 þ ð~c1 þ ~d3Þy

with ~c2 ¼ 0:250þ 0:280� ¼ 0:530;

~c1 ¼ 0:750� 0:253� ¼ 0:497;

~d3 ¼ 0:031 25;

~c1 þ ~d3 ¼ 0:528:

(29)

The normalization condition yð0Þ ¼ 1 is only satisfied to
about 10% (yð0Þ ¼ 0:92 for the inverted expansion), and
the expansion is very accurate only close to the expansion
point x ¼ �1. In general, it is known that the � expansion
satisfies the large-x behavior from Griffiths’ expansion
(16) only order by order in �, but not explicitly [33], and
thus even the full expression is not expected to be accurate
for x � 1.

By using resummed perturbation theory, Schäfer and
Horner were able to obtain the expected asymptotic be-
havior with critical exponents calculated to order Oð�Þ
[27]. They present results in terms of effective critical
exponents [28] which interpolate between the behavior at
the coexistence line dominated by the Gaussian fixed point
and the behavior dominated by the critical fixed point
behavior at larger x. In both limits, they find the expected
behavior for the exponent �.

While critical exponents from the � expansion are avail-
able to higher order in � [36], for consistency we use in the
comparisons involving the scaling function, the critical
exponents calculated to Oð�2Þ for the Oð4Þ model in d ¼
3 [33]

� ¼ 16

41
� 0:3902; � ¼ 133

96
� 1:3854;

� ¼ 107

24
� 4:458:

These values satisfy the scaling law � ¼ �ð�� 1Þ to
within 3%.

From Monte Carlo lattice simulations of an Oð4Þ spin
model, the parametrization for the equation of state from
Engels and Mendes [34] is also provided in the inverted
form x ¼ xðyÞ. For small values of x, the parametrization
xsðyÞ is taken from the � expansion (29), with coefficients
determined nonperturbatively from a fit to the lattice re-
sults [18,34]

xsðyÞ þ 1 ¼ ~c2y
1=2 þ ð~c1 þ ~d3Þyþ ~d2y

3=2

with ~c2 ¼ 0:674ð08Þ;
~c1 þ ~d3 ¼ 0:345ð12Þ; ~d2 ¼ �0:023ð5Þ: (30)

For large values of x, the first two terms of an inverted form
of Griffiths’ expression (16) are used [18]

xlðyÞ ¼ ay1=� þ byð1�2�Þ=� with a ¼ 1:084ð6Þ;
b ¼ �0:994ð109Þ: (31)

The values of the critical exponents are here

� ¼ 0:380; � ¼ 4:86� ¼ 1:4668; � ¼ 0:7423:

The authors also formulate an interpolating expression for
the equation of state

xðyÞ ¼ xsðyÞ y30
y30 þ y3

þ xlðyÞ y3

y3 þ y30
; y0 ¼ 10:0 (32)

which describes the results well for a range of at least
�1< x< 30 and 0< y< 150. Inspired by this idea, we
will use a similar interpolation for the equation of state y ¼
yðxÞ to describe our results.
In [32] the results for the scaling function are also given

in the above form. The coefficients found there are

~c 2 ¼ 0:746ð3Þ; ~c1 þ ~d3 ¼ 0:19ð1Þ; ~d2 ¼ 0:061ð8Þ
(33)

for the small-x region (x < 1:5), and

a ¼ 1:07ð1Þ; b ¼ �0:95ð3Þ (34)

for the large-x region. The same expression is used for an
interpolation. The differences to the earlier results are
attributed to slightly different values of the critical expo-
nents used in the calculation. In addition, the authors also
determine the scaling functions mð�Þ and hð�Þ in the
parametrization (22) from the lattice Monte Carlo results.
In the most simple parametrization,

mð�Þ ¼ �hð�Þ ¼ �

�
1� �2

�20

�
; �20 ¼ 1:955ð7Þ; (35)

where �20 is the only free parameter. More sophisticated

schemes for the function hð�Þ yield the estimate �20 ¼
2:16ð2Þ.
Parisen Toldin et al. combine results from different field-

theoretical methods to obtain the scaling function in the
parametrization (22) [35]. For the parametrization (35),
they report the result �20 ¼ 2:795ð40Þ. They find good

agreement with the lattice Monte Carlo results [34] for
their scheme (A) with n ¼ 1, where

mð�Þ ¼ �ð1þ c1�
2Þ; c1 ¼ �0:0225ð200Þ;

hð�Þ ¼ �

�
1� �2

�20

�
; �20 ¼ 2:949ð150Þ: (36)

This is the result which wewill use in our later comparison.
The equation of state in scaling form describes only the

scaling behavior due to the operators that are relevant in the
RG flow close to the respective fixed points. Corrections to
the scaling behavior are associated with the first irrelevant
operator and its associated exponent !. For fixed parame-
ter t, the correction terms are expected to be proportional to

hð�!Þ=ð��Þ, and for fixed h proportional to t!�. The exponent
! can be calculated from the RG flow equations at the fixed
point, see e.g. [36–38]. We will check that the deviations
from the scaling behavior that we observe are consistent
with this expectation.
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III. RENORMALIZATION GROUP APPROACH TO
SCALING

In this section we discuss our RG approach to scaling
behavior in the presence of an external symmetry-breaking
field and the derivation of the proper-time flow equations
for the Oð4Þ-potential in infinite volume. We also give a
detailed discussion of the approximations that we have
used throughout this work. Reviews of and introductions
to functional RG methods can be found in e.g. [39–47].
The effective action of the Oð4Þ model in d space-time
dimension is given by

�½� ¼
Z

ddx

�
1

2
Zð@� ~Þ2 þUðÞ

�
: (37)

Here we have neglected possible kinetic terms of higher

order such as Yð ~@� ~Þ2. The components of the vector

are labeled according the role that the corresponding fields

are playing in the spontaneously broken regime, ~
T ¼

ð�;�1; �2; �2Þ. We choose the first component to be the
radial mode in the regime where the ground state of the
theory is not symmetric under Oð4Þ transformations

h ~Ti ¼ ~0
T ¼ ð�0; 0; 0; 0Þ: (38)

The potential UðÞ in its present form depends only on
2 ¼ �2 þ ~�2. As discussed in [48–50] such an Ansatz for
the potential is not appropriate if one is interested in a study
of phase transitions in a finite volume, since strictly speak-
ing spontaneous symmetry breaking does not occur in a
finite volume. Therefore the presence of an nonvanishing
external source in the Ansatz for the effective action is
indispensable for our study. Moreover we do not solve the
RG flow for the full potential but expand the potential in a
Taylor series around the vacuum expectation value and
solve then the RG flow for the expansion coefficients of
this series. Before we discuss our Ansatz for the potential in
more detail, we briefly sketch the derivation of proper-time
RG equations in general.

In a Gaussian approximation, we can perform the func-
tional integration of the bosonic fields and obtain the one-
loop effective action for the scalar fields ,

�½� ¼ ��UV
½� þ 1

2 Tr logð�ð2Þ
B ½�Þ (39)

where �ð2Þ
B ½� is the inverse two-point function evaluated

at the background field and �� contains the initial values of
the RG flow at ultraviolet (UV) scale �. From now on, we
neglect a possible space dependence of the expectation
value and take the wave-function renormalization Z to

be constant, Z ¼ 1. Therefore the anomalous dimension

of the scalar field is zero, � ¼ 0. As only local couplings
are taken into account, this is called the local-potential
approximation (LPA). The anomalous dimension influen-
ces the critical exponents, which in turn are the key ingre-
dients for the scaling analysis, and thus we need to account
for the effects of this approximation. Since the scalar

anomalous dimension is small compared to one, see e. g.
[51], this approximation is well justified for an initial study
of the scaling function with functional RG methods. We
stress that our Ansatz is by no means sufficient for a high-
accuracy determination of critical exponents of the Oð4Þ
model, but this is not at present our aim. This first deter-
mination of the scaling functions with functional renor-
malization group (FRG) methods is meant to set the stage
for future computations with higher accuracy. As an addi-
tional benefit, we can estimate the range of validity of the
local-potential approximation in terms of the scaling var-
iables by comparing our results to those of other
approaches.
In order to regulate the infrared (IR) divergences in

Eq. (39) we use the Schwinger proper-time representation
of the logarithm and introduce an IR cutoff function1

fað
k2Þ, where the variable 
 denotes Schwinger’s proper
time and k is a cutoff scale which has mass dimension one.
The derivative of the cutoff function with respect to the
scale k is given by (see e. g. Refs. [7,53])

k
@

@k
fað
k2Þ ¼ � 2

�ðaþ 1Þ ð
k
2Þaþ1e�
k2 : (40)

In the following we choose a ¼ d
2 . The relation between

the so-called proper-time RG and the FRG has been
worked out in detail in [37,54,55]. As was found in
Refs. [56,57], the flow equation which results from this
choice for the proper-time cutoff function coincides with
the flow equation obtained in the FRG framework with an
optimized cutoff.

The inverse two-point function �ð2Þ
B ½� in Eq. (39) de-

pends on the second derivatives of the effective potential
U,

Mij ¼ @2 �UðÞ
@i@j

: (41)

The eigenvalues of this matrix evaluated at the minimum of
the potential are the masses of the fields. By replacing the
bare masses and couplings in the inverse two-point func-
tions with the scale-dependent quantities, we obtain the so-
called renormalization group improved flow equation for
the effective potential �Uk in infinite volume (see also e. g.
[7,56–58])

k
@

@k
�UkðÞ ¼ ðk2Þd=2þ1

ð4�Þd=2
1

�ðd=2þ 1Þ
�

3

k2 þM2
�;kðÞ

þ 1

k2 þM2
�;kðÞ

�
: (42)

1On the one hand physical quantities calculated from the RG
flow should not depend on the choice of the cutoff function in the
limit k ! 0. On the other hand, a study of the regulator depen-
dence of the results in this limit allows us to check the quality of
our truncations. A detailed study of the dependence of our results
on the choice of the regulator function is in progress [52].
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The quantities M� and M� are the eigenvalues of the
second-derivative matrix of the potential. Note that these
quantities still depend on the background field .

For a study of critical exponents and scaling it is con-
venient to deal with dimensionless quantities rather than
dimensionful quantities. Therefore we introduce the di-
mensionless potential u, the dimensionless masses m�

and m� as well as the dimensionless field ’ by

ukð’Þ ¼ k�dUkðÞ
m2

i;kð’Þ ¼ k�2M2
i;kðÞ and ’ ¼ k�ðd�2=2Þ:

(43)

Applying these definitions to the flow Eq. (42), we obtain

@tutð’Þ ¼ �duð’Þ þ 1

ð4�Þd=2
1

�ðd=2þ 1Þ
	

�
3

1þm2
�ð’Þ

þ 1

1þm2
�ð’Þ

�
; (44)

where the dimensionless flow variable t is given by t ¼
lnðk=�Þ. By integrating the flow equation (either the di-
mensionless or the dimensionful formulation) from the UV
scale � to k ! 0, we obtain an effective potential in which
quantum corrections from all scales have been systemati-
cally included.

We now discuss the Ansatz for the effective potential
UkðÞ. Since we are interested in a study of phase tran-
sitions with an external symmetry-breaking field, we have
to introduce a corresponding linear term in the field into
our Ansatz for the effective action. In order to solve the RG
flow for the effective potential �U, we expand the potential
in local n-point couplings around its minimum �0ðkÞ
Ukð�; ~�2Þ ¼ a0ðkÞ þ a1ðkÞð�2 þ ~�2 � �0ðkÞ2Þ

þ a2ðkÞð�2 þ ~�2 � �0ðkÞ2Þ2
þ . . .�H� (45)

where H is the fixed, external symmetry-breaking field.
The minimum �0ðkÞ is the order parameter of the system
which can be identified with the magnetization M in an
Ising model,

M ¼ �0: (46)

Since we have absorbed the symmetry-breaking linear term
in the effective action into the Ansatz for the potential, Uk

depends now on the fields � and � separately. The condi-
tion

@Ukð�; ~�2Þ
@�

���������¼�0; ~�
2¼0

¼! 0 (47)

ensures that we are expanding around the actual physical
minimum. From Eq. (47), we find that the RG flow of the
coupling a1 and the minimum �0 are related by the con-
dition

2a1ðkÞ�0ðkÞ ¼ H: (48)

This condition keeps the minimum at ð�; ~�Þ ¼ ð�0ðkÞ; ~0Þ.
The flow equation of the minimum is thus related to the
flow of the coupling a1 in a simple way. Taking the derivate
with respect to k of Eq. (45), we obtain

k
@Ukð�; ~�2Þ

k
¼ k

@a0ðkÞ
@k

� 2a1ðkÞ�0ðkÞk @�0ðkÞ
@k

þ k
@a1ðkÞ
@k

ð�2 þ ~�2 � �0ðkÞ2Þ þ . . . :

(49)

Note that the derivative of the potential with respect to the
regulator scale does not contain any contributions linear in
the fields. Of particular interest for our studies in this work
is, apart from the order parameter�0ðkÞ, the longitudinal as
well as the transversal susceptibility. Taking the total de-
rivative of the minimum condition (47) with respect to H,
one finds that the longitudinal susceptibility is inverse
proportional to inverse mass squared of the radial mode

	L ¼ 1

m2
�

¼ 1

2a1 þ 4a2�
2
0

: (50)

The transverse susceptibility is defined as the ratio of the
order parameter M ¼ �0 (magnetization) to the external
field H and is inverse proportional to the mass of the
(pseudo-) Goldstone particles

	T ¼ M

H
¼ 1

m2
�

¼ 1

2a1
: (51)

The RG flow equation for the couplings ai can now be
obtained straightforwardly by expanding the flow Eq. (42)
around the minimum �0ðkÞ and projecting it on Eq. (49).
The RG flow of the minimum of the potential is determined
by Eq. (48). Apparently, this procedure for a derivation of
the flow of the potential u results in an infinite set of flow
equations for the couplings ai. In order to solve the set of
equations for the couplings, we have to truncate our Ansatz
(45) for the potential. In the following, we include fluctua-
tions around the minimum up to eighth order in the fields, i.
e. we keep track of the running of the couplings a1, a2, a3,
and a4. The resulting finite set of coupled first-order dif-
ferential equations are then solved numerically. We have
checked that our results do not change significantly by
including couplings of higher order. We have also checked
numerically that our results coincide with earlier results (e.
g. [57,58]) in the limit of vanishing external source H.
For our calculations, we have chosen a cutoff scale � ¼

1000 MeV, which is comparable to a typical lattice cutoff
(�=a � 1500 MeV with a being the lattice spacing) in
current finite-temperature lattice simulations. The initial
values for the differential equations of the couplings are
given by the effective potential at the UV scale in the form
U�ð�; ~�2Þ ¼ a2ð�Þð2 �2

0ð�ÞÞ2 �H�, where we

choose a2ð�Þ=� ¼ 0:025. The flow of a1 is determined
by the flow of the minimum �0ðkÞ. In d ¼ 3 dimensions,
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the initial value of the minimum of the symmetric potential
at the cutoff scale 0ð�Þ serves as proxy for the tempera-
ture, and we assume that an expansion ð0ð�Þ �
critical

0 ð�ÞÞ � ðT � TcÞ is possible. This is to be seen in

analogy to lattice simulations of spin models, where the
temperature is absorbed into the spin-spin-coupling, which
can then be tuned such that the system is at its critical
point. Similarly, in Landau effective theory it is assumed
that the couplings have an expansion in T � Tc around the
critical values.

IV. CRITICAL EXPONENTS

Critical exponents for the Oð4Þ model in d ¼ 3 have
been determined by many different methods to a high
degree of accuracy. Theoretical results are available from
perturbative field-theoretical calculations [36,59,60], from
lattice Monte Carlo simulations of spin models [61,62] and
4 theory [63], and from nonperturbative RG calculations
[51,56–58,64,65]. (See e.g. [66] for an overview.) It is not
the purpose of the present paper to add to this list, in
particular, since our results coincide with [57] and since
we work in the local-potential approximation where the
anomalous dimension vanishes, � ¼ 0. More accurate re-
sults from functional RG methods beyond this approxima-
tion are available [51,58,64]. But in order to present a
consistent evaluation and to make contact with these cal-
culations, we determine critical exponents from our results
and use these values in the analysis.

Since we are working in d ¼ 3, temperature cannot be
defined field theoretically. However, the relevant coupling
for approaching the critical point is the initial value of the
expectation value of the field  at the ultraviolet scale �,
0ð�Þ, and we assume that an expansion ð0ð�Þ �
critical

0 ð�ÞÞ � ðT � TcÞ exists.
With our choice of scale � ¼ 1000 MeV and initial

parameters, we determine the nonuniversal critical tem-
perature of our model in the absence of an external
symmetry-breaking field to be

Tc=�
1=2 ¼ critical

0 ð�Þ
¼ 13:682 368 165 072 75ð1Þ MeV1=2:

(We find that this accuracy is actually necessary in the
choice of the initial conditions to see the fixed point
behavior clearly in the RG flow.)

We determine the critical exponents � and � from the
order parameter M, and the critical exponent � from the
correlation length � ¼ 1=m� in the phase with restored
OðNÞ symmetry. The critical exponent � can be deter-
mined from the order parameter at H ¼ 0 from

logM ¼ � logð�tÞ ¼ �� logðT0Þ þ � logðTc � TÞ;
(52)

by regarding logM as a function of the variable logðT �
TcÞ and either fitting this directly as a linear expression in a
region close to Tc, or by numerically taking the derivative
of the function in the limit T ! Tc. From an RG point of
view, the critical exponents are defined from the eigenval-
ues of the linearized flow equations at the critical point.
Methodically, it is therefore more sound to use the limit of
the derivative for the determination. We do indeed find
good agreement with the results of [38,57], where the
critical exponents were determined in local-potential ap-
proximation from the same RG flow equations by diago-
nalizing the stability matrix at the fixed point.
In order to estimate how well the critical exponents can

be determined from our calculation, we also fit the linear
expression below Tc. We repeat the determination from the
derivative and from the fit in the presence of a small

external field H ¼ 1:0	 10�9 MeV5=2. The results are
given in Table I. While the original determination from
the derivative gives the most exact value, we use the results
from the other determinations in order to estimate an error
for this determination. We observe that the values from a fit
tend to be larger for � and smaller for �, compared to the
values from the derivative. The values for the critical
exponents � and � satisfy the scaling law � ¼ 1

2 ðd� 2þ
�Þ� with � ¼ 0 and d ¼ 3 with better than 0.2%.
The critical exponent � can be determined from the

order parameter M at the critical temperature Tc, taken
as a function of H

logM ¼ � 1

�
logH0 þ 1

�
logH (53)

again by either calculating the derivative in the limit H !
0 or by fitting this as a linear expression in logH. We expect
the result from the limit of the derivative to be more
reliable, but also calculate � from a fit to estimate the
accuracy of our determination. The results are given in
Table II. In contrast to our direct determination, in most

TABLE I. Critical exponents � and � determined from our results. For the evaluation, we use
the quoted values. The errors reflect the uncertainty of the determination, in addition there is a
systematic error for the calculation which is not quoted and which cannot be determined from
the present calculation taken by itself.

H ¼ 0 H ¼ 1:0	 10�9 MeV5=2

Derivative Fit Derivative Fit Quoted

� 0.4030 0.4051 0.4033 0.4108 0.4030(30)

� 0.8053 0.7953 0.8007 0.7920 0.8053(60)
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functional RG calculations [51,58], the critical exponent �
is calculated from the anomalous dimension � with the
scaling law

� ¼ dþ 2� �

d� 2þ �
(54)

or determined from the asymptotic behavior of the
effective-potential. Since � ¼ 0 in the local-potential ap-
proximation, we expect � ¼ 5 from the scaling law. In
addition, we can also use the values for the critical expo-
nents � and � to calculate � with the scaling law d� ¼
�ð1þ �Þ. The results are also given in the table and are
used in the estimation of the error of the determination.

The total error for the values of the critical exponents is
larger than the uncertainty from the determination which
we give explicitly. It is dominated by the larger systematic
error from the approximations that are necessary to solve
the RG flow equations. This systematic error cannot be
estimated by looking at the current calculation in isolation.
It is generally difficult to assess these systematic errors in
nonperturbative functional RG calculation, but the errors
due to the necessary truncations can be estimated by
comparing different RG cutoff schemes for the same ap-
proximation, and by systematically improving the approx-
imations. The two main approximations in the present
calculation are a restriction to only a finite number of
n-point couplings in the effective potential, and a trunca-
tion in the momentum dependence to local couplings.

The restriction to a finite number of n-point couplings is
not very severe, and its effects can be estimated rather
reliably by including a larger number of couplings. The
results in [51,57] show that the convergence is relatively
fast, and the inclusion of a small number of n-point cou-
plings is usually sufficient in the case ofOðNÞmodels. Our
own observations confirm these findings.
The effects of the truncation in the momentum depen-

dence of the couplings (derivative expansion) are more
difficult to assess. In the current calculation, the vanishing
anomalous dimension �, which is due to the restriction to
local couplings, affects all coefficients, as can be seen from
the scaling laws. For this reason we do not expect to obtain
values for the critical exponents comparable to those from
simulations, where the anomalous dimension is nonzero.
For our results, the effects from this truncation can be

best estimated by comparing to other results from func-
tional RG calculations. We list a number of results in
Table III. We expect our results to coincide with those of
[57], since this determination of the critical exponents from
the fixed point is performed in the same RG cutoff scheme
and in local-potential approximation, and we do indeed
observe good agreement. The FRG calculations [51,58,64]
all include a wave function renormalization, which leads to
a nonzero anomalous dimension. As one can see from the
table, the resulting critical exponents are much closer to the
values observed in lattice Monte Carlo simulations. The
differences to our results are a measure for the systematic
error due to the local-potential approximation.

TABLE II. The critical exponent �, determined directly from the derivative and from a fit to
the order parameter at the critical temperature as a function of H, and indirectly from the other
critical exponents by means of the scaling laws. In our calculation, the anomalous dimension
� ¼ 0, and thus � ¼ 5 is theoretically expected.

Derivative Fit �d=�� 1 ðdþ 2� �Þ=ðd� 2þ �Þ Quoted

� 4.9727 4.8409 4.995(90) 5.0000 4.973(30)

TABLE III. Comparison of critical exponents for the Oð4Þ model in d ¼ 3 from different methods. Values with an asterisk are not
obtained independently, but calculated from other exponents with the scaling laws. This table is by no means comprehensive, see e.g.
[66] for a more complete listing. In addition to the functional RG (FRG) results, we list results from lattice Monte Carlo (MC)
calculations, from perturbative field-theoretical (FT) calculations in d ¼ 3, and from the � expansion.

Method � � � �

R. Guida, and J. Zinn-Justin [36] FT 0.741(6) 0.3830(45) 0.0350(45) 4.797(25)*

R. Guida, and J. Zinn-Justin [36] � exp 0.737(8) 0.3820(25) 0.036(4) 4.792(22)*

K. Kanaya, and S. Kaya [61] MC 0.7479(90) 0.3836(46) 0.0254(38)* 4.851(22)

H. G. Ballesteros et al. [62] MC 0.7525(10) 0.3907(10)* 0.0384(12) 4.778(8)*

M. Hasenbusch [63] MC 4 0.749(2) 0.388(2)* 0.0365(10) 4.789(6)*

G. v. Gersdorff, and C. Wetterich [64] FRG 0.739 0.387* 0.047 4.73*

N. Tetradis, and C. Wetterich [51] FRG 0.791 0.409 0.034 4.80*

O. Bohr et al. [58] FRG 0.78 0.40 0.037 4.80

D. F. Litim, and J.M. Pawlowski [57] FRG 0.8043 0.4022* 
 
 
 5.00*

Our result FRG 0.8053(60) 0.4030(30) 
 
 
 4.973(30)
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Nevertheless, the values obtained here are the ones
needed for a scaling analysis of the results from our
calculation, since the effects that are responsible for the
nonzero anomalous dimension are absent in the effective
potential and our observables as well. For this reason we
must use these values for a consistent evaluation of the
scaling behavior.

Once the values for the critical exponents � and � are
known, we use these values to determine the normalization
constants T0 and H0 from fits to the results. For T0, we do
this by fitting with fixed � to the order parameter for small

values of the external symmetry-breaking field H ¼ 1:0	
10�10 MeV5=2 and H ¼ 1:0	 10�11 MeV5=2. For H0, we
fit results obtained exactly at Tc, using the fixed value of �.
We find for the nonuniversal normalization constants in our
calculation

T0=�
1=2 ¼ 0:014 916ð5Þ MeV1=2;

H0 ¼ 6:032ð10Þ MeV5=2:
(55)

In the following, we use these values in our analysis.

V. ORDER PARAMETER

For the determination of the scaling function, we have
calculated results for the order parameter M, the longitu-
dinal susceptibility (or mass m� of the radial excitations),
and the transverse susceptibility (or mass m� of the trans-
verse excitations), over a wide range of values for T andH.
For H, the values span a range of 7 orders of magnitude,

from H ¼ 1:0	 10�4 MeV5=2 to H ¼ 1:0	 103 MeV5=2.
For each value, we have chosen appropriate ranges for T
around Tc, so that we always cover a similar range of
values for the scaling variable z ¼ �10 . . . 10, or z ¼
�30 . . . 30 for the larger values of H.

In this way we can determine the scaling functions with
high accuracy from the results with small symmetry-
breaking fields, where scaling corrections remain small.
At the same time, we can assess scaling violations from the
results at large fields and determine where these correc-
tions become large. This is relevant for the application of a
scaling analysis to a physical system, and our range of
values extends beyond the currently available results from
spin model lattice simulations.

In the following, we use the normalization constants and
critical exponents determined in Sec. IV. Since we work in
an approximation with local couplings the anomalous di-
mension in our calculation is zero, � ¼ 0. This introduces
a systematic error into critical exponents and observables
which cannot be estimated from our calculation taken by
itself. Within our approach, the systematic error can only
be estimated by comparing to other RG calculations which
go beyond this approximation or which use a different
cutoff scheme. Work on a comparison of different RG
schemes and on an improvement of the approximation
are in progress. It should be kept in mind that for now

this systematic error remains unquantified in our results. Of
course, it can also be estimated by comparing directly to
spin model lattice simulations.
However, despite the observed deviation from the lattice

in the current approximation, we will see below that the
results are internally consistent: The scaling laws among
the critical exponents are satisfied very well, and the ex-
pected scaling behavior is observed to an impressive accu-
racy. The same values of the critical exponents are also
recovered from the asymptotic behavior of the scaling
functions, as expected. In addition, the scaling functions
for the order parameter and for the susceptibility are con-
sistent with each other, as we will demonstrate below.
These observations serve as a cross-check of our results
and confirm that the critical exponents have been deter-
mined correctly for our calculation.
For our determination of the scaling function, we only

consider the leading-order scaling behavior and do not
quantify the observed corrections to scaling. For the pur-
pose of judging the quality of a fit to the leading-order
scaling behavior, we treat scaling deviations due to a small
variation of the external field as an error. This is suitable for
weighing how well a single scaling function can fit the
results after rescaling. We estimate the scaling corrections
by comparing the rescaled results for different values ofH.
In the following, we first determine a fit for the scaling

function in Widom-Griffiths parametrization. We found
this to be the most convenient parametrization, and also
the one most sensitive to deviations from scaling, so that it
provides the most stringent test. We will then compare the
results to those from the lattice and the � expansion. After
translating the results into the more intuitive scaling form
fðzÞ as a function of the scaling variable z, we compare our
parametrization to results at large values of the external
field and demonstrate deviations from scaling.

A. Scaling function in Widom-Griffiths
parametrization

1. Phenomenological Ansatz for the scaling function

We start our analysis with the results for H ¼
1:0	 10�4 MeV5=2, H ¼ 1:0	 10�3 MeV5=2, and H ¼
1:0	 10�2 MeV5=2, since corrections to the leading-order
scaling behavior are small in this range. This allows us to
obtain a simple but quite decent parametrization of the
scaling function y ¼ yðxÞ. For the fitting procedure, we
estimate errors due to corrections to scaling by comparing
the results after rescaling for the different values of H.
For small values of x close to the coexistence point x ¼

�1, it is natural to expand the equation of state in terms of
ð1þ xÞ. Inspired by Eq. (19), we fit the phenomenological
expression

yðxÞ ¼ cð1þ xÞ
 (56)

to our results, which provides a surprisingly good fit with

JENS BRAUN AND BERTRAM KLEIN PHYSICAL REVIEW D 77, 096008 (2008)

096008-10



only two parameters. Since this expression behaves as
yðxÞ ’ cx
 for large values of x � 1, it reproduces the
leading term of the expansion (16), provided 
 ¼ �.
Therefore this form also suggests itself for a global fit of
the results. In a small region around x ¼ �1, ð1þ xÞ &
10�2 [25,27], the value of 
 is determined by mean-field
theory and is given by 
x¼�1 ¼ 2 [25,26]. In our calcula-
tion, we have explicitly confirmed the presence of the
Goldstone singularities which are responsible for this be-
havior. We find that in accordance with the predictions of
[25], the longitudinal and transverse susceptibilities be-

have as 	�H�1=2 and 	T �H�1 for t < 0 sufficiently
far away from the critical point. As expected, our calcu-
lation in the local-potential approximation does of course
capture the behavior expected from mean-field theory.
Because of these constraints, 
 itself can in general be
considered as a function of the scaling variable x, similar
to an effective critical exponent [27,28]. Our result pro-
vides an average value for this effective exponent over the
fitting region. For any practical purposes, we find the result
of such an average fit is unaffected by the small region in
which the Goldstone modes dominate, although their ef-
fects are undoubtedly present.

We first restrict ourselves to the range �1< x < 1. The

fit to the data for H ¼ 1:0	 10�4 MeV5=2, H ¼
1:0	 10�3 MeV5=2, and H ¼ 1:0	 10�2 MeV5=2 is
shown in Fig. 1. The field H varies over 2 orders of
magnitude, yet the rescaled results fall neatly onto a single
scaling curve. For these extremely small values of H,
corrections to the leading scaling behavior are very small.
In the plot, for x < 1 the differences between the scaled
results are smaller than the width of the symbols.
For a global fit, we use all points in the range�1< x<

5:3	 104. The result is dominated by the behavior at
asymptotically large values of x. Therefore we shall refer
to this as an asymptotic fit. Using the scaling laws, we find
from our values for the critical exponents �, �, and � for
the critical exponent �

� ¼ ð2� �Þ� ¼ 1:611ð12Þ;
� ¼ �ð�� 1Þ ¼ 1:601ð24Þ; (57)

which is still compatible with the result expected from the
asymptotic behavior when we identify

� ¼ 
 ¼ 1:594ð1Þ: (58)

Below we also perform a fit to the exact expression of
Griffiths’ expansion, including the next correction term.
This leads to the value � ¼ 1:5997ð1Þ, in perfect agree-
ment with the result from the scaling laws.
The values for the fit parameters for both the range

�1< x< 1 and the global range �1< x< 5:3	 104

are given in Table IV. The quality of the fit for small x is
better, and it appears that the correction terms to the
leading behavior in Griffiths’ expansion for large x become
important. Incidentally, the fits to the scaling function for
large and small x values differ only in the value of the
exponent 
, and have the same value for the coefficient c.
In Fig. 3, our results for the scaling function for both

small and large x are compared to the fit to lattice
Monte Carlo results from [34], to the result from � expan-
sion [33], and to the result from Parisen Toldin et al. [35]
over the interval �1< x< 1. For x < 0, our fits and the
results from the lattice simulations, with which the result
from Parisen Toldin et al. nearly coincides, are very close
together and have a significantly larger curvature than the
�-expansion result. For x > 0, all curves diverge quickly:
The asymptotic behavior is determined by the value of the
critical exponent �, and the values in our calculation and
the lattice simulation differ. The result [33] from the �
expansion satisfies the asymptotic behavior only order by
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FIG. 1 (color online). Scaled RG results yðxÞ for H ¼ 1:0	
10�4, 1:0	 10�3, and 1:0	 10�2 MeV5=2. Errors are esti-
mated from the spread of the data points after rescaling and are
due only to scaling corrections. Not all data points are displayed.
Shown are further fits to the small-x values x < 1 (solid black
line, small-x fit) and to all x-values up to approximately x ¼
5:3	 104 (dashed blue line, asymptotic fit).

TABLE IV. Fit to the rescaled order parameter for H ¼ 1:0	 10�4, 1:0	 10�3, 1:0	
10�2 MeV5=2 with the Ansatz yðxÞ ¼ cð1þ xÞ
. The scaling deviation is estimated from the
spread of the rescaled susceptibility. Shown are separate fits for the range �1< x< 1 and for
the global fit �1< x< 5:3	 104.

x-range c 
 	2 #d.o.f. 	2=#d:o:f:

�1< x< 1 0.9928(14) 1.6712(27) 568 838 0.6778

�1< x< 5:3	 104 0.9928(21) 1.5941(8) 3682 1551 2.374
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order in �, but not explicitly, and is not a good description
of the scaling function for x > 0. The lattice results and the
scaling function from Parisen Toldin et al. exhibit the same
behavior in this region. In addition, we also plot the scaling
function obtained by using the functions mð�Þ and hð�Þ as
determined by Parisen Toldin et al., but using our values
for the critical exponents instead of the high-accuracy
values from [35]. As can be seen in the figure, using these
values for the critical exponents, we find good agreement
with our result for the scaling function. This supports our
conclusion that the deviation of our result for the scaling
function from the lattice results can be explained primarily
by the difference in the values for the critical exponents,
which in turn can be traced back to the restriction to local
couplings in our calculation.

We adapt the interpolation idea of Eq. (32) from [34] to
parametrize the scaling function yðxÞ over the full range of
x values by combining the two-parameter fit for x < 1 and
the two-parameter fit for large x values which captures the
asymptotic behavior determined by the exponent �. We
find that the result is not very sensitive to the exact point x0
at which we switch from one functional form to the other,
as long as 0 � x0 & 10, but smaller values give a slightly
better interpolation. A suitable parametrization is

yðxÞ ¼ ð1þ x0Þ2
ð1þ x0Þ2 þ ð1þ xÞ2 csð1þ xÞ
s

þ ð1þ xÞ2
ð1þ x0Þ2 þ ð1þ xÞ2 clð1þ xÞ
l

with cs ¼ 0:9928;


s ¼ 1:6712; cl ¼ 0:9928;


l ¼ 1:5941; x0 ¼ 0:

(59)

We will use this expression together with the relations (11)
to obtain the scaling function in the form fðzÞ for later
comparison with additional results.

2. Scaling behavior for small x

For a determination of the scaling function for small x,

we will use only the results forH ¼ 1:0	 10�4 MeV5=2 in
the range �1< x < 1. The corrections to the scaling be-
havior are small only if the external symmetry-breaking
field is small, and this value is the smallest one for which
we calculated results over a reasonably large range of
values for the scaling variable z.
Here we estimate the scaling corrections by comparing

to the results with H ¼ 2:0	 10�4 MeV5=2. Because of
the normalization yð0Þ ¼ 1, the error is minimal at x ¼ 0.
It is largest close to x ¼ �1. The relative error due to
scaling corrections is less than 0.04 in the limit x ! �1,
and for x >�0:75 it drops to less than 0.01. In the region
0< x < 1, the relative error is less than 0.0005.
The results [26,33,67] from the � expansion suggest

from the expansion around x ¼ �1 to attempt a fit of the
form

yðxÞ ¼ ð1þ xÞ½l0 þ l1 logð1þ xÞ þ l2log
2ð1þ xÞ þ . . .�;

(60)
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Engels et al.
ε-expansion
RG
Parisen Toldin et al.
Parisen Toldin et al., 
 our crit. exp.

FIG. 3 (color online). Comparison of the results for the
Widom-Griffiths scaling function yðxÞ, where x ¼ t=M1=�

and y ¼ h=M� (M> 0). The RG result for H¼1:0	
10�4 MeV5=2 is shown as a black solid line. The fit to the
Oð4Þ lattice data from [34] (red dashed line, lattice data fit)
differs from our results for large x values due to the different
values for the critical exponents. The result from the � expan-
sion [33] (green dot-dashed line) is valid only for x < 0 and
displays a significantly smaller curvature than both our RG result
and the Oð4Þ lattice simulation result. The result for the scaling
function from Parisen Toldin et al. [35] with high-accuarcy
values for the critical exponents (orange dot-dash-dashed line)
agrees with the lattice results. If we substitute our values for the
critical exponents in the parametric expression from [35], we
find agreement with our RG result (blue dot-dot-dashed line).
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FIG. 2 (color online). Scaled RG results yðxÞ for H ¼ 1:0	
10�4, 1:0	 10�3, and 1:0	 10�2 MeV5=2. Errors are esti-
mated from the spread of the data points after rescaling (so they
are mainly due to the appearance of scaling corrections). Not all
data points are displayed. The fit to all x values up to approxi-
mately x ¼ 5:3	 104 is also shown (black dashed line, asymp-
totic fit).
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which is only expected to hold for ð1þ xÞ � 1, or from the
proposed expansion (28)

yðxÞ ¼ b2ð1þ xÞ2 þ a3ð1þ xÞ3=2 þ b1ð1þ xÞ
þ a1ð1þ xÞ1=2 þ . . . : (61)

Assuming that the � expansion can be resummed, a third
possibility is our phenomenological expression

yðxÞ ¼ cð1þ xÞ
ð1þ d1ð1þ xÞ1=2 þ d2ð1þ xÞ þ . . .Þ:
(62)

We will take these possible expansions in turn. The results
for the logarithmic expression (60) are given in Table V.
We find that this expression is not suitable to fit our results
over the range we consider here. This is not unexpected,
since the expansion is only valid close to x ¼ �1. Both the

expression (61) and (62) describe the results about equally
well, the first one perhaps a little better. The coefficients
are given in Tables VI and VII. For practical purposes, both
descriptions are equivalent.
In [26,34], the equation of state is parametrized in

inverted form as x ¼ xðyÞ, and the terms expected from
the � expansion in d ¼ 3 (� ¼ 1) are

1þ x ¼ ~c2y
1=2 þ ð~c1 þ ~d3Þyþ ~d2y

3=2 þ . . . : (63)

To make a direct comparison to our results easier, we also

used this form of the equation for a fit to the results forH ¼
1:0	 10�4 MeV5=2 in the range 0< y < 1:5.
The coefficients are given in Table VIII. The coefficient

~d2 has not been calculated in the � expansion. For the
comparison to the lattice results, please keep in mind that

TABLE VII. Coefficients for the fit yðxÞ ¼ cð1þ xÞ
ð1þ d1ð1þ xÞ1=2 þ d2ð1þ xÞÞ to the
284 points in the region �1< x< 1. Both the three- and the four-parameter fits are a reasonable
description of the results for H ¼ 1:0	 10�4 MeV5=2.

c 
 d1 d2 	2 #d.o.f. 	2=ð#d:o:f:Þ
1.0031(5) 1.6472(20) 
 
 
 
 
 
 3:0	 104 282 106.3

1.2242(27) 1.7542(14) �0:179ð2Þ 
 
 
 431.4 281 1.536

1.390(9) 1.797(2) �0:332ð7Þ 0.055(3) 77.18 280 0.2756

TABLE V. Fit of the form yðxÞ ¼ ð1þ xÞ½l0 þ l1 logð1þ xÞ þ l2log
2ð1þ xÞ�. The Ansatz

proves to be not suitable to fit our results over the range �1< x< 1.

l0 l1 l2 	2 #d.o.f. 	2=#d:o:f:

0.980(5) 0.506(16) 
 
 
 2:7	 106 282 9586

1.0058(6) 0.642(3) 0.135(2) 39963 281 142.3

1.111 42 0.273 902 �0:015 625 D. J. Wallace and R.K. P. Zia [26]

TABLE VI. Coefficients for the fit yðxÞ ¼ a3ð1þ xÞ3=2 þ b1ð1þ xÞ þ a1ð1þ xÞ1=2 þ b2ð1þ
xÞ2 to the 284 points in the region �1< x< 1. The fit with three parameters provides a
reasonable description of our results for H ¼ 1:0	 10�4 MeV5=2.

a3 b1 a1 b2 	2 #d.o.f. 	2=ð#d:o:f:Þ
0.9661(13) 
 
 
 
 
 
 
 
 
 2:3	 106 283 8153

1.2619(52) �0:2601ð45Þ 
 
 
 
 
 
 5:0	 104 282 178.1

1.3457(8) �0:3977ð12Þ 0.0561(5) 
 
 
 277.6 281 0.9879

1.3051(49) �0:3676ð63Þ 0.0495(9) 0.0170(20) 140.4 280 0.5014

TABLE VIII. Fit to the equation of state in inverted form, 1þ x ¼ ~c2y
1=2 þ ð~c1 þ ~d3Þyþ

~d2y
3=2, from our results for H ¼ 1:0	 10�4 MeV5=2 in the region 0< y< 1:5, compared

results from the � expansion and from Oð4Þ spin model lattice calculations.

~c2 ~c1 þ ~d3 ~d2

0.681(4) 0.391(8) �0:074ð4Þ our result

0.674(8) 0.345(12) �0:023ð5Þ J. Engels and T. Mendes [18,34]

0.746(3) 0.19(1) 0.061(8) A. Cucchieri and T. Mendes [32]

0.530 0.528 
 
 
 D. J. Wallace and R.K. P. Zia [26]
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our results have an additional systematic error not included
in the fit uncertainty given in the table. While strictly
speaking the results from the spin model lattice calculation
[18,34] and from our results do not agree within the errors,
they are remarkably consistent with each other, in particu-
lar, when compared with the perturbative results from the �
expansion: The values for the leading coefficient, ~c2, agree

within 1%. The values for the subleading coefficent, ~c1 þ
~d3, differ only by about 10%. In contrast, both our results
and the lattice results differ from the perturbatively calcu-
lated coefficients from the � expansion by more than 20%–
30%.

3. Asymptotic scaling behavior

Griffiths’ expansion (16) can be used to describe the
results for large values of x, and to determine the critical
exponent � to high accuracy. A comparison to the value
obtained with the scaling laws from the other exponents
serves as a consistency check for our results. We use for the
fit

yðxÞ ¼ c1x
� þ c2x

��2� þ c3x
��4� þ . . .

¼ x�ðc1 þ c2x
�2� þ c3x

�4� þ . . .Þ (64)

with � as a free parameter. In order to retain the hierarchy
of the corrections in the expansion, we use the previously
determined value � ¼ 0:4030ð30Þ and keep it fixed. Since
�� 4� � �� 2� � 0 according to the d ¼ 3 scaling
laws, only the exponents of the first two terms in
Griffiths’ expansion are positive and contribute signifi-
cantly for large x. The additional terms with n > 3 are
small corrections for large x, but diverge for x ! 0 where
the expansion is no longer valid.

We fit again only to the results for H ¼ 1:0	
10�4 MeV5=2 and estimate scaling corrections from a

comparison to the results for H ¼ 2:0	 10�4 MeV5=2.
Only points with x > 100 are included, so we can be
certain to be in a region where the expansion is valid.
The results for the coefficients and the exponent � are
given in Table IX. The inclusion of more than the first
two terms does not lead to a meaningful improvement of
the fit quality. As already noted above, the results for the
critical exponent � ¼ 1:5997ð1Þ are in perfect agreement
with the determination from the scaling laws.

We can also use the asymptotic scaling behavior to
check the compatibility of our results with those of
Cucchieri and Mendes [32] and Parisen Toldin et al. [35]
in terms of the parametric representation (22).
Asymptotically matching Griffiths’ expansion to the para-
metric representation, one finds for the leading coefficient
c1 ¼ �5��

0 ð�20 � 1Þ��2. With our results for the critical

exponents, we find the estimate �20 ¼ 2:1ð1Þ. This is in

agreement with the result �20 ¼ 2:16ð2Þ from [32], but

does not quite agree with the result �20 ¼ 2:795ð40Þ from
[35].

B. Scaling behavior for large fields

After having determined the scaling function from re-
sults with small values of the symmetry-breaking field H,
we now compare these results to the scaling behavior at
much larger values of H. For this purpose, we also switch
to the more intuitive description by means of the scaling
function fðzÞ.
With the help of Eqs. (11) and the critical exponents, the

parametrization Eq. (59) implicitly also provides a parame-
trization of the scaling function in the form fðzÞ. In Fig. 4,
the interpolation function fðzÞ obtained from the parame-
trization Eq. (59) is compared to the rescaled results for the

order parameter M=h1=� for H ¼ 1:0	 10�4 MeV5=2 as a
function of z. On the scale of the plot, the agreement is
perfect. The scaling form fðzÞ is less sensitive to small
changes in M than the Widom-Griffiths scaling form yðxÞ

TABLE IX. Fit to Griffiths’ expansion yðxÞ ¼ x�ðc1 þ
c2x

�2� þ c3x
�4� þ . . .Þ, for x > 0, M>M0 > 0. We fit only

to the results for H ¼ 1:0	 10�4 MeV5=2 and only to points
with x > 100.

� c1 c2 	2 #d.o.f. 	2=#d:o:f:

1.5948(4) 0.9855(25) 
 
 
 2144 204 10.51

1.599 73(4) 0.942 94(28) 1.196(8) 4.186 203 0.02062
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FIG. 4 (color online). The parametrization of the scaling func-
tion yðxÞ in terms of the scaling variables x and y provides an
implicit parametrization of the scaling function fðzÞ. Shown is a
comparison of fðzÞ from the interpolated fit Eq. (59) with the
rescaled results for H ¼ 1:0	 10�4 MeV5=2 (blue circles, for
clarity not all points are shown). The fit is perfect on the scale of
the plot. The asymptotic behavior of yðxÞ for x ! 1 determines
the behavior of the fit for z * 0:5. Using the parametrization in
terms of only the small-x behavior underestimates fðzÞ in this
region. In this region, the results from the � expansion show the
largest deviation.
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and thus the agreement appears to be even better than for
the fit in the form yðxÞ.

Using the appropriate values for the critical exponents,
we can also translate the scaling functions from the �
expansion [33], from the lattice simulations [34], and
from [35] into this form. The comparison to our results

for H ¼ 1:0	 10�4 MeV5=2 is shown in Fig. 5 for the
� expansion, in Fig. 6 for the lattice results, and in Fig. 7
for the result from [35]. Since fðzÞ ! ð�zÞ� for z ! �1,
the differences in the values of the critical exponents lead
to different behavior of the scaling functions. To illustrate
this, the asymptotic behavior for the different values of� is
also shown in the plots, and the scaling functions can be
seen to approach the asymptotic functions.

The result from the � expansion shows the largest de-
viation from our results for z * 0:5, which corresponds to
the deviation observed in yðxÞ at large x values, where the
expansion is not a good description of the scaling function.

The agreement between our results and those from the
lattice simulations is much better. Most of the difference at
large negative z values can be attributed to the different
value of the critical exponent �. For values of z > 1, the
difference can be attributed to the deviation observed in
yðxÞ for large x values, and thus ultimately to the difference
in the value for the critical exponent �. Overall we consider
the agreement quite satisfactory.

The comparison to the scaling function from
Parisen Toldin et al. is shown in Fig. 7. The agreement is

marginally better than for the lattice results, but again
differences appear for large negative z values, which can
be attributed to the different values of �, and for z > 1,
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O(4), d = 3

FIG. 5 (color online). Plot of the scaling function fðzÞ as a
function of z. Shown are results from our calculation for H ¼
1:0	 10�4 MeV5=2 (black solid line) and from the �-expansion
calculation to Oð�2Þ of Brézin et al. [33] (green dashed line).
For comparison, we also plot the expected asymptotic behavior
fðzÞ ! ð�zÞ� for � ¼ 0:390 (� expansion) (dot-dashed green
line) and for � ¼ 0:403 (our result) (dotted black line). The
behavior of the scaling functions for large negative values of z is
again determined by the different values of the critical exponent
�. The �-expansion result is expected to provide a good
description only for t < 0. We find that indeed the deviation
from our scaling function is large for z * 0:5.
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FIG. 6 (color online). Plot of the scaling function fðzÞ as a
function of z. Shown are results from our calculation for H ¼
1:0	 10�4 MeV5=2 (black solid line) and from the calculation of
Mendes and Engels [34] (using the parametrization as given in
[18]) (red dashed line). For comparison, we also plot the ex-
pected asymptotic behavior fðzÞ ! ð�zÞ� for � ¼ 0:380
(Mendes and Engels) (dot-dashed red line) and for � ¼ 0:403
(our result) (dotted black line). As expected, the behavior of the
scaling functions for large negative values of z is determined by
the different values of the critical exponent �.
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FIG. 7 (color online). Plot of the scaling function fðzÞ as a
function of z. The RG results from our calculation with H ¼
1:0	 10�4 MeV5=2 are represented by the black solid line, and
the result from Parisen Toldin et al. from [35] is shown as a
dashed orange line. The asymptotic behavior fðzÞ ! ð�zÞ� for
� ¼ 0:388 (Parisen Toldin et al.) (dot-dashed orange line) and
for � ¼ 0:403 (our result) (dotted black line) is shown as well.
Plotting the scaling function from [35] with our values for the
critical exponents (blue dot-dot-dashed line), we find substantial
agreement with our results.
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where they can be attributed to the difference in the value
for �. Since the scaling function is given in parametric
form, we can test this hypothesis by replotting the results
using the functionsmð�Þ and hð�Þ from [35], but our values
for the critical exponents. We find significantly improved
agreement with our result, which strongly supports the
conclusion that most of the difference is indeed due to
the difference in critical exponents.

The scaling behavior of the order parameter can be
demonstrated very nicely in this scaling form with our
results. Having first confirmed the agreement between

our scaling function fðzÞ and the rescaled results for H ¼
1:0	 10�4 MeV5=2 in Fig. 4, we now compare these re-
sults to results for a wide range of values for H.

In Fig. 8, we consider small values of H in the range

from H ¼ 1:0	 10�4 to H ¼ 1:0	 10�3 MeV5=2. In the
left-hand panel, the order parameter M is plotted as a
function of the reduced temperature t for the different
values of H. In the right-hand panel, the rescaled order

parameter M=h1=� is plotted as a function of z ¼ t=h1=ð��Þ
for the same H values. After rescaling, the curves for all
values ofH fall onto a single line and are indistinguishable
at the scale of the plot. This agrees with our observation in
the Wisdom-Griffiths scaling analysis, where scaling cor-
rections were also negligible in this H range.

However, for larger values of H, corrections to the
scaling behavior soon become apparent. In Fig. 9, we

show results in the range from H ¼ 1:0 MeV5=2 to H ¼
1:0	 103 MeV5=2. Again both the order parameter as a
function of temperature and the rescaled order parameter
as a function of z are shown. For comparison, the rescaled

results for H ¼ 1:0	 10�4 MeV5=2 and the asymptote
ð�zÞ� are shown with the rescaled results. While the
curves for different values ofH still collapse after rescaling
in the vicinity of the critical temperature, the deviations
from the scaling function become quite large, and they are

already plainly visible for fields of the order H ¼
10:0 MeV5=2.

InWidom-Griffiths scaling form, the deviations from the
leading-order scaling behavior are even more starkly vis-

ible, and corrections appear significant for fields H >

1:0	 10�2 MeV5=2.
The corrections to the leading-order scaling behavior are

due to the effects of operators that are irrelevant at the
critical fixed point. The leading irrelevant operator is asso-
ciated with an exponent ! which appears in the correction
terms according to

Mðt; hÞ
h1=�

¼ fð0ÞðzÞ þ h!�=ð��Þfð1ÞðzÞ þ . . . : (65)

With the value ! ¼ 0:7338 obtained in [38,57] for the
Oð4Þ model in three dimensions, obtained in the same
approximation and RG scheme as the one in the present
calculation, one finds

!�

��
¼ 0:2949:

Fitting the scaling corrections in this form over the full
range of h values shown in Fig. 9 for z values �5< z < 5
in a region close to the critical temperature, we find

!�

��
¼ 0:271ð28Þ;

which is in agreement with the expectation, albeit with a
large error. Nevertheless, we find that the observed devia-
tions from scaling are compatible with the behavior pre-
dicted by the RG.
In conclusion, we find that we can extract a parametri-

zation of the scaling function in Widom-Griffiths form y ¼
yðxÞ from our results for the order parameter at small
values of the field H. The scaling function fðzÞ can be
obtained from this parametrization, and the agreement with
the order parameter in this scaling form is also very good.
These results are also in satisfactory agreement with the
results for the scaling function from the Oð4Þ spin model
lattice simulations [34] and the results from [35], and the
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FIG. 8 (color online). Order parameter as a function of the reduced temperature t for very small values of the external field H from
1:0	 10�4 to 1:0	 10�3 MeV5=2 (left panel), and for the rescaled order parameter M=h1=� as a function of z ¼ t=h1=ð��Þ (right
panel). The t ranges for the different values of H are chosen such that z covers the range �10 . . . 10 after rescaling. On the scale of
the plot in the left-hand panel, a deviation from the scaling behavior is not visible in this range of values.
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principal differences can be explained by the difference in
the values of the critical exponents.

Beyond small values of the external field H, we find
consistently in both scaling forms, yðxÞ and fðzÞ, that
corrections to scaling become large and the results deviate
from the scaling function away from the critical tempera-
ture. The scaling deviations can be discerned more readily
in the Widom-Griffiths scaling form. They are compatible
with the predictions of the RG.

VI. SUSCEPTIBILITY

The susceptibility affords us an additional opportunity to
test our results for the scaling function. As outlined in the
discussion of the scaling behavior in Sec. II, the scaling
function for the susceptibility is completely determined by
the scaling function for the order parameter and by the
critical exponents

H0h
1�1=�	 ¼ 1

�

�
fðzÞ � z

�
f0ðzÞ

�
; or

½H0M
��1	��1 ¼ �yðxÞ � 1

�
xy0ðxÞ:

From a view focussing on the effective potential, this
relation is a priori far from obvious: the order parameter
is determined as the minimum from the first derivative of
the effective potential, the susceptibility from the second
derivative, which is related to the masses of the longitudi-
nal fluctuations and the four-point interaction. For this
reason we consider this to be a significant test not only
of our result for the scaling function, but also of our
approach in general.

In the following, we will proceed in the same way as for
the order parameter. We will first determine the scaling
function for the susceptibility in Widom-Griffiths form
from small values of the eternal field H, and then proceed
to larger values. We will compare the determination of the
scaling function from the susceptibility to the determina-
tion from the order parameter. For completeness, we also

compare to the scaling function obtained from the lattice
scaling function for the order parameter.

A. Scaling function in Widom-Griffiths
parametrization

1. Phenomenological Ansatz for the scaling function

As for the order parameter, we fit a two-parameter
Ansatz yðxÞ ¼ cð1þ xÞ
 for the equation of state to the

results for H ¼ 1:0	 10�4 MeV5=2, H ¼ 1:0	
10�3 MeV5=2, and H ¼ 1:0	 10�2 MeV5=2. The size of
the scaling corrections is estimated from the spread of the
rescaled results for these values of H. Inserting the Ansatz
in the expression for the rescaled susceptibility, one obtains

�yðxÞ � 1

�
xy0ðxÞ ¼ cð1þ xÞ


�
�� 


�

x

1þ x

�
; (66)
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FIG. 9 (color online). Results for the order parameter as a function of the reduced temperature t for different values of the field H
(left-hand column), and for the rescaled order parameter M=h1=� as a function of the scaling variable z ¼ t=h1=ð��Þ (right-hand
column). For comparison, the scaling function obtained from the result for H ¼ 1:0	 10�4 MeV5=2 (solid black line) and the
asymptotic behavior of the scaling function ð�zÞ� (dashed black line) are shown with the rescaled results.
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FIG. 10 (color online). Results for the inverse scaled suscep-
tibility ½H0M

��1	��1 for H ¼ 1:0	 10�4, 1:0	 10�3, and
1:0	 10�2 MeV5=2 (not all points are shown). We estimate an
error due to the scaling violations from the spread of the results.
Shown are in addition the fits for small x values x < 1 (solid
black line), and from all values up to approximately x ¼ 5:3	
104 (dashed blue line, asymptotic fit).
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which we use to fit the inverse rescaled susceptibility. The
critical exponents � and � are kept fixed at the previously
determined values.

The results for the separate fits in the range �1< x < 1
and in the range�1< x< 5:3	 104 are shown in Figs. 10
and 11. Scaling for the susceptibility, here over 2 orders of
magnitude for the field H, is clearly observed, with small
corrections at these values of H. By comparing the results
at large x in Fig. 11 for the susceptibility to the results in
Fig. 2 for the order parameter, one can already see an
indication that �yðxÞ � 1

� xyðxÞ0 ’ yðxÞ as expected from

Griffiths’ expansion. We will check this more rigorously
below when we analyze the asymptotic behavior.

The coefficients for the two-parameter fits are shown in
Table X. They can be compared directly to the coefficients
from the fit to the rescaled order parameter in Table IV.
While the agreement is perfect (better than 0.1%) only for
the exponent 
 for the large-x region, which corresponds to
the critical exponent �, all parameters agree to better than
2%.

We can find a global expression for the rescaled suscep-
tibility that interpolates between the small-x and the
large-x behavior, just as for the order parameter. We first

form the combinations

�yðxÞ � 1

�
xy0ðxÞ

for the large-x and the small-x region separately, and then
combine them with interpolation factors

½M��1H0	��1 ¼ ð1þ x0Þ2
ð1þ x0Þ2 þ ð1þ xÞ2 csð1þ xÞ
s

	 �

�
1� 
s

��

x

1þ x

�

þ ð1þ xÞ2
ð1þ x0Þ2 þ ð1þ xÞ2 clð1þ xÞ
l

	 �

�
1� 
l

��

x

1þ x

�
: (67)

For the coefficients, we give both the values obtained
directly from the susceptibility, and the values obtained
from the order parameter in Table XI. For all practical
purposes, these functions are indistinguishable from one
another. This is illustrated in Fig. 12. Thus the predictions
of scaling are borne out by our results, and the scaling
function for the susceptibility is already predicted by the
scaling function for the order parameter.
This result can be compared to the interpolated parame-

trization of the lattice results from Engels and Mendes. We
use the parametrization xðyÞ for small and large x values
obtained from the order parameter. For both regions we
first form the combinations

½M��1H0	��1 ¼ �y� 1

�

x

x0ðyÞ ;

where in this case y is treated as the independent variable.
We then use the interpolation prescription Eq. (32) to
obtain a result valid over a wide y range. For the compari-
son in terms of x and y and for small x values, the resulting
curve is also shown in Fig. 12 as the lattice data fit. The
difference in the slope is to a large part once again due to
the difference in the values for the critical exponents. We
also show the result for the scaling function from
Parisen Toldin et al. [35], which almost coincides with
the lattice result, but which also uses slightly different
values for the critical exponents and thus has a different
asymptotic behavior.
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FIG. 11 (color online). Results for the inverse scaled suscep-
tibility ½H0M

��1	��1 for H ¼ 1:0	 10�4, 1:0	 10�3, and
1:0	 10�2 MeV5=2 (not all points are shown). The fit to all data
points is also shown (asymptotic fit, blue dashed line). From
comparison to the equation of state yðxÞ in Fig. 2 it is apparent
that for large x indeed �yðxÞ � 1

� xyðxÞ0 ’ yðxÞ as expected from
Griffiths’ expansion and the scaling laws (see discussion of the
asymptotic behavior below).

TABLE X. Fit to the inverse rescaled susceptibility for H ¼ 1:0	 10�4, 1:0	 10�3, 1:0	
10�2 MeV5=2 with Ansatz for the equation of state of the form yðxÞ ¼ cð1þ xÞ
. The scaling
corrections are estimated from the spread of the rescaled susceptibility. Shown are separate fits
for the range �1< x< 1 and for �1< x< 5:3	 104.

x range c 
 	2 #d.o.f. 	2=#d:o:f:

�1< x< 1 1.0009(19) 1.7018(33) 371.1 838 0.4428

�1< x< 5:3	 104 0.9802(27) 1.5954(12) 3754 1551 2.420
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2. Scaling behavior for small x

We will again determine the scaling function for small x

as accurate as possible from the results for H ¼
1:0	 10�4 MeV5=2 in the range �1< x< 1, where scal-
ing corrections are small. We estimate the scaling correc-
tions for the fit to the smallest-field results

H ¼ 1:0	 10�4 MeV5=2 by comparing the rescaled re-

sults to those of with H ¼ 2:0	 10�4 MeV5=2. Between
�0:5< x< 1, the scaling violation is less than 0.01%, and
becomes sizable (� 5%) only close to x ¼ �1. Using
these errors, we can judge how well the leading-order
scaling behavior fits the results.

We use the same Ansätze as for the order parameter.

With the Ansatz yðxÞ ¼ cð1þ xÞ
ð1þ d1ð1þ xÞ1=2 þ
d2ð1þ xÞÞ for the equation of state, one finds for the
scaling function of the susceptibility

�yðxÞ � 1

�
xy0ðxÞ ¼ �cð1þ xÞ
½1þ d1ð1þ xÞ1=2

þ d2ð1þ xÞ� � �cð1þ xÞ


	
�
1

��

x

ð1þ xÞ
�

þ

�

þ 1

2

�

	 d1ð1þ xÞ1=2 þ ð
þ 1Þd2ð1þ xÞ
��

:

(68)

We take the critical exponents from our original determi-
nation, and thus fit the result in this functional form with
the same number of parameters as for the order parameter.
The results are given in Table XII. They can be compared
directly to the results from the order parameter in
Table VII. The agreement with the parameters determined
from the order parameter is best for the fit with only two
parameters: we find c ¼ 1:0032ð3Þ and 
 ¼ 1:655ð2Þ from
the susceptibility, and c ¼ 1:0031ð5Þ and 
 ¼ 1:682ð3Þ
from the order parameter. The agreement for the coeffi-
cient c is perfect, and the values for the exponent 
 agree
within 2%. Even though the agreement of the coefficients
becomes worse when additional corrections are included,
the functions with parameters from the order parameter
and from the susceptibility remain within 0.4% of each
other over the interval �1< x< 1.

The Ansatz yðxÞ ¼ a3ð1þ xÞ3=2 þ b1ð1þ xÞ þ a1ð1þ
xÞ1=2 for the equation of state leads to the corresponding
expression

�

�
yðxÞ � 1

��
xy0ðxÞ

�
¼ �a3ð1þ xÞ3=2

�
1� 3

2

1

��

x

1þ x

�

þ�b1ð1þ xÞ
�
1� 1

��

x

1þ x

�

þ�a1ð1þ xÞ1=2
�
1� 1

2

1

��

x

1þ x

�
:

(69)

The coefficients are given in Table XIII. They should be
compared to those from the fit to the order parameter in
Table VI. Again, the leading-order coefficients agree
within 2% in the one-parameter, and within 5% in the
two-parameter fit. While the agreement between the coef-
ficients is not perfect, the agreement between the scaling
functions as such is actually better: For the three-parameter
fit, the scaling functions fitted directly to the susceptibility
and the one calculated from the fit to the order parameter
are within 0.01 of one another over most of the interval
(� 0:9< x< 1), i.e. the relative errors are less than 0.4%
for most of the interval (� 0:9< x< 1). Since the func-
tion itself approaches 0 for x ! �1, the relative errors
become large close to x ¼ �1.
Despite the differences in the coefficients that appear

when additional corrections are included, the determina-
tion of the scaling function from the susceptibility and the

TABLE XI. Coefficients for the phenomenological Ansatz for
the interpolated equation of state. Values in the upper row are
obtained from a fit to the susceptibility 	, values in the lower
row from the order parameter M.

cs 
s cl 
l x0

1.0009 1.7018 0.9802 1.5954 0 from 	, Table X

0.9928 1.6712 0.9928 1.5941 0 from M, Table IV
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FIG. 12 (color online). Comparison of different fits for the
universal function �yðxÞ � 1

� xy
0ðxÞ which describes the inverse

rescaled susceptibility. We show the function with parameters
obtained directly from a fit to our results for the rescaled
susceptibility (blue dot-dashed line), from our results for the
order parameter (black solid line), and from the order parameter
in the lattice simulation [34] (note that the values for the critical
exponents are different). For all practical purposes, there is
complete agreement between our curves with parameters from
the order parameter and with those from the susceptibility.
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one from the order parameter are completely equivalent for
all practical purposes.

3. Scaling behavior for asymptotically large x

Using Griffiths’ expansion Eq. (16) in the scaling func-
tion of the susceptibility, one finds that the leading-order
behavior of the scaling functions for the order parameter
and the susceptibility agree for large x (see, Eq. (17)),
provided the scaling law � ¼ �ð�� 1Þ holds. In the fol-
lowing, we test this by fitting Griffiths’ expansion to the
results from H ¼ 1:0	 10�4 for x > 100, once again with
the deviation from the scaling behavior estimated from the
difference to the results for H ¼ 2:0	 10�4 and used to
assess the quality of the fit. As for the order parameter, we
keep the values of the critical exponents � and � fixed to
the previously determined values, and treat � as a free fit
parameter.

The coefficients of the fit are given in Table XIV. They
should be compared to the results for the coefficients of the
equation of state in Table IX. Because of the scaling
relations between the critical exponents, the leading-order
terms of the scaling form for the order parameter, yðxÞ ’
c1x

�, and for the inverse susceptibility, �yðxÞ � 1
� xy

0ðxÞ ’
c1x

� are expected to coincide exactly.
With two fit parameters, the fit results for the exponent �

agree to within 0.0004, and the coefficients c1 to within

9%. Part of the difference for c1 is explained by the fact
that the exponent � satisfies the scaling law only to within
4%, which translates directly into a deviation for the
coefficient c1 and explains about half of the difference.
For the three-parameter fit (with �, c1, and c2 as fit

parameters), the agreement between the equation of state
yðxÞ from the order parameter and from the susceptibility is
perfect, the values for the critical exponent � agree to
within 0.0002, and the scaling law � ¼ �ð�� 1Þ is satis-
fied to better than 0.3% (see deviation from 1 in the last
column of the table).
We find the degree to which the relations between the

scaling functions are satisfied in our calculation truly re-
markable. On the one hand, we calculate the order parame-
ter from the minimum of the effective potential. On the
other hand, the longitudinal susceptibility 	 is calculated
from the mass m� of the longitudinal fluctuations, which
involves the curvature of the effective potential and is
a priori independent of the order parameter.
Nevertheless, we find that the values for the critical ex-
ponents and for the leading coefficients in the asymptotic
expansion of the equation of state agree perfectly.
In this region, this relation has been tested neither by

results from the � expansion, nor by results from lattice
simulations. For the � expansion, the large-x region is not
accessible, since the asymptotic behavior cannot be calcu-
lated explicitly, but only order by order in �. In spin model

TABLE XIII. Coefficients for the fit to the inverse scaled susceptibility in the region �1<
x< 1, using the Ansatz yðxÞ ¼ a3ð1þ xÞ3=2 þ b1ð1þ xÞ þ a1ð1þ xÞ1=2 for the equation of
state.

a3 b1 a1 	2 #d.o.f. 	2=ð#d:o:f:Þ
0.981 25(49) 
 
 
 
 
 
 3:4	 106 283 12 100

1.2855(17) �0:2839ð16Þ 
 
 
 7746 282 27.47

1.3678(16) �0:4409ð29Þ 0.0751(15) 196.9 281 0.7007

TABLE XIV. Coefficients for the fit to the inverse susceptibility in the region x > 100, using
the asymptotic expression yðxÞ ¼ x�ðc1 þ c2x

�2� þ c3x
�4� þ . . .Þ for the equation of state.

The deviation from 1 in the last column indicates the violation of the scaling law for the critical
exponents with the value of � from the fit.

� c1 c2 c3 	2 #d.o.f. 	2=#d:o:f: �ð�� 1=ð��ÞÞ
1.5844(12) 1.081(9) 
 
 
 
 
 
 9918 204 48.62 1.0411

1.599 88(5) 0.941 58(42) 1.2794(34) 
 
 
 4.2109 203 0.020 74 1.002 77

TABLE XII. Coefficients for the fit to the inverse scaled susceptibility in the region �1<
x< 1, using the Ansatz yðxÞ ¼ cð1þ xÞ
ð1þ d1ð1þ xÞ1=2 þ d2ð1þ xÞÞ for the equation of
state.

c 
 d1 d2 	2 #d.o.f. 	2=#d:o:f:

1.003 24(26) 1.6546(17) 
 
 
 
 
 
 3:0	 104 282 109.2

1.299(10) 1.7886(43) �0:229ð4Þ 
 
 
 2762 281 9.827

1.5344(49) 1.8472(13) �0:428ð4Þ 0.081(2) 98.51 280 0.3518
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lattice calculations, the equation of state has also not been
calculated this far in x and the asymptotic behavior has not
been tested to this extent. Engels and Mendes [34] confirm
the large-y behavior in the scaling form xðyÞ up to x & 150,
after inverting the equation of state yðxÞ approximately.

B. Scaling for large fields

We have determined the scaling function for the suscep-
tibility in the previous sections from results at small values
of H, and we were able to confirm the expected relations
with the scaling function for the order parameter.
Proceeding as for the order parameter, we now turn to
larger values of H where scaling corrections become
important.

The representation of the results in terms of Griffiths’
scaling variables x and y is not very intuitive, and we
therefore translate the results back into the scaling variable
z and the scaling function fðzÞ. In Fig. 13, the rescaled
susceptibility H0h

1�1=�	 ¼ 1
� ½fðzÞ � z

� f
0ðzÞ� for H ¼

1:0	 10�4 MeV5=2 is shown as a function of z, together
with the fit with parameters obtained from the order pa-
rameter. Apart from the slight difference at the peak, which
is most sensitive to scaling corrections, the scaling function
agrees very well with the results for the susceptibility. This
really confirms a prediction, since all parameters for the
curve are already determined from the order parameter,
and there is no freedom left. A direct fit to the susceptibility
in a second step only confirms how well the parameters
agree with each other.

A comparison of our results for H ¼ 1:0	
10�4 MeV5=2 to the scaling function for the susceptibility
predicted from the lattice spin model is shown in Fig. 14.
For z < 0 (in the phase with large symmetry breaking), the
agreement is very good, but in the phase with largely
restored symmetry, the susceptibility predicted by the or-
der parameter lattice scaling function is larger than the one
we calculate in the RG. Overall, we consider the agreement
still satisfactory.
In Fig. 15, we compare our result for the rescaled

susceptibility to the scaling function from Parisen Toldin
et al. [35]. Since this scaling function agrees well with the
lattice results, the picture is very similar to the one in
Fig. 14: The agreement is good to the left of the suscepti-
bility peak (z < 0), but the susceptibility from our results is
somewhat smaller to the right of the peak. We find that
most of the difference can again be attributed to the differ-
ent values of the critical exponents in our calculation.
When we calculate the scaling function from [35] with
our values for the critical exponents, we find good agree-
ment with our results.
We now demonstrate the scaling behavior of the suscep-

tibility by plotting the susceptibility rescaled in the form

H0h
1�1=�	 as a function of the scaling variable z. In

Fig. 16, results for small values of H ¼ 1:0	
10�4 MeV5=2 to H ¼ 1:0	 10�3 MeV5=2 are shown. In
the left panel, the susceptibility as a function of the reduced
temperature t is plotted for different values of H. In the

right panel, the rescaled susceptibility H0h
1�1=�	 is plot-

ted as a function of z ¼ t=h1=ð��Þ for the same values of H.
As for the order parameter, we observe that the results
collapse onto a single curve after rescaling. No scaling
corrections are discernible for these small values of H.
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FIG. 13 (color online). The parametrization y ¼ yðxÞ of the
equation of state in terms of the scaling variables x and y also
provides implicitly a parametrization of the scaled susceptibility
H0h

1�1=�	 ¼ 1
� ½fðzÞ � z

� f
0ðzÞ� in terms of the scaling variable

z. The scaling function (black solid line) with parameters ob-
tained from the order parameter, not the susceptibility itself, is
compared to the results for H ¼ 1:0	 10�4 MeV5=2 (blue
circles, for clarity not all points are shown). Apart from the
slight difference at the peak the fit is almost perfect. Within the
linewidth, the fit with parameters obtained from the order
parameter and the one with parameters obtained from the sus-
ceptibility directly (not shown) are indistinguishable in this plot.
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FIG. 14 (color online). Comparison of the parametrization of
the scaling function from the lattice results [34] (red dashed line)
to our results for H ¼ 1:0	 10�4 MeV5=2 (black solid line).
The agreement is very good below the critical temperature, but
deviations appear above Tc, to the right of the susceptibility
peak.
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However, as we increase the values for H, corrections to
scaling soon become apparent. In Fig. 17, we show our

results for the range H ¼ 1:0 MeV5=2 to H ¼ 1:0	
103 MeV5=2. Both the susceptibility as a function of t
and the rescaled susceptibility as a function of z are shown.

For comparison, we also plot the rescaled results for H ¼
1:0	 10�4 MeV5=2. Deviations from the scaling behavior

are already significant forH ¼ 10:0 MeV5=2, in agreement
with our observations for the order parameter.

The corrections to the scaling behavior become more
obvious when we again plot the results in Widom-Griffiths
scaling form. We find that the corrections already appear

significant for H > 1:0	 10�2 MeV5=2.

As for the order parameter, we have checked that the
corrections to the scaling behavior can be described in
terms of the expansion predicted by RG arguments.
Using the full range of h values shown in Fig. 17 for z
values �5< z < 5, we find the value

!�

��
¼ 0:290ð70Þ;

which agrees well with the result obtained for the order
parameter, and with the predicted value 0.2949, obtained
using ! ¼ 0:7338 from [38,57].
In conclusion, we were able to obtain the scaling func-

tion for the susceptibility in Widom-Griffiths scaling form
from the RG results at small values of H. This scaling
function satisfies the expected relations with the scaling
function obtained from the order parameter. In fact, we find
that the scaling behavior of the susceptibility is described
perfectly by the equation of state obtained from the order
parameter. The scaling behavior as a function of the scaling
variable z can be obtained from the parametrization as
well. Beyond small values of the field H, we find in both
scaling forms that corrections to scaling become large and
that the deviations from the scaling functions can become
significant.

VII. MASSES

So far we have discussed the universal scaling behavior
which is expected to apply to all systems with a critical
point governed by Oð4Þ symmetry. But for any scaling
analysis, it is an important question how large the scaling
region around the critical point actually is. This is not a
universal property, but very much dependent on the system
in question. Because the normalization constants T0 and
H0 are not universal but depend on the details of the
system, a direct extrapolation of the scaling region from
one system to a different one is not possible.
Universality only applies to the long-range behavior on

small momentum scales, but not to the details of the short-
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FIG. 15 (color online). Comparison of the parametrization of
the scaling function from Parisen Toldin et al. [35] (orange dot-
dashed line) to our results for H ¼ 1:0	 10�4 MeV5=2 (black
solid line). The largest differences appear to the right of the
susceptibility peak, as for the lattice comparison. As we did for
the order parameter, we replot the scaling function with the
parametrization from [35], but with our values for the critical
exponents (blue dot-dot-dashed line). Once again, we find that
the agreement is quite good, and that the difference can be
explained by the different values of the critical exponents.
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FIG. 16 (color online). Susceptibility as a function of the reduced temperature t for very small values of the external field H ¼
1:0	 10�4 MeV5=2 to H ¼ 1:0	 10�3 MeV5=2 (left panel), and rescaled susceptibility H0h

1�1=�	 as a function of z ¼ t=h1=ð��Þ
(right panel). The t ranges for the different values of H are chosen such that z covers the range �10 . . . 10 after rescaling. Within the
width of the symbols, the rescaled curves coincide exactly. Deviations from scaling are not visible at this scale.
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range interactions. For different systems within the same
universality class, on short scales in the UV regime the
physics can be very different, and thus it is also not possible
to fix scales for the scaling region from the UV behavior.

However, in the context of lattice simulations, a very
important technique for the scaling analysis are finite-size
studies. For a finite-size analysis, the length scale L pro-
vides an additional point to compare long-range behavior
of different systems, where the systems are comparable.
The quantity of interest for this behavior is the ratio of the
correlation length to the system size, �=L. Since the mass
of the longitudinal fluctuations is bounded by the mass of
the pseudo-Goldstone bosons, m� � m�, a useful measure
is given by m�L.

We have studied finite-size scaling for the Oð4Þ model
with the same choice of parameters as used in this work
[21,22]. Using the scale set by our choice of�, we find that
the fields required to map out the finite-size scaling behav-
ior for volume sizes of a few fm are much larger than the
ones employed in this calculation. Consequently, we ob-
serve large corrections to scaling in these calculations.

For the current choice of parameters, the masses are
shown in Fig. 18. Compared to absolute values on a had-
ronic scale, the masses of the fluctuations in the scaling
region in this calculation are very small, and scaling cor-
rections quickly become large for larger masses. However,

it remains possible that we can reach larger, more realistic
pion masses while still remaining inside the scaling region.
A change in the scale � changes the critical temperature
and the values of the normalization constants T0 and H0.
This could increase the size of the scaling region, while the
absolute value of m� and the dimensionless product m�L
could be kept constant.
The consequences of these observations for the analysis

of QCD lattice data are less clear. Since direct comparisons
are inadvisable, conclusions must remain somewhat specu-
lative. We find in our results for the order parameter for
large values of H that the results for the susceptibility as
well as the order parameter still appear to scale, i.e. they
are close together after rescaling, but show a large devia-
tion from the scaling function. Similar behavior is ob-
served in some lattice simulation studies, where scaling
with the critical exponents seems to take place for the
peaks in the chiral susceptibility, but no agreement with
the Oð4Þ scaling functions is found [68–70].

VIII. CONCLUSIONS

The Oð4Þ scaling function in three dimensions is impor-
tant for the scaling analysis of systems in this universality
class. QCD with two flavors is expected to fall into this
class, if the phase transition is second order for two mass-
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less quark flavors. In QCD lattice simulations, the symme-
try is broken by frequently large quark masses and a
scaling analysis is necessary to determine the actual order
of the phase transition. In addition, since lattice simula-
tions are performed in a finite volume, finite-size scaling
analysis is an important tool. Reliable knowledge about the
scaling functions improves the power of this analysis.

We have investigated scaling in theOð4Þmodel in d ¼ 3
with a nonperturbative RG calculation. In contrast to many
earlier investigations of scaling with functional RG meth-
ods, we have explicitly included an external symmetry-
breaking field H. Because of the presence of this field, we
chose not to work in a scale-free formulation, but retain the
dimensions of all quantities. The scale for the calculation is
set by our choice � ¼ 1:0 GeV for the initial RG scale.

We work throughout in a local-potential approximation
in which the anomalous dimension vanishes, � ¼ 0. To
ensure consistency of the analysis, we determine the criti-
cal exponents �, �, and �, and find good agreement with
other RG calculations in this approximation. The values
differ systematically from those of lattice Monte Carlo
simulations and from functional RG calculations with
momentum-dependent couplings, which can be explained
by the vanishing anomalous dimension.

We determine the scaling function for the order parame-
ter in Widom-Griffiths scaling form yðxÞ and as a function

fðzÞ of the scaling variable z ¼ t=h1=ð��Þ. We find good
agreement with the results from theOð4Þ spin model lattice
Monte Carlo simulations of Engels and Mendes and with
the results of Parisen Toldin el al. Differences of the
scaling function can be explained by the difference in the
values for the critical exponents. In addition, we explicitly
check Griffiths’ expansion of the equation of state for
asymptotically large values of the scaling variable, and
we recover the critical exponent � from the asymptotic
behavior. The value found in this way is in complete
agreement with the one obtained with the scaling laws.
We obtain a parametrization of the scaling function in
Widom-Griffiths form yðxÞ which provides a very good
description of our scaling results for small values of the
external symmetry-breaking field H. This parametrization,
together with the critical exponents, also provides a pa-
rametrization of the scaling function fðzÞ. This result can
be used for comparison in a scaling analysis, although
some caution is warranted due to the systematic error in
the values of the critical exponents, which is also reflected
in the scaling function.

For large values of the symmetry-breaking field, we still
observe scaling, but scaling corrections quickly become
large. In terms of the scaling variable z, the region in which
the scaled results fall onto the scaling curve shrinks con-
siderably with increasing H. We have covered 7 orders of

magnitude in H, from perfect scaling behavior to a region
where scaling violations become quite large. We observe
that the Widom-Griffiths scaling form is more sensitive to
scaling corrections than a rescaling as a function of z.
The scaling function for the longitudinal susceptibility is

obtained from a direct calculation of this susceptibility. We
confirm an important consequence expected from the criti-
cal scaling behavior and show that this scaling function is
already given by the scaling function of the order parame-
ter. We find very good agreement between the parameters
for the equation of state y ¼ yðxÞ obtained from fits to the
order parameter and the susceptibility. We further confirm
that the leading large-x behavior of the scaling functions
for the order parameter and the susceptibility coincide,
which is predicted by the scaling relations and Griffiths’
expansion.
Using the scaling form fðzÞ for the scaling function, we

find that the scaling function obtained from the order
parameter describes the rescaled susceptibility perfectly,
without any additional adjustments of parameters. At the
same time, this result is a remarkable validation of the
functional RG approach to scaling. The critical long-range
fluctuations, which are responsible for the critical scaling
behavior, are correctly included in the effective potential
from which we calculate the observables.
The large scaling corrections we observe for large values

of the symmetry-breaking field could have implications for
the scaling analysis of lattice QCD results, where scaling
behavior is observed, but no agreement with the Oð4Þ
scaling function is found.
An obvious improvement of these results can be

achieved by including a nonzero anomalous dimension in
the calculation, work in this direction is in progress. We
have also applied this approach to finite-size scaling in the
Oð4Þmodel [21,22], a more comprehensive presentation of
our results is forthcoming.
Overall, we have obtained a result for the scaling func-

tion of the Oð4Þ model in three dimensions which we hope
will prove useful, and we have demonstrated very clearly
some of the remarkable relations that follow from critical
behavior. The nonperturbative RG has proven to be a
suitable tool for this application.
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