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In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By

using the occupation number to define a multiqubit space, the flavor states can be interpreted as

multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on

the entropies related to all possible bipartitions of the system, we analyze the correlation properties of

such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in

particular, on the values taken by the free phases, responsible for the CP-violation, entanglement

concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement

in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet

description for localized particles, we use the global measure of entanglement, suitably adapted for the

instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics,

on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance

associated with the vanishing of the coherent interference effects among massive neutrino states. We

investigate the role of the CP-violating phase in the decoherence process.

DOI: 10.1103/PhysRevD.77.096002 PACS numbers: 03.67.Mn, 03.65.Ud, 12.15.Ff, 14.60.Pq

I. INTRODUCTION

Quantum entanglement as a physical resource plays a
central role in quantum information and communication
science [1]. As such, it has been mainly investigated in
systems of condensed matter, atomic physics, and quantum
optics. In fact, such systems offer the most promising
possibilities of practical realizations and implementations
of quantum information tasks. In the domain of particle
physics, entanglement has been discussed mainly in rela-
tion to two-body decay, annihilation, and creation pro-
cesses; see for instance Refs. [2–8]. In particular,
attention has been focused on the entangled K0

�K0 and
B0

�B0 states, produced in eþe� collisions [9,10].
Recently, the entanglement of neutrino pairs, produced in
the tau lepton decay process �! �� þ �� þ e� þ ��� þ
��e, has been analyzed in connection with the violation of
Bell inequalities [8].

A fundamental phenomenon of elementary particles is
that of particle mixing which appears in several instances:
quarks, neutrinos, and the neutralK-meson system [11,12].
Particle mixing, consisting in a mismatch between flavor
and mass, is at the basis of important effects as neutrino
oscillations and CP violation [13]. Flavor mixing for the
case of three generations is described by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix in the quark instance

[14,15], and by the Maki-Nakagawa-Sakata-Pontecorvo
(MNSP) in the lepton instance [16,17]. The matrix ele-
ments represent the transition probabilities from one lepton
(quark) to another. For example, the neutrino mixing is
described by the following relation:

j�ei
j��i
j��i

0
@

1
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Ue1 Ue2 Ue3
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@
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where the states j��i with � ¼ e, �, � denote the neutrino
flavor states, the states j�ii with i ¼ 1, 2, 3 denote the
neutrino mass eigenstates (with masses mi), and U�;i de-

note the probability amplitudes of transition of the MNSP

matrix UðMNSPÞ. Analogously, for the quark mixing the
CKM matrix connects the weak interaction eigenstates
ðjd0i; js0i; jb0iÞT with the strong interaction eigenstates of
the quarks ðjdi; jsi; jbiÞT ; similarly to Eq. (1), it results

ðjd0i; js0i; jb0iÞT ¼ UðCKMÞðjdi; jsi; jbiÞT . From Eq. (1), we
see that each flavor state is given by a superposition of
mass eigenstates, i.e. j��i ¼ U�1j�1i þU�2j�2i þ
U�3j�3i. Let us recall that both fj��ig and fj�iig are ortho-
normal, i.e. h��j��i ¼ ��;� and h�ij�ji ¼ �i;j. Therefore,

one can interpret the label i as denoting a quantum mode,
and can legitimately establish the following correspon-
dence with three-qubit states: j�1i � j1i1j0i2j0i3 �
j100i, j�2i � j0i1j1i2j0i3 � j010i, j�3i � j0i1j0i2j1i3 �
j001i, where jii denotes states in the Hilbert space for
neutrinos with mass mi. Then, the occupation number
allows one to interpret the flavor states as constituted by
entangled superpositions of the mass eigenstates. Quantum
entanglement emerges as a direct consequence of the su-
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perposition principle. Let us remark that the Fock space
associated with the neutrino mass eigenstates is physically
well defined. Indeed, at least in principle, the mass eigen-
states can be produced or detected in experiments perform-
ing extremely precise kinematical measurements. For
instance, as pointed out by Kayser in Ref. [18], in the
process of pion decay �þ ! �þ þ ��, highly precise

measurements of the momenta of the pion and muon will
determine the mass squared of the neutrino m2

� with an
error �m2

� less than the mass difference jm2
i �m2

j j ði �
j ¼ 1; 2; 3Þ. Thus, the ‘‘physical neutrino’’ j�ii involved in
each event of the process is fully determined [18]. This
kind of experiment will lead to the destruction of the
oscillation phenomenon. Therefore, entanglement is estab-
lished among field modes, although the quantum mechani-
cal state is a single-particle one. This is in complete
analogy to the mode entanglement defined for single-
photon states of the radiation field or the mode entangle-
ment introduced for systems of identical particles [19]: In
all these instances, entanglement is established not be-
tween particles, but rather between field modes. In the
particle physics instance, the multipartite flavor states
can be seen as a generalized class of W states. The latter
are multipartite entangled states that occur in a variety of
diverse physical systems and can be engineered even with
pure quantum optical elements [20]. From a theoretical
standpoint, the concept of mode entanglement in single-
particle states has been widely discussed in the literature
and is by now well established [19,21–23], and the linear
optical scheme has been proposed to demonstrate multi-
partite entanglement of single-photon W states [24].
Experimental realizations include the teleportation of a
single-particle entangled qubit [25], the quantum state
reconstruction of single-photon entangled Fock states
[26], and the homodyne tomography characterization of
dual-mode optical qubits using a single photon delocalized
over two optical modes [27]. Among the experimental
proposals, we should mention a scheme for quantum cryp-
tography using single-particle entanglement [28].
Moreover, remarkably, the nonlocality of single-photon
states has been experimentally demonstrated by double
homodyne measurements [29], thus verifying a long-
standing theoretical prediction [30,31]. Very recently, the
existing schemes to probe nonlocality in single-particle
states have been generalized to include massive particles
of arbitrary type [32], thus paving the way to the study of
single-particle entanglement in a variety of diverse systems
including atoms, molecules, nuclei, and elementary
particles.

Concerning the neutrino system, the main difference
between the single-photon states and the single-particle
neutrino states is related to the spatial separability of
modes. For instance, the polarization modes of
polarization-entangled single-photon states can be easily
spatially separated by means of a polarizing beam splitter.

On the contrary, at present, a beam splitter analog for
neutrinos is not available. However, it is worth recalling
that spatial separability and nonlocality are not necessary
requirements for entanglement [23]. Nevertheless, the spa-
tial separation between massive neutrino states emerges in
the dynamics of the free evolution in the wave packet
approach [33–36]. In quantum theory localized particles
are described by wave packets; moreover, during the free
propagation, the different mass eigenstates j�ii in the
packet travel at different speeds. Thus, the evolution leads
to a spatial separation along the propagation direction
(time delay) of the mass eigenstates j�ii, and the difference
between their arrival times at a given detector is observable
[37,38]. The ‘‘decoherence’’ induced by the free evolution
leads to a degradation and even to a complete destruction
of the oscillation phenomenon [34–36]. It is interesting to
investigate the influence of the decoherence on the quan-
tum correlation of the multipartite entangled mass
eigenstates.
The issue of mode entanglement in single-particle states

of elementary particle physics has been recently addressed
by the study of the dynamical behavior of bipartite and
multipartite flavor entanglement in neutrino oscillation
[39]. In the present paper we characterize the correlation
properties of the multipartite single-particle states that
emerge in the context of lepton or quark mixing. These
states turn out to be generalized W-like entangled states.
By resorting to a suitable measure of global entanglement,
we analyze in detail their properties for different occur-
rences of flavor mixing and particle oscillations both in the
quark and in the leptonic sectors. Furthermore, by using the
wave packet description for the free-propagating neutrino
states, we analyze the dynamical behavior of the multi-
partite entanglement in the phenomenon of neutrino oscil-
lations. The paper is organized as follows: In Sec. II we
discuss the main aspects of different measures of multi-
partite entanglement. Following the approach of Ref. [40],
we introduce a characterization of multipartite quantum
correlations based on suitable entanglement measures for
all the possible bipartitions of the N-partite system. In
Sec. III we recall the formalism of flavor mixing in order

to define generalized classes of three-partiteWð3Þ and four-
partite Wð4Þ states. In Sec. IV we study in detail the

behavior of entanglement for the Wð3Þ and Wð4Þ states as
a function of the free phases in the case of maximal mixing.
In Sec. V, we apply the general formalism developed in the
previous sections to the quantification of multipartite en-
tanglement in the most relevant cases of quark and neutrino
flavor mixing. Finally, in Sec. VI by using the wave packet
treatment, we analyze the effect of propagation-induced
decoherence on multipartite entanglement.

II. MULTIPARTITE ENTANGLEMENT

In this section we will briefly discuss the problem of
quantifying multipartite entanglement in relation to global
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aspects and statistical properties, and introduce measures
particularly suitable for our purposes. For recent, detailed
reviews on the qualification, quantification, and applica-
tions of entanglement, see Refs. [41–43]. Concerning bi-
partite pure states, entanglement is very well characterized
by proper and efficient measures. In fact, for a bipartite
pure state �12, the von Neumann entropy EvN ¼
�Tr1½�1log2�1�, for the reduced density matrix �1 ¼
Tr2½�12� completely determines the amount of entangle-
ment [44]. For a given bipartition, EvN has its maximum
log2d, where d denotes the minimum between the dimen-
sions of the two parties. For bipartite mixed states, several
entanglement measures have been proposed [45–47].
Although providing interesting operative definitions, the
entanglement of formation and of distillation [45] are very
hard to compute. A celebrated result is the Wootters for-
mula for the entanglement of formation for two-qubit
mixed states [48]. An alternative measure, closely related
to the entanglement of formation, is the concurrence (the
entanglement of formation is a monotonically increasing
function of the concurrence) [49]. The same difficulties of
computation are encountered with the relative entropy of
entanglement [46]. At present a computable entanglement
monotone is the logarithmic negativity EN , based on the
requirement of positivity of the density operator under
partial transposition EN ¼ log2k~�12k1, where k � k1 de-

notes the trace norm, i.e. kOk1 ¼ Tr½
ffiffiffiffiffiffiffiffiffiffiffi
OyO

p
� for any

Hermitian operator O [47]. The partially transposed den-
sity matrix ~�12 is obtained through the partial transposition
(PT) with respect to one mode, say mode 2, of �12, i.e.
~�12 � �PT 2

12 . Given an arbitrary orthonormal product basis

ji1; j2i, the matrix elements of ~�12 are determined by the
relation hi1; j2j~�12jk1; l2i ¼ hi1; l2j�12jk1; j2i. Obviously,
for pure states such a measure provides the same results
as the von Neumann entropy.

The challenge of quantifying entanglement becomes
much harder in multipartite systems. Important achieve-
ments have been reached in understanding the different
ways in which multipartite systems can be entangled. The
intrinsic nonlocal character of entanglement imposes its
invariance under any local quantum operations; therefore,
equivalence classes of entangled states can be defined
through the group of reversible stochastic local quantum
operations assisted by classical communication [50]. Such
an approach allows to demonstrate that three and four
qubits can be entangled, respectively, in two and nine
inequivalent ways [51,52]. In particular, all three-qubit
entangled states are related to two fundamental classes of

states: the GHZ state jGHZð3Þi and the W state jWð3Þi
[51,53]. In the N-partite instance, such states are defined as

jGHZðNÞi ¼ 1ffiffiffi
2

p ðj000 . . . 0i þ j111 . . . 1iÞ; (2)

jWðNÞi ¼ 1ffiffiffiffi
N

p ðj100 . . . 0i þ j010 . . . 0i þ j001 . . . 0i

þ . . . j000 . . . 1iÞ: (3)

The GHZ and W states are fully symmetric, i.e. invariant
under the exchange of any two qubits, and greatly differ
from each other in their correlations properties. The GHZ
state possesses maximal N-partite entanglement, i.e. it
violates Bell inequality maximally; on the other hand, it
lacks bipartite entanglement. For instance, in the case N ¼
3, abandoning one mode, the resulting mixed two-mode
state turns out to be separable. The W states possess less
N-partite entanglement, but maximal K-partite entangle-
ment (K <N) in the K-reduced states.
Several attempts have been made to introduce efficient

entanglement measures for multipartite systems. The char-
acterization of the quantum correlations through a measure
embodying a collective property of the system should be
based on the introduction of quantities invariant under
local transformations. A successful step in this direction
has been put forward by Coffman, Kundu, and Wootters.
Studying the distributed entanglement in systems of three
qubits, they defined the so-called residual, genuine tripar-
tite entanglement, or 3-tangle, a quantity constructed in
terms of the squared concurrences associated with the
global three-qubit state and the reduced two-qubit states
[49]. While successfully detecting the genuine tripartite

entanglement in the state jGHZð3Þi, the 3-tangle vanishes if
computed for the state jWð3Þi, thus being not appropriate
for this class of states. Several generalizations of the 3-
tangle have been proposed [54]. The Schmidt measure,
defined as the minimum of log2rwith r being the minimum
of the number of terms in an expansion of the state in
product basis, has been proposed by Eisert and Briegel
[55]. The measure vanishes if and only if the state is fully
separable, thus it does not discriminate between genuine
multipartite and bipartite entanglement. However, the
Schmidt measure is able to distinguish the GHZ and the

W states; for instance, it yields the value 1 for jGHZðNÞi
and the values log2N for the jWðNÞi state (considering
N-partitions of the system). Multipartite entanglement
can be characterized also by the distance of the entangled
state to the nearest separable state; this is the geometric
measure [56]. Simpler proposals are given in terms of
functions of bipartite entanglement measures [40,57–60].
An example of this kind of proposals is the global entan-
glement of Meyer andWallach, which is defined as the sum
of concurrences between one qubit and all others [57], and
can be expressed as the average subsystem linear entropy
[58]. A generalization of the global entanglement has been
introduced by Rigolin et al., using the set of the mean
linear entropies of all possible bipartitions of the whole
system [40]. Recently, another approach has been pro-
posed, based on the distribution of the purity of a subsys-
tem over all possible bipartitions of the total system [60].
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A. Average von Neumann entropy

We intend to analyze the entanglement properties of a
generalized class of W states (finite-dimensional pure
states). To this aim, we adopt an approach similar to that
of Refs. [40,57–60], thus characterizing the entanglement
through measures defined on the possible bipartitions of
the system. As we are dealing with pure states, we define as
proper measure of multipartite entanglement a functional
of the von Neumann entropy averaged on a given biparti-
tion of the system. Let � ¼ j ih j be the density operator
corresponding to a pure state j i, describing the system S
partitioned into N parties. Let us consider the bipartition of
the N-partite system S ¼ fS1; S2; . . . ; SNg in two subsys-
tems SAn ¼ fSiq ; Si2 ; . . . ; Sing, with 1 � i1 < i2 < � � �<
in � N (1 � n < N), and SBN�n ¼ fSj1 ; Sj2 ; . . . ; SjN�ng,
with 1 � j1 < j2 < � � �< jN�n � N, and iq � jp. We de-

note by

�An � �i1;i2;...;in ¼ TrBN�n½�� ¼ Trj1;j2;...;jN�n½�� (4)

the density matrix reduced with respect to the subsystem
SBN�n . The von Neumann entropy associated with such a

bipartition will be given by

EðAn;BN�nÞ
vN ¼ �TrAn½�An log2�An�: (5)

At last, we define the average von Neumann entropy

hEðn:N�nÞ
vN i ¼ N

n

� ��1X
An

EðAn;BN�nÞ
vN ; (6)

where the sum is intended over all the possible bipartitions
of the system in two subsystems each with n and N � n
elements (1 � n < N).

For instance, in the simple cases of three-qubit states, as

the states �Wð3Þ ¼ jWð3ÞihWð3Þj and �GHZð3Þ ¼ jGHZð3Þi�
hGHZð3Þj, only unbalanced bipartitions of two subsystems
can be considered. Straightforward calculations yield

Eð3Þ
21 � EðA2;B1Þ

vN ð�Wð3Þ Þ ¼ hEð2:1Þ
vN ð�Wð3Þ Þi ¼ log23� 2

3

’ 0:918 296; (7)

EðA2;B1Þ
vN ð�GHZð3Þ Þ ¼ hEð2:1Þ

vN ð�GHZð3Þ Þi ¼ 1: (8)

On the other hand, for a four-qubit state we have both
unbalanced, i.e. ðSA3

; SB1
Þ, and balanced bipartitions, i.e.

ðSA2
; SB2

Þ. For the state �Wð4Þ ¼ jWð4ÞihWð4Þj, we get
Eð4Þ
31 � E

ðA3;B1Þ
vN ð�Wð4Þ Þ ¼ hEð3:1Þ

vN ð�Wð4Þ Þi ¼ 2� 3
4log23

’ 0:811 278; (9)

Eð4Þ
22 � EðA2;B2Þ

vN ð�Wð4Þ Þ ¼ hEð2:2Þ
vN ð�Wð4Þ Þi ¼ 1: (10)

Of course, all the measures evaluated on the state �GHZð4Þ

give the maximal, normalized value 1. It is worth noting
that, in order to characterize the multipartite entanglement

in a N-partite system, the number of bipartite measures
grows with N.

B. Average logarithmic negativity

As is well known, the entropic measures cannot be used
to quantify the entanglement of mixed states. In order to
measure the multipartite entanglement of mixed states, and
following the same procedure as in the previous subsec-
tion, we introduce a generalized version of the logarithmic
negativity [47]. Let � be a multipartite mixed state asso-
ciated with a system S, partitioned intoN parties. Again we
consider the bipartition of the N-partite system S into two
subsystems SAn and SBN�n . We denote by

~� An � �PT BN�n ¼ �PT j1;j2;...;jN�n (11)

the bona fide density matrix, obtained by the partial trans-
position of � with respect to the parties belonging to the
subsystem SBN�n . The logarithmic negativity associated

with the fixed bipartition will be given by

E
ðAn;BN�nÞ
N ¼ log2k~�Ank1: (12)

Finally, we define the average logarithmic negativity

hEðn:N�nÞ
N i ¼ N

n

� ��1X
An

EðAn;BN�nÞ
N ; (13)

where the sum is intended over all the possible bipartitions
of the system.

III. GENERALIZED W STATES IN FLAVOR
MIXING

In this section, we consider generalized W states of the
form

jWðNÞð�1; �2; . . . ; �NÞi ¼
XN
k¼1

�kj�1;k; �2;k; . . . ; �N;ki

� XN
k¼1

�kj�ðNÞk i;

XN
k¼1

j�kj2 ¼ 1; (14)

where �m;n denotes the Kronecker delta. In particular, we

will consider the cases corresponding to N ¼ 3, 4.
Moreover, we will adopt a parametrization for f�kg com-
monly used in the domain of elementary particle physics,
and associated with the phenomena ofN-flavor mixing, i.e.
quark and neutrino mixing [11].

The orthonormal set of flavor states j ðNÞ
l i are defined

through the application of the N � N mixing matrix UðNfÞ

to the basis vectors j�ðNÞk i, i.e. j ðNÞ
l i ¼ PN

k¼1U
ðNfÞ
l;k j�ðNÞk i (l,

k ¼ 1; . . . ; N). An N � N unitary matrix contains, in gen-
eral, N2 independent parameters. Each of the 2N fields
(two for each lepton generation) can absorb one phase.
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Moreover, there is an unobservable overall phase, so we are
left with ðN � 1Þ2 independent real parameters. Among

these, NðN�1Þ
2 are rotation angles, or mixing angles, and the

remaining ðN�1ÞðN�2Þ
2 are phases, which are responsible for

CP violation. Applying this formalism, we determine N

orthonormal flavor states j ðNÞ
l i, that belong to the class of

generalized W states defined by Eq. (14).

A. Generalized Wð3Þ states from three-flavor mixing
matrix

In the case of mixing among three generations (either
leptons or quarks), the standard parametrization of a 3� 3
unitary mixing matrix is given by [11]

j�fi ¼ Uð~	; �Þj�mi (15)

Uð~	; �Þ ¼
c12c13 s12c13 s13e

�i�
�s12c23 � c12s23s13e

i� c12c23 � s12s23s13e
i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
B@

1
CA; (16)

where j�fi ¼ ðj�ei; j��i; j��iÞT are the states with definite
flavor and j�mi ¼ ðj�1i; j�2i; j�3iÞT those with definite
masses. In Eqs. (15) and (16), the following shorthand
notation has been adopted: ð~	; �Þ � ð	12; 	13; 	23;�Þ,
cij � cos	ij, and sij � sin	ij. In this case, we have three
mixing angles 	12, 	13, 	23, and a free phase �. It can be
shown that the values of these parameters for which the
three-flavor mixing is maximal are [15]

	max
12 ¼ �

4
; 	max

23 ¼ �

4
;

	max
13 ¼ arccos

ffiffiffi
2

3

s
; �max ¼ �

2
:

(17)

In correspondence of these values, the matrix elements in
Eq. (16) have all the same modulus 1ffiffi

3
p .

For N ¼ 3, we define the generalized class of three-
qubit W states as those generated by means of the follow-
ing matrix, which is obtained by the above mixing matrix
upon multiplication of the third column by ei�:

jWð3Þð~	;�Þi � Uð3fÞð~	; �Þj�ð3Þi (18)

Uð3fÞð~	; �Þ ¼ Uð~	; �Þ
1 0 0
0 1 0
0 0 ei�

0
@

1
A; (19)

where jWð3Þð~	;�Þi¼ðjWð3Þ
e ð~	;�Þi;jWð3Þ

� ð~	;�Þi;jWð3Þ
� ð~	;�ÞiÞT

and j�ð3Þi ¼ ðj�ð3Þ1 i; j�ð3Þ2 i; j�ð3Þ3 iÞT . The entanglement prop-

erties of the states associated with matrices (16) and (19)
are identical. When all the mixing parameters are chosen to

be maximal as in Eq. (17), the matrix Uð3fÞ becomes

Uð3fÞ
max ¼ 1ffiffiffi

3
p

1 1 1
iy iy2 i
iy2 iy i

0
@

1
A: (20)

with y ¼ expð2i�=3Þ. In the case of maximal mixing, all

the states possess the same entanglement of jWð3Þi:
EðA2;B1Þ
vN ðjWð3Þð~	max;�maxÞiÞ ¼ hEð2:1Þ

vN ðjWð3Þð~	max;�maxÞiÞi
¼ Eð3Þ

21 ; (21)

where Eð3Þ
21 is defined in Eq. (7). In the next section we will

analyze the entanglement properties of the jWð3Þ
� ð~	; �Þi

states, and their behavior as a function of the mixing
parameters.

B. Generalized W ð4Þ states from four-flavor mixing
matrix

Let us now consider the four-flavor mixing (N ¼ 4). In
particle physics, such a case could be realized, for instance,
by a situation in which there are three active neutrino types
and an extra one, noninteracting, the so-called ‘‘sterile’’
neutrino. Obviously, such states correspond to physically
realizable situations in optical and condensed matter sys-
tems. The corresponding four-flavor mixing matrix

Uð4fÞð~	; ~�Þ will be built on 9 independent parameters, 6

mixing angles, and 3 phases, i.e. ð~	; ~�Þ ¼ ð	12; 	13;
	14; 	23; 	24; 	34;�14; �23; �34Þ. Explicitly, the mixing ma-
trix for four flavors can be written as the following product
of elementary matrices:

Uð4fÞð~	; ~�Þ ¼ U34ð	34; �34ÞU24ð	24ÞU23ð	23; �23Þ
�U14ð	14; �14ÞU13ð	13ÞU12ð	12ÞU�ð�14Þ;

(22)

where

U�ð�14Þ ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei�14

0
BBB@

1
CCCA;

U12 ¼
cos	12 sin	12 0 0
� sin	12 cos	12 0 0

0 0 1 0
0 0 0 1

0
BBB@

1
CCCA;

U13 ¼
cos	13 0 sin	13 0

0 1 0 0
� sin	13 0 cos	13 0

0 0 0 1

0
BBB@

1
CCCA

(23)
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U14 ¼
cos	14 0 0 e�i�14 sin	14

0 1 0 0
0 0 1 0

�ei�14 sin	14 0 0 cos	14

0
BBB@

1
CCCA;

U23 ¼
1 0 0 0
0 cos	23 e�i�23 sin	23 0
0 �ei�23 sin	23 cos	23 0
0 0 0 1

0
BBB@

1
CCCA

(24)

U24 ¼
1 0 0 0
0 cos	24 0 sin	24
0 0 1 0
0 � sin	24 0 cos	24

0
BBB@

1
CCCA;

U34 ¼
1 0 0 0
0 1 0 0
0 0 cos	34 e�i�34 sin	34
0 0 �ei�34 sin	34 cos	34

0
BBB@

1
CCCA

(25)

Analogously to the definition (18) given in Sec. III A, the
class of generalized four-qubit W states can be defined as

jWð4Þð~	; ~�Þi � Uð4fÞð~	; ~�Þj�ð4Þi: (26)

The matrix (22) is maximal, i.e. all elements have the same
modulus 1=2, for the following set of values:

	max
12 ¼ 	max

34 ¼ �

4
; 	max

14 ¼ 	max
23 ¼ �

6
;

	max
13 ¼ arccos

ffiffiffi
2

3

s
; 	max

24 ¼ arcsin

ffiffiffi
1

3

s
;

(27)

�max
14 ¼ 
; �max

23 ¼ ��
; �max
34 ¼ 
: (28)

For the choices (27) and (28), Uð4fÞ
maxð
Þ takes the simple

form

Uð4fÞ
maxð
Þ ¼ 1

2

1 1 1 1
�1 1 �ei
 ei


�1 �1 1 1
1 �1 �ei
 ei


0
BBB@

1
CCCA: (29)

All the states jWð4Þð~	max; ~�maxÞi exhibit the same amount of

entanglement of the standard four-qubit jWð4Þi state:
EðA3;B1Þ
vN ðjWð4Þð~	max; ~�maxÞiÞ ¼ hEð3:1Þ

vN ðjWð4Þð~	max; ~�maxÞiÞi
¼ Eð4Þ

31 : (30)

EðA2;B2Þ
vN ðjWð4Þð~	max; ~�maxÞiÞ ¼ hEð2:2Þ

vN ðjWð4Þð~	max; ~�maxÞiÞi
¼ Eð4Þ

22 ; (31)

for any bipartition ðA2; B2Þ and ðA3; B1Þ. Eð4Þ
31 and Eð4Þ

22 are

given in Eqs. (9) and (10), respectively.

IV. THE CORRELATION PROPERTIES OF jW ðNÞi
STATES

In this section we analyze the correlation properties of
the class of W-like states defined by Eqs. (18) and (26).
Such properties are completely determined by the free
parameters of the mixing matrix formalism, i.e. the rota-
tion angles 	ij and the phases �ij. Let us recall that forN ¼
3 we have three angles and one phase, while for N ¼ 4 we
have six angles and three phases. In our formalism, the
state associated with the first row of the matrices

Uð3fÞð~	; �Þ and Uð4fÞð~	; ~�Þ, i.e. the states jWð3Þ
e ð~	;�Þi and

jWð4Þ
e ð~	;�Þi, respectively, reduce to standard 3-qubit and 4-

qubit W states by fixing the rotation angles to their maxi-
mal values 	max

ij , according to Eqs. (17) and (27).

Therefore, in the instance of N-flavor W states with maxi-

mal mixing angles, i.e. jWðNÞð~	max; ~�Þi, there exists a sub-
space (of dimension N � 1), that is orthogonal to the

jWðNÞi state and is spanned by the vectors

fjWðNÞ
�2

ð~	max; ~�Þi; . . . jWðNÞ
�N ð~	max; ~�Þig. For simplicity, in

the following we will restrict ourselves to the study of
the entanglement properties of such a subclass of general-

ized jWðNÞi states, which are parametrized by the phases of
the mixing matrix.

A. Case of jW ð3Þð ~�max;�Þi states
First, we discuss the entanglement properties of 3-partite

W states Uð3fÞð~	max; �Þ; in particular, we study the depen-
dence of entanglement on the phase �, with the rotation
angles 	ij at their maximal values 	max

ij , given by Eq. (17).

In this way, we obtain a set of three orthogonal generalized

W states jWð3Þ
� ð�Þi � jWð3Þ

� ð~	max;�Þi (� ¼ e, �, �), of

which the first one is the usual jWð3Þi state.

Correspondingly, the matrix Uð3fÞ is specialized to

Uð3fÞð�Þ ¼ 1ffiffiffi
3

p
1 1 1

� 1
2 ð

ffiffiffi
3

p þ ei�Þ 1
2 ð

ffiffiffi
3

p � ei�Þ ei�

1
2 ð

ffiffiffi
3

p � ei�Þ � 1
2 ð

ffiffiffi
3

p þ ei�Þ ei�

0
B@

1
CA:
(32)

Let us compute the quantities EðA2;B1Þ
vN and hEð2:1Þ

vN i, as de-
fined by Eqs. (5) and (6) in Sec. II A. We get

Eð1;2;3Þ
vN e ¼ Eð1;3;2Þ

vN e ¼ Eð2;3;1Þ
vN e ¼ Eð1;2;3Þ

vN � ¼ Eð1;2;3Þ
vN �

¼ log23� 2
3; (33)

Eð1;3;2Þ
vN � ¼ Eð2;3;1Þ

vN �

¼ �
�
1

3
� cos�

2
ffiffiffi
3

p
�
log2

�
1

3
� cos�

2
ffiffiffi
3

p
�

�
�
2

3
þ cos�

2
ffiffiffi
3

p
�
log2

�
2

3
þ cos�

2
ffiffiffi
3

p
�
; (34)
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Eð2;3;1Þ
vN � ¼ Eð1;3;2Þ

vN �

¼ �
�
1

3
þ cos�

2
ffiffiffi
3

p
�
log2

�
1

3
þ cos�

2
ffiffiffi
3

p
�

�
�
2

3
� cos�

2
ffiffiffi
3

p
�
log2

�
2

3
� cos�

2
ffiffiffi
3

p
�
; (35)

where the superscript ði; j; kÞ explicitly represents the spe-
cific composition of the bipartitions A2 ¼ fSi; Sjg and

B1 ¼ fSkg, with i, j, k ¼ 1, 2, 3 and i � j � k.
Moreover, in order to simplify the notation, the definition

Eði;j;kÞ
vN � � Eði;j;kÞ

vN ðjWð3Þ
� ð�ÞiÞ has been introduced. The states

jWð3Þ
� ð�Þi, with � ¼ �, �, possess correlation properties

dependent on �.

Let us, for instance, consider the state jWð3Þ
� ð�Þi; in

Fig. 1, the plots display the behavior of Eði;j;kÞ
vN � and

hEð2:1Þ
vN �i as a function of � in the range ½0; 2��. While

Eð1;2;3Þ
vN � (dotted line) takes the constant reference value

Eð3Þ
21 (as for the state jWð3Þi), the quantities Eð1;3;2Þ

vN � (dashed

line) and Eð2;3;1Þ
vN � (dot-dashed line) vary with �, attaining the

absolute maximum 1 at the points �1 ¼ � arccosð� 1ffiffi
3

p Þ �
2p� and �2 ¼ � arccosð 1ffiffi

3
p Þ � 2p� (with p integer), re-

spectively. Therefore, the state jWð3Þ
� ð�iÞi, with i ¼ 1, 2,

exhibits maximal entanglement in a given bipartition,
equal to the entanglement shown by the GHZ state

jGHZð3Þi. Moreover, for each given range of values of �,

we see that either Eð1;3;2Þ
vN � (dashed line) or Eð2;3;1Þ

vN � (dot-

dashed line) exceeds the reference value Eð3Þ
21 . This phe-

nomenon of periodic entanglement concentration is remi-
niscent of spin squeezing in collective atomic variables. On

the other hand, the average von Neumann entropy hEð2:1Þ
vN �i

stays below the reference value Eð3Þ
21 , attaining it at the

points � ¼ �
2 � p�. In conclusion, the free parameter �

can be used to concentrate and squeeze the entanglement in
a specific bipartition, allowing a sharply peaked distribu-
tion of entanglement, corresponding to a lowering of the
average von Neumann entropy.

B. Case of jW ð4Þð ~�max; ~�Þi states
Because of the increased number of degrees of freedom,

the class of W-like states for N ¼ 4, i.e. Eq. (26), yields a
more complex scenario for investigation. Proceeding as in
Sec. IVA, we fix the rotation angles at their maximal
values 	max

ij , given by Eq. (27), and leave free the phases

�ij. The matrix Uð4fÞð~	; ~�Þ acquires the form

Uð4fÞð~�Þ ¼ 1

2

1 1 1 1
�1� z14

3 � z�
23

3 1� z14
3 � z�

23

3 � z14
3 þ 2z�

23

3 z14

� 1
2 þ z23

2 � z14z
�
34

3 þ z�
23
z�
34

6 þ z�
34

2 � 1
2 � z23

2 � z14z
�
34

3 þ z�
23
z�
34

6 � z�
34

2 1� z14z
�
34

3 � z�
23
z�
34

3 z�34z14
1
2 � z14

3 þ z�23
6 � z23z34

2 þ z34
2 � 1

2 � z14
3 þ z�23

6 þ z23z34
2 þ z34

2 � z14
3 � z�23

3 � z34 z14

0
BBBB@

1
CCCCA; (36)

where zij � ei�ij . The explicit analytical expressions for
the entanglement measures evaluated on the states
jWð4Þ

� ð ~�Þi � jWð4Þ
� ð~	max; ~�Þi (� ¼ e, �, �, s) are rather

long and involved, and are reported in the Appendix.
Note that the state jWð4Þ

e ð~�Þi coincides with the usual
jWð4Þi state. As an example, let us analyze in detail the
entanglement of the state jWð4Þ

� ð~�Þi, that depends on the
phases �14 and �23 and is independent of the phase �13. In

Fig. 2, plots I–III display Eð1;2;3;4Þ
vN � , Eð1;3;2;4Þ

vN � , and Eð1;4;2;3Þ
vN � ,

respectively, as a function of �14 and �23; plot IV displays

the behavior of the average entropy hEð2:2Þ
vN �i. The entangle-

ment takes the maximum value 1 in correspondence of the
values given in Eq. (28), i.e. for �14 þ �23 ¼ �p�, with p
odd integer. Moreover, while Eð1;2;3;4Þ

vN � exhibits an oscillat-
ing behavior along the direction parallel to the vector

ð�14; �23Þ ¼ ð1; 1Þ, the quantities Eð1;3;2;4Þ
vN � , Eð1;4;2;3Þ

vN � , and

hEð2:2Þ
vN �i show a periodic array structure of holes.
Next, we consider the entropies corresponding to the

unbalanced bipartitions Eði;j;k;lÞ
vN � . The surface plots of these

entropic measures, as functions of �14 and �23, are similar
to those for the case of balanced bipartitions, shown in
Fig. 2. In order to better highlight their structure, in Fig. 3,

0 π
2

π 3π
2

2π
0.25

0.5

0.75

1

δ

E
vN

µ
i,

j;
k

FIG. 1 (color online). The von Neumann entropy Eði;j;kÞ
vN � and

the average von Neumann entropy hEð2:1Þ
vN �i as functions of the

CP-violating phase �. Eði;j;kÞ
vN � is plotted for the following

bipartitions i, j; k: (i) i ¼ 1, j ¼ 2, and k ¼ 3 (dotted
line); (ii) i ¼ 1, j ¼ 3, and k ¼ 2 (dashed line); (iii) i ¼ 2,

j ¼ 3, and k ¼ 1 (dot-dashed line). Eð1;2;3Þ
vN � is constant and takes

the reference value Eð3Þ
21 ¼ 0:918 296. The average entropy

hEð2:1Þ
vN �i (full line) attains the maximal value Eð3Þ

21 at � ¼ �
2 �

p�, with p integer.
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we plot one-dimensional sections of the surfaces belonging
to the plane �14 ¼ �23. We see that, as in the three-qubit
instance, concentrations of entanglement (with a value in

the range ½Eð4Þ
31 ; 1�) occurs for the bipartitions ð1; 2; 3; 4Þ and

ð2; 1; 3; 4Þ, corresponding to a lowering of the average

entropy hEð1:3Þ
vN 2i. In the range ½0; 2��, both Eð1;2;3;4Þ

vN � (dotted

line) and Eð2;1;3;4Þ
vN � (dashed line) exceed in alternating order

the reference value Eð4Þ
31 , and attain their maximum value 1,

respectively, at the points �a¼�arccos½32ð
ffiffiffi
2

p �1Þ��2p�

and �b ¼ � arccos½� 3
2 ð

ffiffiffi
2

p � 1Þ� � 2p�. This behavior is

again reminiscent of spin squeezing in atomic systems.
Analogously to the three-qubit instance, the average en-
tropy exhibits an oscillatory behavior, and stays below the

reference Eð4Þ
31 , reaching it at � ¼ �

2 þ p�.

As they depend nontrivially on all the phases �ij, the

states jWð4Þ
� ð~�Þi and jWð4Þ

s ð~�Þi possess an even richer struc-
ture of quantum correlations, compared to the case

jWð4Þ
� ð~�Þi However, in both instances, one observes similar

effects as the ones that occur for the state jWð4Þ
� ð ~�Þi.

V. QUANTIFYING ENTANGLEMENT IN QUARK
AND NEUTRINO FLAVOR MIXING

In this section, we quantify the entanglement in situ-
ations of quarks or neutrino mixing, described by the three-

0 π
2

π 3π
2

2π

0.25

0

0.5

0.75

1

δ

E
vN

µ
i,

j;
k,

l

FIG. 3 (color online). One-dimensional sections of the von

Neumann entropies Eði;j;k;lÞ
vN � for unbalanced 1:3 bipartitions

and their average hEð1:3Þ
vN �i as functions of the phase � (� �

�14 ¼ �23). Similarly to the case of three qubits, in the unbal-
anced four-qubit instance a concentration of entanglement can

be observed in the entropies Eð1;2;3;4Þ
vN � (dotted line) and Eð2;1;3;4Þ

vN �

(dashed line). The entropy Eð4;1;2;3Þ
vN � (double-dot-dashed line) is

constant and takes the reference value Eð4Þ
31 ¼ 0:811 278. The

entropy Eð3;1;2;4Þ
vN � (dot-dashed line), and the average entropy

hEð1:3Þ
vN �i (full line) are always limited by this value, reaching it

at points � ¼ �
2 þ p�.

FIG. 2 (color online). The von Neumann entropy Eði;j;k;lÞ
vN � for balanced bipartitions and the average von Neumann entropy hEð2:2Þ

vN �i as
functions of the phases �14 and �23. Panel I shows E

ð1;2;3;4Þ
vN � . It exhibits an oscillating behavior along the direction parallel to the vector

ð�14; �23Þ ¼ ð1; 1Þ. Panels II and III show the entropies Eð1;3;2;4Þ
vN � and Eð1;4;2;3Þ

vN � , respectively. They exhibit a nontrivial behavior yielding

a periodic array structure of holes and dips. The combined behaviors of all the entropies result in the average von Neumann entropy,
displayed in panel IV. All four functions reach the maximum attainable value 1 of the entanglement at �14 þ �23 ¼ �p�, with p odd
integer.
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flavor states defined in Eq. (15). We will set the parameters
of the matrix (16) at the values established by the current
experiments [12,61–63]. In the case of quarks, the mixing
angles of the CKM matrix are given by [61]

	CKM12 ¼ 13:0	 � 0:1	; 	CKM13 ¼ 0:2	 � 0:1	;

	CKM23 ¼ 2:4	 � 0:1	:
(37)

Moreover, a measurement of the CP violation has yielded
the value for the CP-violating phase [12]

�CKM ¼ 1:05� 0:24: (38)

In Table I, we list the values for the von Neumann entropies

Eði;j;kÞ
vN � , with � ¼ d0, s0, b0 and i, j, k ¼ d, s, b, and hEð2:1Þ

vN �i
corresponding to the states (15), with the mixing angles

and the CP-violating phase fixed to Eqs. (37) and (38),
respectively, without taking into account the uncertainties.
We see that, in the range of the experimentally measured
values of the mixing angles, the entanglement stays low,
very far from the maximum attainable value 1. Moreover, it
concentrates in the bipartitions ðd; b; sÞ and ðs; b;dÞ of the
states jd0i and js0i, while it is very small for the state jb0i. In
the case of neutrinos, the most recent estimates of the
parameters of the MNSP matrix are expressed by the
following relations [63]:

sin 2	MNSP
12 ¼ 0:314ð1þ0:18

�0:15Þ;
sin2	MNSP

13 ¼ ð0:8þ2:3
�0:8Þ � 10�2;

sin2	MNSP
23 ¼ 0:45ð1þ0:35

�0:20Þ:
(39)

TABLE I. von Neumann entropies Eði;j;kÞ
vN � and hEð2:1Þ

vN �i (� ¼ d0, s0, b0) for the three-flavor
states associated with the quark mixing.

� Eðd;s;bÞ
vN � Eðd;b;sÞ

vN � Eðs;b;dÞ
vN � hEð2:1Þ

vN �i
d0 0.0002 0.2889 0.2890 0.1927

s0 0.0185 0.2960 0.2887 0.2011

b0 0.0186 0.0180 0.0010 0.0126

FIG. 4 (color online). The von Neumann entropies Eði;j;kÞ
vN � for all possible bipartitions and the average von Neumann entropy hEð2:1Þ

vN �i
as functions of the CP-violating phase �. In panel I we plot the entropy Eð1;2;3Þ

vN � . It is constant and close to 1, the maximum attainable

value of entanglement. In panel II we plot the entropy Eð1;3;2Þ
vN � . It is moderately �-dependent and reaches its maximum at � ¼ �, still

below 1 (within the experimental statistical errors). In panel III we plot the entropy Eð1;3;2Þ
vN � . It corresponds to the bipartition with the

least content of entanglement, is strongly dependent on �, and reaches a minimum at � ¼ �. The resulting average entropy hEð2:1Þ
vN �i,

displayed in panel IV, is weakly �-dependent and reaches a minimum at � ¼ �. The mixing angles 	MNSP
ij are assumed to be

Gaussian random variables, with a distribution centered at the mean values �	MNSP
ij fixed to coincide with the experimental values (39),

and a standard deviation �ij chosen to coincide with
�	MNSP

ij

3 . The uncertainties �	MNSP
ij are fixed at the maximum values between the

left and right extrema given in Eq. (39). The thick full lines represent the entropies with 	MNSP
ij ¼ �	MNSP

ij , and null uncertainty.
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The CP-violating phase associated with lepton mixing is,
at present, completely undetermined; therefore, �MNSP

may take an arbitrary value in the interval ½0; 2�Þ. In
Table II, by using the relations (39) (without taking into
account the uncertainties) and for arbitrary �MNSP, we list
the entropies corresponding to the neutrino flavor states.
The given intervals of possible values are obviously due to
the freedom in the choice of the CP-violating phase.
Comparing Tables I and II, it turns out that the neutrino
mixing states are more entangled and their entanglement is
more homogeneously distributed among the different bi-
partions, compared to the quark mixing states. In the case
of neutrinos, the uncertainties are very large. Moreover, the
value taken by the mixing angle 	MNSP

13 is crucial. In fact,

only if such an angle is nonvanishing, then the entropies are
dependent on the CP-violating phase. Therefore, it is
interesting to investigate the behavior of entanglement
when one takes into account the experimental uncertainties
on the mixing angles. To this aim, we assume that 	MNSP

ij

takes random values normally distributed around the ex-
perimentally observed values. For instance, in Fig. 4, we

plot Eði;j;kÞ
vN � and hEð2:1Þ

vN �i as a function of the free parameter

�MNSP � �. We see that the entanglement corresponding to
bipartitions ð1; 2; 3Þ and ð1; 3; 2Þ keeps high, (panels I and
II); on the other side, the bipartition ð2; 3; 1Þ exhibits lower
amount of entanglement (panel III), leading to a lowering
of the average amount of global entanglement (panel IV).
Thus, we can conclude that, for the states j��i, the parties 2
and 3 are more strongly correlated compared to the pairs 1,
2, and 1, 3. Similar conclusions hold for the states j�ei and
j��i.

VI. DECOHERENCE IN NEUTRINO
OSCILLATIONS

In the previous sections, we have provided an analysis of
the mixing effect in terms of the quantum correlations of
multipartite mode-entangled states, by exploiting tools
commonly used in the domain of quantum information
theory. The characterization of the entanglement of gener-
alized multipartite W states, through the measurement of
the amount of the quantum information content of these
states, constitutes a description of a fundamental effect of
particle physics. The physical insight of such an analysis
acquires even more relevance if it is transferred to a
dynamical scenario, by studying the phenomenon of par-
ticle oscillations. Let us recall that both the phenomenon of

particle oscillations and quantum entanglement are due to
the superposition principle which gives place to coherent
interference among the different mass eigenstates. In the
particular instance of neutrinos, the standard theory of
oscillations is developed in the plane-wave approximation
[64]. Adopting such an approximation, all the results ob-
tained in the previous sections hold for any time in the free
evolution dynamics. However, a more realistic description
of the phenomenon can be achieved by means of the wave
packet approach [33–36], for reviews see Refs. [37,38].
The three massive neutrinos possess different masses; con-
sequently, the corresponding wave packets propagate at
different speeds, and acquire an increasing spatial separa-
tion with respect to each other. Therefore, the free evolu-
tion leads to a natural lowering of the coherent interference
effects, associated with the destruction of the oscillation
phenomenon and with the vanishing of the multipartite
quantum entanglement. In this section, we intend to ana-
lyze the quantum correlations of multipartite entangled
neutrino states by using the wave packet description for
massive neutrinos. In particular, we want to study the
decoherence effects, induced by the free evolution, on
the multipartite entanglement among neutrino mass eigen-
states. Let us notice that the forthcoming analysis, as well
as all the formalism developed in this work, can be applied
to any system exhibiting the particle mixing.
Following the procedure developed in Refs. [34–36], by

considering one only one space dimension, a neutrino with
definite flavor, propagating along the x direction, can be
described by the state:

j��ðx; tÞi ¼
X
j

U�;j jðx; tÞj�ji; (40)

where the U�;j denotes the corresponding element of the

mixing matrix, j�ji is the mass eigenstate with mass mj,

and  jðx; tÞ is its wave function. Assuming for the momen-

tum of the massive neutrino j�ji a Gaussian distribution

 jðpÞ, the wave function is given by

 jðx; tÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z
dp jðpÞeipx�iEjðpÞt;

 jðpÞ ¼ 1

ð2��2
pÞ1=4

e�ð1=ð4�2
pÞÞðp�pjÞ2 ;

(41)

where pj is the average momentum, �p is the momentum

uncertainty, and EjðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

j

q
. The density matrix

TABLE II. von Neumann entropies Eði;j;kÞ
vN � and hEð2:1Þ

vN �i (� ¼ e, �, �) for the three-flavor
states associated with the neutrino mixing.

� Eð1;2;3Þ
vN � Eð1;3;2Þ

vN � Eð2;3;1Þ
vN � hEð2:1Þ

vN �i
e 0.0672 0.8948 0.9038 0.5995

� 0.9916 0.9220–0.9813 0.5679–0.7536 0.8469–0.8891

� 0.9939 0.8397–0.9352 0.4784–0.6922 0.8025–0.8419
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associated with the pure state equation (40) writes

��ðx; tÞ ¼ j��ðx; tÞih��ðx; tÞj: (42)

If the inequality �p 
 E2
j ðpjÞ=mj holds, the energy EjðpÞ

can be approximated by EjðpÞ ’ Ej þ vjðp� pjÞ, with
Ej �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
j þm2

j

q
, and vj � @EjðpÞ

@p jp¼pj ¼ pj
Ej

is the group

velocity of the wave packet of the massive neutrino j�ji.
In this case, the integration over p in Eq. (41) is Gaussian
and can be easily performed, yielding the following ex-
pression for ��ðx; tÞ:

��ðx;tÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

x

p X
j;k

U�jU
�
�k

�e�iðEj�EkÞtþiðpj�pkÞx�ð1=ð4�2
xÞÞ½ðx�vjtÞ2þðx�vktÞ2�j�ji

�h�kj; (43)

where �x ¼ ð2�pÞ�1. In the instance of extremely relativ-

istic neutrinos, the following approximations are usually
assumed:

Ej ’Eþ�
m2
j

2E
; pj ’E�ð1��Þm

2
j

2E
; vj ’ 1� m2

j

2E2
j

;

(44)

where E is the neutrino energy in the limit of zero mass,
and � is a dimensionless constant depending on the char-
acteristic of the production process [34,35]. The density
matrix (43) provides a space-time description of neutrino
dynamics. However, in realistic situations, it is convenient
to consider the corresponding stationary process, which is
associated with the time-independent density matrix ��ðxÞ
obtained by the time average of ��ðx; tÞ [35]. By taking
into account Eq. (44), and by computing a Gaussian inte-
gration over the time, the density matrix becomes [35]

��ðxÞ ¼
X
j;k

U�jU
�
�k exp

�
�i�m

2
jkx

2E
�

� �m2
jkx

4
ffiffiffi
2

p
E2�x

�
2

�
�
�

�m2
jk

4
ffiffiffi
2

p
E�p

�
2
�
j�jih�kj; (45)

with �m2
jk ¼ m2

j �m2
k. The density matrix (45) can be

used to study, in the wave packet approach, the phenome-
non of neutrino oscillations for stationary neutrino beams
[34–36].

Here, we intend to analyze the coherence of the quantum
superposition of the neutrino mass eigenstates, by looking
at the spatial behavior of the multipartite entanglement of
the state (45). By establishing the identification j�ii ¼
j�i;1i1j�i;2i2j�i;3i3 � j�i;1�i;2�i;3i (i ¼ 1, 2, 3), we can

easily construct from Eq. (45) the matrix with elements
hlmnj��ðxÞjijki, where i, j k, l, m, n ¼ 0, 1. Let us notice

that the density matrix ��ðxÞ describes a mixed state,
whose nondiagonal elements are suppressed by a
Gaussian function of x. An appropriate quantifier of multi-
partite entanglement for the state ��ðxÞ is based on the set
of logarithmic negativities defined in Sec. II B. We analyti-

cally compute the quantities Eði;j;kÞ
N � , for i, j, k ¼ 1, 2, 3 and

i � j � k, and the average logarithmic negativity hEð2:1Þ
N �i,

for the neutrino states with flavor � ¼ e, �, �. We assume
for the mixing angles 	MNSP

ij the experimental values (39).

The squared mass differences are fixed at the experimental
values reported in Ref. [63]:

�m2
21 ¼ �m2; �m2

31 ¼ �m2 þ �m2

2
;

�m2
32 ¼ �m2 � �m2

2
; �m2 ¼ 7:92� 10�5 eV2;

�m2 ¼ 2:6� 10�3 eV2: (46)

The parameters E and �p in Eq. (45) are fixed at the values

E ¼ 10 GeV and �p ¼ 1 GeV. Moreover, although de-

pending on the particular production process [65], the
parameter � is put to zero for simplicity. In Fig. 5, we
plot the logarithmic negativities for the electronic neutrino,

i.e. Eði;j;kÞ
N e as a function of the distance x. The bipartitions

ð1; 3; 2Þ and ð2; 3; 1Þ, see panel I, exhibit a high entangle-
ment content (> 0:93) that keeps almost constant for x &
108 m; finally, it goes to zero for x � 3� 109 m. The
bipartition ð1; 2; 3Þ exhibits a low entanglement (< 0:24),
that goes to zero for x � 9� 107 m. Furthermore, let us

remark that the logarithmic negativities Eði;j;kÞ
N e and hEð2:1Þ

N ei
for the electronic neutrino are independent of the
CP-violating phase �.
In the muonic and tauonic instances, the independence

from the CP-violating phase � holds no more. Therefore,
first we choose to study the quantum correlations of these
states for � ¼ 0; then we consider separately the influence
of a nonzero �. In Fig. 6, we plot the logarithmic negativ-
ities for the muonic and tauonic neutrinos as functions of
the distance x with � ¼ 0. We see that the spatial behavior
of multipartite entanglement for muonic and tauonic neu-

trinos is similar. The logarithmic negativities Eð1;2;3Þ
N � and

Eð1;2;3Þ
N � are initially close to 1, and they go to zero for x �

108 m. On the other side, Eð1;3;2Þ
N � , Eð2;3;1Þ

N � , Eð1;3;2Þ
N � , and

Eð2;3;1Þ
N � exhibit alternating regimes with slowly decreasing

slope and with rapidly decreasing slope; moreover, all
vanish for x � 3� 109 m.
The study of the behavior of the average logarithmic

negativity hEð2:1Þ
N �i can be used to introduce a decoherence

length Ldecoh, i.e. that length scale such that hEð2:1Þ
N �i ! 0 as

soon as x ’ Ldecoh. From Figs. 5 and 6, for assigned ex-
perimental parameters, we see that the common decoher-
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ence length for the neutrinos of flavor � ¼ e, �, � can be
estimated at a value of Ldecoh � 3� 106 Km.

Finally, we consider the influence of a nonvanishing
phase � in determining the spatial behavior of multipartite
entanglement of stationary neutrino beams. To this aim,
in Fig. 7 we plot the logarithmic negativities for the muonic

neutrino Eð1;3;2Þ
N � and Eð2;3;1Þ

N � , with � fixed at the values � ¼
0, �2 , �. The behavior of Eð1;2;3Þ

N � is not reported as it is

independent of �. We observe that the CP-violating phase
� does not lead to a change of the decoherence length
Ldecoh. However, we see that it may lead a lowering or an

increasing of the amount of entanglement in a given bipar-
tition, in agreement with the results obtained for the in-
stance of static neutrinos. Similar results can be obtained
for the tauonic instance.

VII. CONCLUSIONS

The study of entanglement between field modes can be
fruitfully applied to a large variety of quantum mechanical
systems, either in the usual case of many-particle multi-
partite entangled states or in the more intriguing instance
of single-particle multipartite entangled states. In the
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FIG. 6 (color online). The logarithmic negativities Eði;j;kÞ
N � for all possible bipartitions and the average logarithmic negativity hEð2:1Þ

N �i,
with � ¼ �, �, as functions of the distance x. In panel I we plot the negativities for the muonic neutrino. The bipartition ð1; 2; 3Þ,
associated with the quantity Eð1;2;3Þ

N � (dotted line), shows the highest initial amount of entanglement, that goes to zero for a lower of x

with respect to the other bipartitions. Eð1;3;2Þ
N � (dashed line) and Eð2;3;1Þ

N � (dot-dashed line) show peculiar behaviors, that consist in

alternating slowly decreasing and rapidly decreasing slopes. The average logarithmic negativity hEð2:1Þ
N �i (full line) summarizes the

behavior of the global entanglement. In panel II we plot the negativities for the tauonic neutrino. The behaviors of the negativities for
the tauonic instance are similar to the negativities for the muonic instance. The curves associated to a given bipartition are plotted with
the same plotstyle. The mixing angles 	MNSP

ij and the squared mass differences �m2
ij are fixed at the experimental values (39) and

(46), respectively. We assume the values E ¼ 10 GeV, �p ¼ 1 GeV, and � ¼ 0 for the remaining parameters in Eq. (45). The

CP-violating phase � is put to zero. The x axis is in logarithmic scale, and the dimensions are meters.
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FIG. 5 (color online). The logarithmic negativities Eði;j;kÞ
N e for all possible bipartitions and the average logarithmic negativity hEð2:1Þ

N ei
as functions of the distance x. The quantities Eð1;3;2Þ

N e (dashed line) and Eð2;3;1Þ
N e (dot-dashed line), see panel I, show a high amount of

entanglement content in the corresponding bipartitions, and seem to be superimposed. In panel II we plot a zoom of Eð1;3;2Þ
N e and Eð2;3;1Þ

N e

to observe the differences in their behaviors: the two curves are initially separated, and then they superimpose each other. The

bipartition ð1; 2; 3Þ, associated with the quantity Eð1;2;3Þ
N e (dotted line), exhibits the lowest amount of entanglement. The full line

corresponds to the average logarithmic negativity hEð2:1Þ
N ei. The mixing angles 	MNSP

ij and the squared mass differences �m2
ij are fixed

at the experimental values (39) and (46), respectively. We assume the values E ¼ 10 GeV, �p ¼ 1 GeV, and � ¼ 0 for the

remaining parameters in Eq. (45). All the plotted quantities are independent of the CP-violating phase �, that can be assumed
arbitrary. The x axis is in logarithmic scale, and the dimensions are meters.
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present paper, stimulated by recent work on single-particle
nonlocality and entanglement in quantum optical systems,
we have extended the analysis of mode entanglement to
systems of elementary particle physics. In particular, we
have determined and studied the structural properties of the
multipartite entangled states that occur in the physics of
flavor mixing, either in quark or in leptonic systems. These
states are generalizations of the well-known W states,
endowed with nontrivial relative phases. These states in-
clude, as a special instance, the symmetricW state and the
set of states orthogonal to it. We have implemented global
and statistical approaches, based on the distribution of
different bipartite entanglements, to quantify the generic
aspects of multipartite entanglement in such states. We
have studied in detail the correlation properties of three-
and four-flavor W states. For properly chosen mixing
parameters, we have shown that the phases, responsible
for the CP-violation effects in particle physics, can be used
to concentrate the entanglement in a particular bipartition,
and we have identified some periodic patterns of entangle-
ment concentration, dispersion, and revivals, that are remi-
niscent of spin-squeezing phenomena for the collective
variables of many-body atomic systems. Moreover, we
have analyzed the entanglement for the three-quark and
three-neutrino mixing. In the particular instance of neu-
trino mixing, we have determined the effects of the free
relative phases on the distribution of entanglement. By
exploiting the wave packet treatment for neutrino mass
eigenstates, we have considered in detail the influence of
decoherence induced by the free evolution on the multi-
partite entanglement. A decoherence length can be defined
as the distance associated with vanishing average global
entanglement. Finally, we have studied the role of the
CP-violating phase in the dynamics of free propagation.
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APPENDIX: ENTROPIC MEASURES FOR THE
STATES jW ð4Þ

q ð ~�Þi
Below we report the analytical expressions for the ei-

genvalues corresponding to the reduced density matrices of

the states jWð4Þ
� ð~�Þi (� ¼ e, �, �, s). Let us denote by


ði;j;k;lÞ
� and 
ði;j;k;lÞ

� the eigenvalue vectors associated with

the reduced density matrices Trj;k;l½jWð4Þ
� ð ~�ÞihWð4Þ

� ð~�Þj� and
Trk;l½jWð4Þ

� ð~�ÞihWð4Þ
� ð~�Þj�, respectively. We get


ð1;2;3;4Þ
e ¼ 
ð2;1;3;4Þ

e ¼ 
ð3;1;2;4Þ
e ¼ 
ð4;1;2;3Þ

e ¼ 
ð4;1;2;3Þ
�

¼ 
ð4;1;2;3Þ
� ¼ 
ð4;1;2;3Þ

s ¼ 1
4f3; 1g; (A1)


ð1;2;3;4Þ
� ¼ 1

36
f25� 6 cos�14 � 6 cos�23

� 2 cosð�14 þ �23Þ; 11þ 6 cos�14

þ 6 cos�23 þ 2 cosð�14 þ �23Þg; (A2)


ð2;1;3;4Þ
� ¼ 1

36
f11� 6 cos�14 � 6 cos�23

þ 2 cosð�14 þ �23Þ; 25þ 6 cos�14

þ 6 cos�23 � 2 cosð�14 þ �23Þg; (A3)


ð3;1;2;4Þ
� ¼ 1

36
f5� 4 cosð�14 þ �23Þ; 31

þ 4 cosð�14 þ �23Þg; (A4)
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FIG. 7 (color online). The logarithmic negativities Eð1;3;2Þ
N � (panel I) and Eð2;3;1Þ

N � (panel II) as functions of the distance x for different

choices of the CP-violating phase �: (i) � ¼ 0 (dotted line); (ii) � ¼ �
2 (dashed line); (iii) � ¼ � (dot-dashed line). Eð1;2;3Þ

N � is

independent of �. The mixing angles 	MNSP
ij , the squared mass differences �m2

ij, the parameters E, �p, and � are fixed as in Figs. 5

and 6. The x axis is in logarithmic scale, and the dimensions are meters.
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ð1;2;3;4Þ
� ¼ 1

72
f16� 6 cos�14 � 6 cos�23 � 2 cosð�14 þ �23Þ þ 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 þ 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 56þ 6 cos�14 þ 6 cos�23 þ 2 cosð�14 þ �23Þ
� 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 � 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg; (A5)


ð2;1;3;4Þ
� ¼ 1

72
f56� 6 cos�14 � 6 cos�23 þ 2 cosð�14 þ �23Þ � 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 � 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 16þ 6 cos�14 þ 6 cos�23 � 2 cosð�14 þ �23Þ
þ 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 þ 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg; (A6)


ð3;1;2;4Þ
� ¼ 1

36
f11þ 2 cosð�14 þ �23Þ � 6 cosð�14 � �34Þ � 6 cosð�23 þ �34Þ; 25� 2 cosð�14 þ �23Þ

þ 6 cosð�14 � �34Þ þ 6 cosð�23 þ �34Þg; (A7)


ð1;2;3;4Þ
s ¼ 1

72
f56þ 6 cos�14 þ 6 cos�23 þ 2 cosð�14 þ �23Þ þ 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 � 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 16� 6 cos�14 � 6 cos�23 � 2 cosð�14 þ �23Þ
� 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 � 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg; (A8)


ð2;1;3;4Þ
s ¼ 1

72
f16þ 6 cos�14 þ 6 cos�23 � 2 cosð�14 þ �23Þ � 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 � 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 56� 6 cos�14 � 6 cos�23 þ 2 cosð�14 þ �23Þ
þ 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 þ 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg; (A9)


 ð3;1;2;4Þ
s ¼ 1

36
f25� 2 cosð�14 þ �23Þ � 6 cosð�14 � �34Þ

� 6 cosð�23 þ �34Þ; 11þ 2 cosð�14 þ �23Þ
þ 6 cosð�14 � �34Þ þ 6 cosð�23 þ �34Þg;

(A10)


 ð1;2;3;4Þ
e ¼ 
ð1;3;2;4Þ

e ¼ 
ð1;4;2;3Þ
e ¼ 1

2f0; 0; 1; 1g; (A11)


ð1;2;3;4Þ
� ¼ 1

18
f0; 0; 7� 2 cosð�14 þ �23Þ; 11

þ 2 cosð�14 þ �23Þg; (A12)


ð1;3;2;4Þ
� ¼ 1

18
f0; 0; 10� 3 cos�14 � 3 cos�23

þ cosð�14 þ �23Þ; 8þ 3 cos�14 þ 3 cos�23

� cosð�14 þ �23Þg; (A13)


ð1;4;2;3Þ
� ¼ 1

18
f0; 0; 8� 3 cos�14 � 3 cos�23

� cosð�14 þ �23Þ; 10þ 3 cos�14 þ 3 cos�23

þ cosð�14 þ �23Þg; (A14)


ð1;2;3;4Þ
� ¼ 1

18
f0; 0; 10þ cosð�14 þ �23Þ

� 3 cosð�14 � �34Þ � 3 cosð�23 þ �34Þ; 8
� cosð�14 þ �23Þ þ 3 cosð�14 � �34Þ
þ 3 cosð�23 þ �34Þg; (A15)
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 ð1;3;2;4Þ
� ¼ 1

72
f0; 0; 38� 6 cos�14 � 6 cos�23 þ 2 cosð�14 þ �23Þ þ 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 � 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 34þ 6 cos�14 þ 6 cos�23 � 2 cosð�14 þ �23Þ
þ 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 þ 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg; (A16)


 ð1;4;2;3Þ
� ¼ 1

72
f0; 0; 34� 6 cos�14 � 6 cos�23 � 2 cosð�14 þ �23Þ þ 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 þ 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 38þ 6 cos�14 þ 6 cos�23 þ 2 cosð�14 þ �23Þ
� 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 � 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg; (A17)


ð1;2;3;4Þ
s ¼ 1

18
f0; 0; 8� cosð�14 þ �23Þ � 3 cosð�14 � �34Þ � 3 cosð�23 þ �34Þ; 10þ cosð�14 þ �23Þ

þ 3 cosð�14 � �34Þ þ 3 cosð�23 þ �34Þg; (A18)


 ð1;3;2;4Þ
s ¼ 1

72
f0; 0; 34þ 6 cos�14 þ 6 cos�23 � 2 cosð�14 þ �23Þ � 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 � 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 38� 6 cos�14 � 6 cos�23 þ 2 cosð�14 þ �23Þ
þ 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 þ 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg; (A19)


 ð1;4;2;3Þ
s ¼ 1

72
f0; 0; 38þ 6 cos�14 þ 6 cos�23 þ 2 cosð�14 þ �23Þ þ 6 cosð�14 � �34Þ � 6 cosð�14 � �23 � �34Þ

� 9 cos�34 þ 6 cosð�23 þ �34Þ þ 3 cosð2�23 þ �34Þ; 34� 6 cos�14 � 6 cos�23 � 2 cosð�14 þ �23Þ
� 6 cosð�14 � �34Þ þ 6 cosð�14 � �23 � �34Þ þ 9 cos�34 � 6 cosð�23 þ �34Þ � 3 cosð2�23 þ �34Þg: (A20)

The von Neumann entropies can be easily written as

Eð�Þ
vN ¼ �X

n


ð�Þ
� ðnÞlog2
ð�Þ

� ðnÞ: (A21)
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