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We examine the unparticle CP-conserving phase effects on the direct CP asymmetry for both polarized

and unpolarized leptons in the inclusive b! d‘þ‘� transition, where the flavor-changing neutral currents

are forbidden at tree level but are induced by one-loop penguin diagrams. The averaged polarized and

unpolarized CP asymmetries depict strong dependency on the unparticle parameters. In particular, a

sizable discrepancy corresponding to the standard model is achieved when the scale dimension value is

1< dU < 2. We see that the unparticle stuff significantly enhances, suppresses, or changes the sign of the

CP asymmetry depending on the definite value of the scaling dimension dU. Especially, when dU � 1:1

the CP asymmetries vanish.

DOI: 10.1103/PhysRevD.77.096005 PACS numbers: 11.30.Er, 13.20.He, 14.80.�j

I. INTRODUCTION

Georgi [1,2] has recently proposed unparticle stuff,
which can couple to the standard model (SM) particles at
the Tev scale. Unparticles are massless and invisible com-
ing out of a scale-invariant sector with noninteger scaling
dimension dU when decoupled at a large scale. The propa-
gator of these invisible unparticles includes a
CP-conserving phase, which is dependent on the nonin-
teger scaling dimension dU [2]. The virtual unparticle
propagation and its effects were first studied by Georgi
himself [2]. Moreover, the CP-conserving phase of the
unparticles and its effects in flavor-changing neutral-
current (FCNC) processes, especially in hadronic and
semileptonic B decays, have been studied in [3–6].

A phenomenological study needs a construction of the
effective Hamiltonian to describe the interactions of un-
particles with the SM fields in the low energy level [7] so
that we can investigate the effects of the possible scale-
invariant sector experimentally.

The direct search of the unparticles is based on the study
of missing energies at various processes which can be
measured at CERN LHC or a future International Linear
Collider (ILC). The indirect search includes the dipole
moments of fundamental particles, lepton flavor violation,
and FCNC processes, where the virtual unparticles enter as
a mediator. Note that the phenomenological studies con-
sidering the direct and indirect search on unparticles have
been progressing [2–14]: their effects on the missing en-
ergy of many processes; the anomalous magnetic mo-
ments; the electric dipole moments; D0 � �D0 and
B0 � �B0 mixing; lepton flavor-violating interactions; di-
rect CP violation in particle physics; and the phenomeno-
logical implications in cosmology and in astrophysics.

It is well known that in a decay process the existence of
direct CPA (ACP) requires first at least two different terms

in decay amplitude. Second, these terms must depend on
two types of phases named weak (�) and strong (�) phases.
The weak phase is CP-violating, and the strong phase is a
CP-conserving phase. The ACP depends on the interfer-
ence of a different amplitude and is proportional to the
phases, i.e.,

ACP / sinð�Þ sinð�Þ: (1)

The sizable value of ACP can be obtained if both phases are
nonzero and large. The weak phase of the SM is a unique
phase of the Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing matrix. This weak phase is a free parameter of the
SM and cannot be fixed by the SM itself, but it has been
fixed by experimental methods [15]. Unlike the weak
phase, the CP-conserving strong phase is process-
dependent (not unique). The theoretical calculation of the
strong phase is, in general, hard due to the hadronic uncer-
tainty. The CP-conserving unparticle phase existing in the
propagators beside the strong phase can affect the value of
the ACP in some decay processes [see Eq. (1)]. To explore
this possibility, Chen et al. concentrated on some pure
hadronic and pure leptonic B decays [3,8].
We aim to study the possible effects of the

CP-conserving phase in semileptonic B decays. Rare semi-
leptonic decays b! sðdÞ‘þ‘� are more informative for
this aim, since these decays are relatively clean compared
to pure hadronic decays. It is well known that the matrix
element for the b! s‘þ‘� transition involves only one
independent CKMmatrix element, namely, jVtbV�

tsj, so the
CP violation in this channel is strongly suppressed in the
SM considering the above-mentioned requirements of the
CPA, which requires the weak phase. However, the possi-
bility of CP violation as a result of the new weak phase
coming out of the physics beyond the standard model in
b! s transition has been studied in supersymmetry
[16,17], the fourth-generation standard model, [18–21]
and the minimal extension of the SM [22]. The situation
for b! d‘þ‘� is totally different from the b! s‘þ‘�*bashiry@ciu.edu.tr

PHYSICAL REVIEW D 77, 096005 (2008)

1550-7998=2008=77(9)=096005(8) 096005-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.096005


transition. In this case, all CKM matrix elements jVtdV�
tbj,jVcdV�

cbj, and jVudV�
ubj are in the same order, and for this

reason the matrix element of b! d‘þ‘� transition con-
tains two different amplitudes with two different CKM
elements; therefore, sizable CPA is expected [23,24].
Here we study the effects of the CP-conserving unparticle
phase on CP asymmetry in the b! d‘þ‘� transition with
unpolarized and polarized lepton cases.

This study encompasses four sections: In Sec. II, we
present the effective Lagrangian and effective vertices
which drive the FCNC decays with vector unparticle me-
diation. In Sec. III, we calculate the polarized and unpo-
larized CP asymmetries. Section IV is devoted to the
discussion and our conclusions.

II. FLAVOR-CHANGING NEUTRAL CURRENTS
MEDIATED BY VECTOR UNPARTICLE

The starting point of the idea is the interaction between
two sectors, the SM and the ultraviolet sector with a non-
trivial infrared fixed point, at a high energy level. The
ultraviolet sector appears as new degrees of freedom,
called unparticles, being massless and having nonintegral
scaling dimension dU around �U � 1 TeV. This mecha-
nism results in the existence of the effective field theory
with the effective Lagrangian in the low energy level. One
may for simplicity assume that unparticles couple only to
the flavor-conserving fermion currents [8], described by
[1,2,10,11]

1

�
dU�1
U

�f��ðCf
LPL þ Cf

RPRÞfO�
U; (2)

where O�
U is the unparticle operator. Similar to the SM,

FCNCs such as f ! f0U can be induced by the charged
weak currents at the quantum loop level, and, clearly,
neutral current f ! fU is flavor diagonal.

The leading order of the effective Hamiltonian for Fig. 1
can be written as follows:

LU ¼ g2

�
dU�1
U

VtbV
�
tqC

qb
L �q��PLbO

�
U; (3)

where

CqbL ¼ 1

ð4�Þ2 IðxtÞ;

IðxtÞ ¼ xtð2CtR þ CtLxtÞ
2ð1� xtÞ2

ð�1þ xt � lnxtÞ;
(4)

with xt ¼ m2
t =m

2
W [8].

To obtain the effective Hamiltonian for the b! qf �f
transition, where unparticles enter as mediators, we must
obtain the unparticle propagator, which is given by
[1,2,10,11]Z

d4xeip�xh0jTðO�
UðxÞO�

Uð0ÞÞj0i ¼ i�Uðp2Þe�i�U ; (5)

where

�Uðp2Þ ¼ AdU
2 sinðdU�Þ

�g�� þ ap�p�=p2

ðp2 þ iÞ2�dU ;

�U ¼ ðdU � 2Þ�;
(6)

where a ¼ 1 for transverse O�
U and a ¼ 2ðd�2Þ

d�1 in the

conformal field theories (CFTs) [12]. Note also that the
contribution from the longitudinal piece ap�p�=p2 in
Eq. (6) can be dropped for massless or light external
fermions. In this case, the Georgi [2] and Grinstein,
Intriligator, and Rothstein [12] approaches provide the
same result. Also,

AdU ¼ 16�5=2

ð2�Þ2dU
�ðdU þ 1=2Þ

�ðdU � 1Þ�ð2dUÞ : (7)

Note that in Eq. (5) the phase factor arises from

ð�1ÞdU�2 ¼ e�i�ðdU�2Þ, and here the massless vector un-
particle operator is conserved current, i.e., @�O

�
U ¼ 0. The

effective Hamiltonian for b! qf �f just with the contribu-
tion of the vector unparticle as a mediator can be given as

HU ¼ �GFffiffiffi
2

p VtbV
�
tq
~�Uðp2Þe�i�U �q��PLb �f

� ��ðCf
LPL þ Cf

RPRÞf; (8)

where

~�Uðp2Þ ¼ 8CqbL
AdU

2 sindU�

m2
W

p2

�
p2

�2
U

�
dU�1

: (9)

Here f stands for fermions; i.e., f can be neutrinos or
charged leptons or quarks.

III. b ! d‘þ‘� TRANSITION IN THE PRESENCE
OF THE VECTOR UNPARTICLE AS A MEDIATOR

By the extension of the b! dU to study the semi-
leptonic decays of b! d‘þ‘�, the decay amplitude in
the presence of the vector unparticle as a mediator can be
obtained. Here again we assume that unparticles coupled to
the leptons are flavor-conserving. The penguin diagram
describing this decay is shown in Fig. 2. Because of the

FIG. 1. Feynman diagram for b! qðs or dÞU, where t is
the top quark.
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CKM suppression, the semileptonic decays with b! d are
much less than those of b! s. However, it is worth study-
ing the b! d transition beyond the b! s one because the
CKM matrix element Vtd carries a CP-violating weak
phase, which almost vanishes in the b! s transition.
Thus, b! d‘þ‘� decay could be even more interesting
on CP violation in the framework of unparticle physics.
We will focus on the CP-violating asymmetry in b!
d‘þ‘�.

The QCD corrected effective Lagrangian for the decays
b! d‘þ‘� can be obtained by integrating out the heavy
quarks, and the heavy electroweak bosons are as follows in
the SM:

M ¼ GF�em�tffiffiffi
2

p
�

�
Ceff
9 ð �d��PLbÞ �‘��‘

þ C10ð �d��PLbÞ �‘���5‘� 2C7
�di	��

q�

q2

� ðmbPR þmsPLÞb �‘��‘
�
; (10)

In writing this, unitarity of the CKMmatrix has been used,
and the term proportional to �t ¼ V�

tbVtd has been factored
out, where q denotes the four momentum of the lepton pair
and Ci’s are Wilson coefficients. Neglecting the terms of
Oðm2

q=m
2
WÞ, q ¼ u; d; c, the analytic expressions for all

Wilson coefficients, except Ceff
9 , can be found in [25].

The values of Ceff
7 and C10 in leading logarithmic approxi-

mation are

Ceff
7 ¼ �0:315; C10 ¼ �4:642; (11)

only Ceff
9 has weak and strong phases, i.e.,

Ceff
9 ¼ 
1 þ �u
2; (12)

where the CP-violating parameter �u is as follows:

�u ¼ V�
ubVud
V�
tbVtd

¼ �ð1� �Þ � �2

ð1� �Þ2 þ �2
� i

�

ð1� �Þ2 þ �2
þ � � � :

(13)

The explicit expressions of functions 
1 and 
2 in � ¼ mb

can be found in [25–30]: Note that we neglect long-
distance resonant contributions in Ceff

9 for simplicity; a

more complementary and supplementary analysis of the

above decay has to take the long-distance contributions,
which have their origin in real intermediate c �c bound
states, in addition to the short-distance contribution into
account.
The Wilson coefficients of the SM are modified by the

introducing the vector-type unparticles. It is easy to see that
unparticles in this study are introduced in the way that new
operators do not appear. In other words, the full operator
set for the unparticle contributions is exactly the same as in
the SM. The unparticle effects with the SM contributions

can be derived by using CU
9 and CU

10, defined by

CU
9 ðq2Þ ¼ Ceff

9 þ �

�em

C‘R þ C‘L
2

~�Uðq2Þe�i�U ;

CU
10ðq2Þ ¼ C10 þ �

�em

C‘R � C‘L
2

~�Uðq2Þe�i�U ;

CU
7 ðq2Þ ¼ C7ðq2Þ;

(14)

instead of Ceff
9 and C10, respectively. Where C7 remain the

same as the SM, we can rewrite CU
i ’s in the mb scale [25].

Then CU
9 will be as

CU
9 ¼ 
U1 þ �u
2; (15)

where


U1 ¼ 
1 þ �

�em

C‘R þ C‘L
2

~�Uðq2Þe�i�U : (16)

Neglecting any low energy QCD corrections (� 1=m2
b)

[31,32] and setting the down quark mass to zero, the
unpolarized differential decay width as a function of the
invariant mass of the lepton pair is given by

�
d�

dŝ

�
0
¼ G2

Fm
5
b

192�3

�2
em

4�2
j�tj2ð1� ŝÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m̂2

‘

ŝ

s
4U; (17)

with

4UðŝÞ ¼ 4
ð2þ ŝÞ
ŝ

�
1þ 2m̂2

‘

ŝ

�
jCeff

7 j2

þ ð1þ 2ŝÞ
�
1þ 2m̂2

‘

ŝ

�
jCU

9 j2

þ
�
1� 8m̂2

‘ þ 2ŝþ 2m̂2
‘

ŝ

�
jCU

10j2

þ 12

�
1þ 2m̂2

‘

ŝ

�
ReðCU�

9 Ceff
7 Þ: (18)

The explicit expression for the unpolarized particle decay
rate ðd�=dŝÞ0 has been given in (17). Obviously, it can be
written as a product of a real-valued function rðŝÞ times the
function �ðŝÞ, given in (18): ðd�=dŝÞ0 ¼ rðŝÞ�ðŝÞ. In the
unpolarized case, the CP-violating asymmetry rate can be
defined by

FIG. 2. b! q‘þ‘� decays induced by the unparticle penguin
diagram.
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AU
CPðŝÞ ¼

ðd�dŝÞ0 � ðd ��dŝÞ0
ðd�dŝÞ0 þ ðd ��dŝÞ0

¼ �U � ��U

�U þ ��U
; (19)

where

d�

dŝ
� d�ðb! d‘þ‘�Þ

dŝ
;

d ��

dŝ
� d ��ð �b! �d‘þ‘�Þ

dŝ
;

(20)

where ðd ��=dŝÞ0 can be obtained from ðd�=dŝÞ0 by making
the replacement

CU
9 ¼ 
U1 þ �u
2 ! �CU

9 ¼ 
U1 þ ��
u
2: (21)

Note that the term proportional to �u, the CP-violating
parameter remains the same as the SM. Moreover, the

CP-violating parameter just enters into the CU
9 expression

the same as the SM ones. Consequently, the rate for anti-
particle decay can be obtained by the following replace-
ment in Eq. (18):

��U ¼ �U
j�u!��u : (22)

Using (19), the CP-violating asymmetry is evaluated to be

AU
CPðŝÞ ¼

�2Imð�uÞ�UðŝÞ
�UðŝÞ þ 2Imð�uÞ�UðŝÞ � �2Imð�uÞ�

UðŝÞ
�UðŝÞ :

(23)

In (23),

�UðŝÞ ¼ Im½
U�
1 
2�fþðŝÞ þ ImðCeff�

7 
2Þf1ðŝÞ;

fþðŝÞ ¼ ð1þ 2ŝÞ
�
1þ 2m̂2

‘

ŝ

�
; f1ðŝÞ ¼ 12

�
1þ 2m̂2

‘

ŝ

�
:

(24)

Before turning to a derivation ofCP-violating asymmetries
for the case of polarized final state leptons, it is necessary
to recall the calculation of the lepton polarization. The spin
direction of a lepton can be described by setting a reference
frame with three orthogonal unit vectors SL, SN , and ST ,
such that

SL ¼ p�

jp�j ; SN ¼ pd � p�

jpd � p�j ; ST ¼ SN � SL;

(25)

where pd and p
� are the three momentum vectors of the d

quark and the ‘� lepton, respectively, in the ‘þ‘� center-
of-mass system. For a given lepton ‘� spin direction ~n,
which is a unit vector in the ‘� rest frame, the differential
decay spectrum is of the form [33]

d�ðŝ; ~nÞ
dŝ

¼ 1

2

�
d�ðŝÞ
dŝ

�
0
½1þ ðPLeL þ PTeT þ PNeNÞ � ~n�;

(26)

where the polarization components Pi (i ¼ L;N; T) are
obtained from the relation

PiðŝÞ ¼ d�ð ~n ¼ eiÞ=dŝ� d�ð ~n ¼ �eiÞ=dŝ
d�ð ~n ¼ eiÞ=dŝþ d�ð ~n ¼ �eiÞ=dŝ ¼

�U
i ðŝÞ

�UðŝÞ :
(27)

The three different polarization asymmetries are

PLðŝÞ ¼ �U
L ðŝÞ

�UðŝÞ
¼ v

�UðŝÞ ½12ReðC
eff
7 C

U�
10 Þ þ 2ReðCU

9 C
U�
10 Þð1þ 2ŝÞ�;

PTðŝÞ ¼ �U
T ðŝÞ

�UðŝÞ
¼ 3�m̂‘

2�UðŝÞ ffiffiffî
s

p
�
2ReðCeff

7 C
U�
10 Þ � 4ReðCeff

7 C
U�
9 Þ

� 4

ŝ
jCeff

7 j2 þ ReðCU
9 C

U�
10 Þ � jCU

9 j2ŝ
�
;

PNðŝÞ ¼ �U
N ðŝÞ

�UðŝÞ ¼
3�m̂‘v

2�UðŝÞ
ffiffiffî
s

p
ImðCU�

9 CU
10Þ: (28)

The study of the above-mentioned asymmetries is interest-
ing in probing new physics. It is obvious that any alteration
in the Wilson coefficients leads to changes in the polariza-
tion asymmetries.
Now we define the polarized CP asymmetry, which is

ACPðŝÞ ¼
d�ðŝ; ~nÞ
dŝ � d ��ðŝ; �~nÞ

dŝ

ðd�ðŝÞdŝ Þ0 þ ðd ��ðŝÞdŝ Þ0
; (29)

where

d�ðŝ; ~nÞ
dŝ

¼ d�ðb! d‘þ‘�ð ~nÞÞ
dŝ

;

d ��ðŝ; ~�nÞ
dŝ

¼ d�ð �b! �d‘þð ~�nÞ‘�Þ
dŝ

;

(30)

where ~n and ~�n are the spin directions for ‘� and ‘þ for
b-decay and �b-decay, respectively, and i ¼ L;N; T. Taking

into account the fact that ~�eL;N ¼ � ~eL;N and ~�eT ¼ ~eT , we
obtain

ACPð ~n ¼ 	 ~eiÞ ¼ 1

2

�ðd�dŝÞ0 � ðd ��dŝÞ0
ðd�dŝÞ0 þ ðd ��dŝÞ0

	 ðd�dŝÞ0Pi � ððd�dŝÞ0PiÞj�u!��u

ðd�dŝÞ0 þ ðd ��dŝÞ0

�
: (31)

Using Eq. (28), we get from Eq. (31),

ACPð ~n ¼ 	 ~eiÞ � 1

2

�
�U � ��U

�U þ ��U
	 �U

i � ��U
i

�U þ ��U

�

¼ 1

2
fACPðŝÞ 	 AiCPðŝÞg; (32)

where the upper sign in the definition of �ACP corresponds
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to L and N polarizations, while the lower sign corresponds
to T polarization.

The AiCPðŝÞ terms in Eq. (32) describe the modification

to the unpolarized decay width, which can be written as

AiCPðŝÞ ¼
�4Imð�uÞ�iðŝÞ
�UðŝÞ þ ��UðŝÞ � �2Imð�uÞ �

iðŝÞ
�UðŝÞ ; (33)

where the explicit expressions for �iðŝÞ ði ¼ L;N; TÞ are
as follows:

�LðŝÞ ¼ vImðCU�
10 
2Þð1þ 2ŝÞ;

�TðŝÞ ¼ 3�m̂‘

2
ffiffiffî
s

p
�
2ImðCeff

7 

�
2Þ þ

1

2
ImðCU�

10 
2Þ

� ŝImð
U�
1 
2Þ

�
;

�NðŝÞ ¼ 3�m̂‘

2
ffiffiffî
s

p v

�
ŝ

2
ReðCU�

10 
2Þ
�
:

(34)

It is interesting to note that the polarized CP asymmetries
have different combinations involving the imaginary and

real parts of theCU
10 which do not appear in unpolarizedCP

asymmetry. The study of the polarized CP asymmetry
beside the unpolarized CP asymmetry with unparticle
contributions will give us more information about the
unparticle parameters. In particular, when C‘L ¼ �C‘R in

(14), the unparticle contribution vanishes in the CU
9 . In

such a situation, the unparticle effects in CP asymmetry
just appear in the polarized CP asymmetries.

IV. NUMERICAL ANALYSIS AND DISCUSSION

We try to analyze the dependency of the unpolarized and
polarized direct CP asymmetries on the unparticle parame-
ters. We will use the next-to-leading order logarithmic
approximation for the SM values of the Wilson coefficients
Ceff
9 , Ceff

7 , and Ceff
10 [34,35] at the scale � ¼ mb. It is worth

mentioning that, beside the short-distance contribution,
Ceff
9 has also long-distance contributions resulting from

the real �cc resonant states of the J= family. In the present
study, we do not take the long-distance effects into ac-
count. Furthermore, one finds that significant contributions
of unparticles occurs at a small region of ŝ which is free of
long-distance effects [obviously, the unparticle contribu-
tions for the � channel is more significant than the 

channel since the small ŝ region (ŝ� 0:0) for the 
 channel
is absent by kinematical consideration]. One can confirm
the above statement by looking at Eqs. (2) and (5), where at
the small ŝ ¼ q2=m2

b region the dependency of the propa-

gator is as follows: �
1

q2

�
q2

�2
U

�
dU�1

�
2
: (35)

The SM parameters we used in this analysis can be seen
in Table I.

The allowed range for the Wolfenstein parameters is
0:19 
 � 
 0:268 and 0:305 
 � 
 0:411 [36] where, in
the present analysis, they are set as � ¼ 0:25 and � ¼
0:34.
The direct CP asymmetries depend on both ŝ and the

new parameters coming from unparticle stuff. We elimi-
nate the variable ŝ by performing an integration over ŝ in
the allowed kinematical region. The averaged direct CP
asymmetries are defined as

B r ¼
Z ð1�

ffiffiffiffi
r̂d

p
Þ2

4m2
‘
=m2

b

dB
dŝ

dŝ

�
r̂d ¼ m2

d

m2
b

�
;

hAiCPi ¼
Rð1�

ffiffiffiffi
r̂d

p
Þ2

4m2
‘
=m2

b

AiCP
dB
dŝ dŝ

Br

:

(36)

At this stage, we discuss our restrictions for free parame-
ters coming out of the unparticle.
(i) It is important to note that, while the discontinuity

across the cut is not singular for integer dU > 1, the
propagator [Eq. (6)] is singular because of the
sinðdU�Þ in the denominator. Some researchers be-
lieve that this is a real effect [2]. These integer values
describe multiparticle cuts, and the mathematics tells
us that we should not try to describe them with a
single unparticle field.
Moreover, the lower bounds for the scaling dimen-
sions of the gauge-invariant vector operators of a
CFT are dU � 2 and dU � 3 [12] for nonprimary
and primary vector operators, respectively. We ob-
tain that for dU > 2 the unparticle effects on physi-
cal observables (branching ratio,CP asymmetry, and

so on) almost vanish because ~�ðp2Þ is negligible for
p <�U [see Eq. (9)].
We focus on 1< dU < 2, the bound that is allowed
for transverse O

�
U or for non-gauge-invariant vector

operators of the CFT. Also, it is consistent with the
b! s‘þ‘� rate [8] and Bs mixing [9]. We also
assume that the virtual effects of unparticles are
gentlest away from the integer boundaries. On the
other hand, the momentum integrals converge for
dU < 2 [13].

TABLE I. The values of the input parameters used in the
numerical calculations.

Parameter Value

�em 1=129 ðGeVÞ
mu 2.3 (MeV)

md 4.6 (MeV)

mc 1.25 (GeV)

mb 4.8 (GeV)

m� 0.106 (GeV)

m
 1.780 (GeV)
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(ii) CtL is always associated with C‘R and C‘R [see Eq. ].
For simplicity, we set C‘R ¼ C‘L or C‘R ¼ �C‘L. We
will set new parameters to be CtLC

‘
L ¼ CtLC

‘
R ¼ �‘V

and CtLC
‘
L ¼ �CtLC‘R ¼ �‘A and choose the �‘V½A� ¼

0:005, 0.01, and 0.05 which is consistent with the
b! s‘þ‘� rate [8].

(iii) We take the energy scale �U ¼ 1ðTeVÞ and study
dU dependence of the polarized and unpolarized CP
asymmetry.

CP asymmetry is a good candidate (unlike the other
physical observables, i.e., branching ratio, forward-
backward asymmetry, etc.) to probe the unique unparticle
phase. The other physical observables can be utilized to
give strong constraints on the unparticle parameters except
the phase, i.e., on the unparticle couplings to leptons such
as �‘VðAÞ � f0:005–0:05g [8]. Moreover, our numerical

analysis confirm the result of [8], where the branching
ratio (BR) of the b! sðdÞ‘þ‘� decay depicts the strong
enhancement at the low value of the scale dimension dU �
1:1 with respect to the SM value. As a natural consequence
of this feature, the averaged value of asymmetries will
vanish unless they depict stronger enhancement than the
BR.

The contributions of the unparticle to the CPA of b!
d‘þ‘� in terms of the values for the common parameters
are presented in Figs. 3–10. The horizontal thin lines are
the SM contributions; the dashed lines and dashed-dotted
lines correspond to the different �‘A½V� ¼ 0:005, 0.01, and

0.05, respectively. From these figures, we conclude that:
(i) hACPi for both � and 
 leptons depicts strong

dependency on the unparticle effects (for the �
case, the dependency is stronger than the 
 case as
we discussed above). While it is suppressed to the
zero value by the unparticle contributions at lower
values of the scale dimension dU � 1:1, its value is
close to the SM value at the higher values of the scale
dimension dU � 1:9. Moreover, the sensitivity for

different values of the �A is stronger and more
interesting than the �V values. While for different
�V values, hACPi is just decreasing in terms of the
dU, for �A it is increasing, decreasing, and changing
the sign (see Figs. 3 and 4).

(ii) hALCPi for both � and 
 leptons shows strong depen-
dency on the unparticle parameters. While it is sup-
pressed to the zero value by the unparticle
contributions at lower values of the scale dimension
dU � 1:1 (see Figs. 5 and 6), its value is close to the
SM value at the higher values of the scale dimension
dU � 1:9. The situation for the � leptons is much
more interesting. While the SM value is about a few
percent, it receives a sizable and measurable contri-
bution up to 10% from unparticle effects (see Fig. 5).

As hALCPi and hACPi are sensitive to the CU
10 and C

U
9 ,

respectively, thus, the study of hALCPi beside hACPi is
supplementary and complementary to studying un-
particle effects. More precisely, unlike hACPi, hALCPi
shows stronger dependency on the different values of
the �A than the �V values.
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FIG. 5. The dependence of the hAL
CPi for the b! d�þ��

decay on dU for three different values of �V : 0:005, 0.01, and
0.05 and �A: 0:005, 0.01, and 0.05 in the fixed value of �U ¼
1 TeV.
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FIG. 4. The same as in Fig. 1 but for the 
 lepton.
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FIG. 3. The dependence of the hACPi for the b! d�þ��
decay on dU for three different values of �V : 0:005, 0.01, and
0.05 and �A: 0:005, 0.01, and 0.05 in the fixed value of �U ¼
1 TeV.
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(iii) hATCPi is generally sensitive to the unparticle contri-
butions for both � and 
 channels. While the SM
values of hATCPi almost vanishes, the unparticle con-

tributions lead to a sizable deviation from the SM
values (see Figs. 7 and 8). This sizable discrepancy

from the SM values can be measured in future experi-
ments such as LHC and ILC.

(iv) Either the SM value or its value with unparticle
contributions for hANCPi is negligible (see Figs. 9

and 10).
At the end, the quantitative estimation about the accessi-
bility to measure the various physical observables is in
order. An observation of a 3	 signal for CP asymmetry
of the order of 1% requires about�1010 B �B pairs [33]. For
the b! d‘þ‘� measurement, a good d-quark tagging is
necessary to distinguish it from the much more stronger
b! s‘þ‘� decay signal. Putting aside this challenging
task, the number of B �B pairs, expected to be produced at
LHC, is about �1012. As a result of a comparison of these
values, we conclude that a typical asymmetry of (A ¼
1%) is certainly detectable at LHC.
In conclusion, first, we obtain that the unparticle effects

on physical observables, i.e., branching ratio and CP
asymmetry for b! dðsÞ‘þ‘�, decay when dU � 2 van-
ish. Second, for 1< dU < 2, the CP asymmetry for polar-
ized and unpolarized lepton cases is studied within the
unparticle contributions in the CPA of the b! d‘þ‘�
decays. We obtain that the unpolarized and polarized CP
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FIG. 6. The same as in Fig. 3 but for the 
 lepton.
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FIG. 7. The dependence of the hAT
CPi for the b! d�þ��

decay on dU for three different values of �V : 0:005, 0.01, and
0.05 and �A: 0:005, 0.01, and 0.05 in the fixed value of �U ¼
1 TeV.
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FIG. 8. The same as in Fig. 5 but for the 
 lepton.
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FIG. 10. The same as in Fig. 5 but for the 
 lepton.
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FIG. 9. The dependence of the hAN
CPi for the b! d�þ��

decay on dU for three different values of �V : 0:005, 0.01, and
0.05 and �A: 0:005, 0.01, and 0.05 in the fixed value of �U ¼
1 TeV.
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asymmetries are strongly sensitive to the unparticle effects.
In particular, the CPA for small values of scale dimension
dU � 1:1 suppresses to zero, and for its definite values the
CPA enhances considerably and changes its sign with
respect to the corresponding SM value. The other parame-
ters of the scenario studied are the U-fermion-fermion
couplings, the energy scale, and the dependencies of the
CPA to these free parameters and are also strong. We show

that a measurement of the magnitude and sign of the
unpolarized and polarized asymmetries can be instructive
in order to test the possible signals coming from the
unparticle physics.
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[33] F. Krüger and L.M. Sehgal, Phys. Rev. D 55, 2799 (1997).
[34] C. Bobeth, M. Misiak, and J. Urban, Nucl. Phys. B574,

291 (2000).
[35] H. H. Asatrian, H.M. Asatrian, C. Greub, and M. Walker,

Phys. Lett. B 507, 162 (2001).
[36] D. Abbaneo et al., arXiv:hep-ex/0112028.

V. BASHIRY PHYSICAL REVIEW D 77, 096005 (2008)

096005-8


