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We consider 5-dimensional gauge theories where the 5th direction is compactified on an interval. The
Chern-Simons (CS) terms (favored by the naive dimensional analysis) are discussed. A simple scenario
with an extra U�1�X gauge field that couples to SU�3�color through a CS term in the bulk is constructed. The
extra component of the Abelian gauge field plays a role of the axion (gauge-axion unification), which in
the standard manner solves the strong CP problem easily avoiding most of the experimental constraints.
The possibility of discovering the gauge-unification at the LHC is discussed.
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I. INTRODUCTION

In the standard model (SM), the Higgs mechanism is
responsible for generating fermion and vector-boson
masses. Although the model is renormalizable and unitary,
it has severe naturality problems associated with the so-
called ‘‘hierarchy problem.’’ At loop level this problem
reduces to the fact that the quadratic corrections tend to
increase the Higgs boson mass up to the UV cutoff of the
theory. Extra-dimensional extensions of the SM offer a
novel approach to gauge symmetry breaking in which the
hierarchy problem could be either solved or at least refor-
mulated in terms of the geometry of the higher-
dimensional space.

Other inherent problems of the SM could also be ad-
dressed in extra-dimensional scenarios. For instance,
within the SM the amount of CP violation is not sufficient
to explain the observed baryon asymmetry [1], the gauge-
Higgs unification scenario offers a possible solution since
in such models the geometry can be a new source of
explicit and spontaneous CP violation [2]. In this note
we shall prove that the strong CP problem could be solved
by introducing appropriate Chern-Simons (CS) terms in
five dimensional (5D).1 The scenario leads to an attractive
possibility of gauge-axion unification.

II. HIERARCHY OF EFFECTIVE OPERATORS

We will first consider models in D � 5 dimensions with
fermions, gauge bosons, and scalars propagating through-
out the D-dimensional bulk, and some unspecified matter
localized on lower dimensional manifolds (branes).
Though these models are nonrenormalizable it is possible
to define a hierarchy of possible terms in the Lagrangian
that allows for a proper perturbative expansion; the proce-

dure is a simple application of the arguments used in the
naive dimensional analysis (NDA) [4] (see the Appendix).
This hierarchy is specified by assigning to each gauge
invariant operator an index s � dc � b0 � �3f=2� � 4 (dc
is the number of covariant derivatives, and f and b0 are the
number of fermion and scalar fields). As it is shown in the
Appendix the least suppressed operators are those that have
the index s � 0:

 F2; � D ; jD�j2; � � ; �4; (1)

where F denotes the generic gauge tensor, � a generic
scalar, and  generic fermions.

The s � 1 operators not containing scalar fields are (A
denotes a generic gauge field)

 AF2; � F ; (2)

whose coefficients are naturally suppressed by 1=�24�3�,
together with all brane terms, presumably including the
SM Lagrangian multiplied by l�1

4 ��y� yo�. The first op-
erator in (2) corresponds to the 5-dimensional CS term,
while the second includes all magnetic-type couplings.
Operators of index s � 1 containing � are of the form
D4�, D2�3, or D �  �.

The NDA argument favors the presence of a CS term (if
only 5D vector bosons are present the CS term is the only
bulk operator with index s � 1) with a coefficient as large
as 1=�24�3�. Of course, it is still possible that there exist
additional symmetries that forbid this term; however, if
present, the CS term can generate interesting effects.

Hereafter we shall consider a 5D model containing
U�1�X and SU�3�color bulk gauge fields, denoted by X and
G, respectively. Application of the NDA for this case
(where there are no bulk fermions) yields the following
action up to index s � 1
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where XMN and GMN are, respectively, the field strength
tensors for the Abelian and non-Abelian groups2 with the
5D gauge couplings, respectively, denoted by g05 and g5;
c1;2;3 are undetermined numerical constants, presumably of
O�1�. In our specific applications we will consider models
constructed on the space-time X5 � M4 � �0; R�, and we
will concentrate on the ‘‘mixed’’ Chern-Simons term pro-
portional to g05g

2
5. We will assume that all SM fields are

neutral under U�1�X. Hereafter, whenever possible, in or-
der to make the analysis as model independent as possible,
we will avoid referring to any details of the embedding of
the SM into 5D. The only assumption we make is that the
SM is localized on one or perhaps both ends of the interval
�0; R�.

III. SOLVING THE STRONG CP PROBLEM FROM
A 5D PERSPECTIVE

As shown above, the NDA favors the CS term as an
operator of index s � 1. We will argue that the presence of
this term allows for a simple solution to the strong CP
problem.

As it is well known, in a basis where the Yukawa
matrices are diagonal, the phases of the Kobayashi-
Maskawa matrix are responsible for all electroweak CP
violation effects. There is, however, an additional
(‘‘strong’’) CP-violating term allowed by the symmetries
of the 4D SM Lagrangian:

 L QCD CP � �
�s

16�
Tr�G��

~G���; (4)

where G�� is the QCD field strength tensor, ~G�� �

����	G�	=2, and �s 	 g2=�4�� for g the SM 4D QCD
gauge coupling constant. In the process of diagonalizing
the Yukawa matrices, quark fields undergo a chiral rota-
tion, which generates the same structure as in (4) (within
the path-integral formulation this results from a nontrivial

Jacobian for the fermionic measure [5]); therefore, the total
effect of the strong CP violation is parameterized by the
effective coefficient �eff 	 �� �weak. The experimental
data (electric dipole moment of the neutron) indicates
that j�effj & 10�9 [6]; this is referred to as the strong CP
‘‘problem’’ since none of the symmetries of the SM re-
quires such a strong suppression.

Models in extra dimensions offer new possibilities to
solve this problem due to the possibility of constructing the
Chern-Simons terms. Specifically, we will assume that the
color gauge fields Ga

N propagate in the bulk, but that the
rest of the SM fields are confined to one or two branes
located at y � 0 and y � R. In addition, we assume the
presence of an Abelian gauge field XN also propagating in
the bulk. For the 5D models being considered here, the
QCD strong CP term (4) can be written as follows:

 Sbrane �
�s

16�2

Z
d5x��L��y� � �R��y� R��Tr�G��

~G���;

(5)

where �R;L are constant parameters.
Among the various terms in (3) we will concentrate on

the effects of the mixed CS term:

 SCS � �
g05g

2
5c1

24�3

Z
X5
d4xdy�LMNPQXLTr�GMNGPQ�: (6)

The action (6) is not automatically gauge invariant under
U�1�X. However, using the Bianchi identity
�NMQPRDQGPR � 0, one can show that under the
Abelian transformation

 XL ! X0L � XL � @L
X; (7)

the change in SCS is localized on the boundary of the
space.3

 �SCS �
g05g

2
5c1

24�3

Z
M4
d4x
X�

���	Tr�G��G�	�j
y�R
y�0 ; (8)

there are various ways of insuring that this vanishes. One
can, for example, add an appropriate set of chiral fermions
on the two branes; in this case the anomaly generated by
these fermions can be adjusted so that it cancels (8); see
e.g. [7]. Brane scalars can be also arranged to have the
same effect [3,7] provided they couple to
����	Tr�G��G�	�. A simpler alternative, which we will
adopt here, is to impose appropriate boundary conditions
such as 
XTr�G2�jy�0 � 
XTr�G2�jy�L.

Variation of the total action (3) with c2 � c3 � 0 and
c1 � 1 leads to the following equations of motion for the
gauge fields:

 DBG
BA � JA � brane terms and

@BX
BA � jA � brane terms;

(9)
2The convention for the antisymmetric tensors which we

follow is such that �01234 � �0123 � 1 for the metric tensor
�MN � diag�1;�1;�1;�1;�1� and ��� �
diag�1;�1;�1;�1�. We assume that the non-Abelian group
generators, Ta are Hermitian and normalized according to
TrTaTb � 2�1�ab. 3This assumes that 
X is not a constant.
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with the following Chern-Simons currents:

 JA �
g05g

2
5

24�3 �
ABCDEXBCGDE;

jA �
g05g

2
5

24�3 �
ABCDETr�GBCGDE�:

(10)

The brane terms in (9) originate from possible couplings of
the bulk gauge fields to the fields localized on the branes.

For the extremum of the action the following boundary
conditions (BC) must be fulfilled:
 

tr
��
G4� �

g05g
2
5

6�3 X
� ~G��

�
�G�

���������
y�R

y�0
� 0

and X4��X�j
y�R
y�0 � 0: (11)

Here we will restrict ourselves to theories containing mass-
less zero-modes (gluons) of the non-Abelian gauge field.
This implies a unique choice of BC for SU�3�color:

 @yG
a
�jy�0;R � 0; Ga

4jy�0;R � 0; (12)

these conditions imply Ga
4�jy�0;R � 0. For the Abelian

field we require

 X�jy�0;R � 0; @yX4jy�0;R � 0; (13)

so that X��jy�0;R � 0. It follows that the BC (11) are
satisfied.

The resulting Kaluza-Klein (KK) expansions read

 Ga
��x; y� � R�1=2

X
n�0

dnG
a�n�
� �x� cosmny;

Ga
4�x; y� � R�1=2

���
2
p X

n�1

Ga�n�
4 �x� sinmny;

X��x; y� � R�1=2
���
2
p X

n�1

X�n�� �x� sinmny;

X4�x; y� � R�1=2
X
n�0

dnX
�n�
4 �x� cosmny;

(14)

where mn � �n=R and dn � 2�1��n;0�=2. The zero-mode
Ga�0�
� �x� is the standard 4D gluon; it is also clear that the

model also contains a massless 4D scalar X�0�4 �x�.
Let us focus now on the Abelian gauge transformations.

In order to preserve the BC, the gauge function 
X�x; y�
must satisfy the following constraints:

 @�
Xjy�0;R � 0; @2
y
Xjy�0;R � 0: (15)

That implies a corresponding KK expansion for the
Abelian gauge function

 
X�x; y� �
X
n�1


�n�X �x� sinmny� 	y; (16)

where 	 is a constant. The 4D vector and scalar fields
transform as

 X�n�� ! X�n�� �
1���
2
p @�


�n�
X

X�n�4 !

�
X�0�4 � 	 for n � 0

X�n�4 �
mn��

2
p 
�n�X for n > 0:

(17)

In the following we will take 	 � 0, which is the simplest
condition ensuring the gauge symmetry of the CS action.4

In order to discuss phenomenological predictions of the
model let us expand the CS action into KK modes:

 SCS �
R

12�3

g05
R1=2

g2
5

R
c1

Z
d4x

�
X�0�4 TrG�0��� ~G���0�

� 2@�X
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4
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 ����
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�
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where

 D� 	 @� � ig�G
�0�
� ; 
 
 
�;

G�0��� 	 @�G
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� � @�G
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� � ig�G

�0�
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for g � g5=
����
R
p
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 ��n��� 	
1

2
��@�X
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4 G�n�� � @�X

�n�
4 G�n�� � � �@�X
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The ellipsis in (18) stands for terms (irrelevant for any
practical applications) that involve four nonzero KK
modes. Expanding the kinetic terms of (3), one can verify
that indeed G�0��� corresponds to the SM QCD gluon [which
is present due to our having adopted (12)], while X�0�4 �x� �
a�x� can play the role of the axion. The lowest-order terms
conform to the usual QCD action, the axion kinetic term,
and the axion-gluon interactions5:
 

S�0�low �
Z
M4

�
�

1

2
Tr�G��G

��� �
1

2
@�a@

�a

�
�s

16�

�
a
fa
� �eff

�
Tr�G��

~G���

�
; (21)

where �eff 	 �L � �R and we dropped the (0) superscript
in G. Adopting the NDA estimation of the CS coefficient,
one obtains for the axion decay constant

 f�1
a �

16g0

3�
R; (22)

4This is also a natural choice for S1=Z2 orbifold models since
it insures that X��x;�y� � �X��x; y�, X4�x;�y� � X4�x; y� and
XN�x; y� 2R� � XN�x; y� are preserved under gauge
transformations.

5It turns out that each term in the KK expansion of (5) is a total
derivative (as they emerge from the full derivative Tr�G��

~G���).
Only the zero-mode contribution will be relevant, as it contrib-
utes to the effective nonperturbative axion potential; other terms
could be dropped.
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where g0 is the 4D Abelian gauge coupling, g0 � g05=
����
R
p

,
and �s � g2=�4��. Note that for this mechanism of axion
generation to work, the extra Abelian gauge symmetry
must be broken by the boundary conditions (Scherk-
Schwarz breaking) so that no additional massless vector-
boson associated with X� is present. The only low-energy
remnant of XM is the axion a�x�. The crucial advantage of
the model presented here is the unification of the axion and
the U�1� 5D gauge field. There are serious attempts to
construct in 5D a realistic gauge-unification theory [8].
Those models combined with the scenario discussed here
could provide an interesting alternative for a theory of
electroweak interactions that offers the scalar sector of
4D theory fully unified with the gauge fields (solving the
hierarchy problem [8] and the strong CP problem at the
same time). As it will be discussed below, the gauge-axion
unification is consistent with the existing experimental
constraints and there is a chance to test the scenario at
the LHC.

As in the standard Peccei-Quinn scenario, the effective
axion coupling �a=fa � �eff� relaxes to zero through in-
stanton effects, solving the strong CP problem dynami-
cally. The axion mass is generated in a standard manner [9]

 ma �
f�m�

fa

�������������
mumd
p

mu �md
� 0:6 eV

107 GeV

fa
; (23)

and no strictly massless scalars remain in the spectrum.
Let us discuss the consequences of the remaining inter-

actions in the 5D CS term (6) that consists of quadratic and
quartic terms in the nonzero KK modes. We will focus (for
obvious phenomenological reasons) on the quadratic terms
shown explicitly in (18). Of course, there are other terms
involving the heavy fields generated by the kinetic part of
the action (3), those have been considered previously in the
literature, see e.g. [10].

Because of its relatively large coupling, the very last
term ( / mn) in (18), will produce the most noticeable
effects at the LHC. Therefore let us consider the production
of heavy gluonsG�n�� and vector bosonsX�n�� (with n � 1) at
the LHC. At the partonic level the leading contributions are
the following: GG! G? ! G�n�X�n� and GG! G�n�X�n�.
Since the SM fields do not carry U�1�X quantum numbers,
the X�n�� bosons are stable at the tree level; on the other
hand, heavy gluons G�n�� couple to SM quarks located on a
brane. Therefore, the experimental signature for the above
reactions would be missing energy, momentum (carried
away by the stable X�n�� ), and two jets from the G�n�� decays.
Let us compare the amplitude strength for this process with
the standard QCD two-jet production amplitude. Adopting
the estimate of the CS coupling from the NDA in (18), we
find that the ratio of the X�n�� G

�n�
� G� coupling to the SM

triple gluon vertex is of the order of

 

g0

g

�s
3�

n�
g0

g
10�2n: (24)

Since n� 1 (otherwise KK modes are too heavy to be
produced), it seems that it may be difficult to detect
G�n�X�n� over the two-jet QCD background. Nevertheless,
it should be noticed that the huge amount (� TeV) of
missing energy (carried away by the stable and heavy
X�n�� ) may enhance the signal relative to the QCD back-
ground very efficiently, and that the large gluon luminosity
of the LHC could be sufficient to provide enough events to
test the scenario. Though these expectations are supported
by the results for similar processes at the Tevatron [11], a
dedicated Monte Carlo study would be needed to resolve
this issue definitively; this, however, lies beyond the scope
of this paper.

Another possible signature of the axion being the 4th
component of 5D gauge field could be the heavy gluon
production process through a virtual axion exchange:
GG! a? ! G�n�G�n� for n � 1. The amplitude for this
process is generated by the first two terms in (18). It is
straightforward to find that the order of magnitude for the
amplitude normalized to two gluon (GG) production is the
following:

 

�0

9�2
�sn2 � 10�3�0n2; (25)

where �0 	 g02=�4��. If �0 � �s, then for small n the
amplitude is suppressed by the factor 10�4. Since both
G�n�G�n� and GG states decay roughly the same way (the
signature is n � 4 jets in the final state), it would be a real
challenge to see the axion exchange over the standard QCD
background.6

Let us assume that the axion mass ma (or equivalently
the decay constant fa) is known. Then the definite test of
the model discussed here would be a verification of the
gauge-axion unification that is caused by the fact that the
axion is a component of the 5D gauge field XM. The
important consequence of the unification is that the total
cross section for G�n�X�n� production is predicted including
the normalization. Therefore, the measurement of

tot�G�n�X�n�� shall provide the definite experimental test
of the model.

Concluding the review of various possible experimental
tests of gauge-axion unification discussed here, one can say
that, because of a huge missing energy (� TeV), the
process GG! G�n�X�n� provides the cleanest signature,
which makes the observation of the signal plausible.

For the model being considered here, the axion decay
constant fa is determined by the geometrical scale R�1 (if
the NDA arguments are applied; therefore, experimental
limits on fa constrain the size of the compact dimension.
However, it should be emphasized that most of these con-
straints rely on effects produced by the coupling of the
axion to two photons, and this coupling is absent in our

6Note also that the amplitude receives contributions from the
other terms in the action.
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model (to leading order). (For a review of experimental
constraints, see [6].) Nevertheless, there exists a bound that
should be also obeyed by our photophobic axion; this is the
so-called ‘‘misalignment’’ lower axion mass limit that
originates from the requirement that the contribution to
the cosmic critical density from the relaxation of the axion
field (�eff ! 0) does not overclose the universe. The re-
sulting constraint [6], ma > 10�6 eV, leads to R�1 &

1013 GeV, having used (22) and (23) and taken g0 �
O�1�. Note that the NDA estimate of the CS coupling
was crucial to derive the limit on R.

IV. CONCLUSIONS

We have shown that an extension of naive dimensional
analysis to 5D gauge theories naturally allows relatively
large coefficients in front of CS terms. The strong CP
problem was discussed within a simple scenario containing
a new U�1�X gauge field and the SU�3�color gauge fields
propagating in the bulk, and interacting through a mixed
CS term. Adopting appropriate boundary conditions, the
CS term was shown to be gauge invariant (without any
need for brane matter). The zero-mode of the extra com-
ponent of the new Abelian gauge field was seen to play a
role of the axion (gauge-axion unification), which in the
standard manner receives the instanton-induced potential,
so that the strong CP problem (localized on the branes)
disappears while the axion receives a mass. In the effective
low-energy regime, the axion couples only to gluons;
therefore, most of the limits on the axion decay constant
do not apply in the context of this model. It was shown that
the most promising test of the gauge-axion unification is
the process of G�n�X�n� production: GG! G�n�X�n�. The
huge missing energy (� TeV) carried away by the stable
and heavy X�n�� is believed to provide a sufficiently clean
signature of the final state.
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APPENDIX

In this appendix we provide, for completeness, a sum-
mary of the application of naive dimensional analysis

(NDA) to higher-dimensional models. The NDA allows
us to determine the scale � at which the theory becomes
strongly interacting. For that purpose let us compare two
graphs with the same number of external legs, one of which
has an additional gauge-boson propagator. This second
graph will be suppressed with respect to the first by the
factor

 ��g2l�1
4��; lD � �4��

D=2��D=2�; (A1)

where g denotes the gauge coupling constant, and lD is the
geometric loop factor obtained form integrating over mo-
mentum directions (note that in D � 4� � dimensions g
has a mass dimension of��=2). For a strongly interacting
theory we impose the NDA requirement that the loop
corrections be of the same order as the lowest-order value;
this requires

 �� �l4��g
�2�1=�: (A2)

The same NDA requirement allows an estimate of the
coefficients in front of effective operators. For this we
consider a generic vertex of the form
 

V � 
�D�2��D�D
�X

pi

��
g 

�3=2
 

�
f
�
p
�

�
d
�
gAM

�

�
b
�
g�
��

�
b0

;

(A3)

where scale appropriate for the vector fields and derivatives
(they enter together through the covariant derivative) was
chosen to be �, while the coefficient 
, the fermionic scale
(� ), and the scalar scale (��) are to be determined. The
requirement to reproduce the starting operator by radiative
corrections determines the maximal value of 
 and mini-
mal scales � , �� that are allowed by perturbativity

 
 � l�1
4�� and � � �� � �: (A4)

Let us now restrict ourselves to 5D theories, � � 1, and
define the ‘‘index’’ of a vertex by

 s � dc � b0 �
3

2
f� 4; dc � d� b; (A5)

where dc is the number of covariant derivatives present in
the vertex V . If an L-loop graph contains Vn vertices with
indices sn, then the vertex corresponding to this graph has
an index

 s � L�
X
n

Vnsn: (A6)

In terms of s the coefficient of a given operator is (see also
[12])

 

�
1

24�3

�
s

��the powers of g needed to get a dimension 5 object�;

(A7)
and � � 24�3=g2.

If the indices of all vertices are non-negative, then it
follows from (A6) that s � sn for all n. This implies that if
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V has index s, then only operators with indices 
 s can
renormalize the coefficient of V and we can then define a
hierarchy according to the value of s, in the sense that we
can consistently assume that operators with higher indices
are generated only by higher orders in the loop expansion.
This would be spoiled if the theory has vertices with
negative indices (an addition of an internal line attached
by vertices with sn < 0 decreases s, so an extra loop leads
to a less suppressed operator), which corresponds to the
case dc � f � 0, b0 � 3, according to the definition (A5).
In order to define a hierarchy one should accordingly
require that all cubic terms in the scalar fields be absent7

due to an additional symmetry such as a discrete Z2 under
which the � are odd, by gauge invariance (as in the SM) or
just by an absence of scalar fields (as in this paper where
we are considering only vector bosons in 5D, therefore, the
cubic scalar interactions cannot be constructed and the
hierarchy of operators is given just by (A7) without any
other constraints). Fermion fields are assumed to transform
appropriately under this symmetry, so as to allow all desir-
able scalar-fermion couplings.

In order to consistently include possible brane terms in
the hierarchy, we note that these types of interactions are
naturally generated by the bulk terms in a compactified
space at the one loop level [13]. It is then natural to add 1 to
s whenever a localizing factor of the form ��y� yo� is
present. In addition, the geometric suppression factor for
these terms equals l4 � 16�2 that replaces l5 � 24�3

present in (A7); see also [14].
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