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We study bounds on Higgs-boson masses from perturbative unitarity in the Georgi-Machacek model,

whose Higgs sector is composed of a scalar isospin doublet and a real and a complex isospin triplet field.

This model can be compatible with the electroweak precision data without fine-tuning because of the

imposed global SUð2ÞR symmetry in the Higgs potential, by which the electroweak rho parameter is unity

at the tree level. All possible two-body elastic-scattering channels are taken into account to evaluate the

S-wave amplitude matrix, and then the condition of perturbative unitarity is imposed on the eigenvalues to

obtain constraint on the Higgs parameters. Masses of all scalar bosons turn out to be bounded from above,

some of which receive more strict upper bounds as compared to that in the standard model (712 GeV). In

particular, the upper bound of the lightest scalar boson, whatever it would be, is about 270 GeV.
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I. INTRODUCTION

The nature of electroweak symmetry breaking remains
unknown at the present status of our knowledge for high-
energy physics. In the standard model (SM), a scalar iso-
spin doublet field, the Higgs field, is introduced to be
responsible for spontaneous breakdown of electroweak
gauge symmetry. Its vacuum expectation value (VEV)
triggers the symmetry breaking, so that it provides origins
of masses of weak bosons via the Higgs mechanism and
also does those of quarks and charged leptons via Yukawa
interaction. Although the SM Higgs sector is simple, the
Higgs sector could have a more complicated structure in
the actual world. In particular, when the Higgs sector
would play an additional role to explain phenomena which
the SM cannot, it should necessarily be an extended form
from the SM one. Therefore, experimental detection of the
Higgs boson and precision measurements of its properties
are extremely important not only to confirm our basic idea
of electroweak symmetry breaking but also to determine
details of the Higgs sector and further to outline the struc-
ture of new physics.

In constructing an extended Higgs sector, there are two
important requirements from current experimental data.
First of all, the data indicate that the electroweak rho
parameter (�) is very close to unity. Second, the flavor of
quarks and charged leptons is (approximately) conserved
in the neutral current. In the SM, these two conditions are
satisfied, respectively, by the custodial symmetry, which
ensures � ¼ 1 at the tree level, and by the Glashow-
Iliopoulos-Maiani ) mechanism, which prohibits the tree-
level flavor changing neutral current (FCNC). Needless to
say, these experimental requirements must be respected in
extended Higgs models which would appear in the low

energy effective theory of a more fundamental theory
beyond the SM.
Extension of the SM Higgs sector can be considered by

including additional scalar isospin singlets, doublets, and
higher multiplets. It is known that additional singlets and
doublets keep � ¼ 1 at the tree level [1]. Radiative cor-
rections can slightly deviate the rho parameter from unity,
corresponding to explicit violation of the custodial sym-
metry in the dynamics in the loop. On the other hand,
extension with higher multiplets such as triplets is usually
problematic, predicting the rho parameter to be explicitly
different from unity already at the tree level [2]. One way
to avoid this problem is to make a fine-tuning on the size of
vacuum expectation values of the triplet fields, i.e., to set
tiny values on them. Another possibility is to impose the
custodial symmetry to the Higgs sector, so that the rho
parameter is predicted to be unity at the tree level. In 1985,
Georgi and Machacek proposed such a model with one real
triplet (Y ¼ 0) and one complex triplet (Y ¼ 2) in addition
to the Higgs doublet [3]. Chanowitz and Golden have
explicitly constructed the Higgs potential of this model
[4]; i.e., imposing the custodial SUð2ÞV symmetry to the
potential, VEVs of all of the isospin triplets become com-
mon, and then the tree-level value of the rho parameter is
unity. They also have shown that the quantum correction
from the scalar sector is stabilized by such a global sym-
metry, so that the rho parameter is corrected at the loop
level only due to explicit SUð2ÞV violation in the other
sectors such as hypercharge interaction and Yukawa inter-
action, just like in the SM. Several phenomenological
studies have been done on this model in Refs. [5–12].
Generally, in extended Higgs models, there are many

free parameters in the Higgs potential, which spoil the
predictive power of the model. Hence, it is important to
clarify allowed regions in the parameter space not only by
using current experimental data but also by investigating
theoretical consistencies such as perturbative unitarity

*mayumi@icrr.u-tokyo.ac.jp
+kanemu@sci.u-toyama.ac.jp

PHYSICAL REVIEW D 77, 095009 (2008)

1550-7998=2008=77(9)=095009(10) 095009-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.095009


[13,14], vacuum stability, and triviality [15]. This kind of
study has been often developed to constrain parameters of
the Higgs sector in the context of the two-Higgs-doublet
model [16–19] and in a specific triplet model [20].

In this paper, we study bounds on Higgs-boson masses
from perturbative unitarity in the Georgi-Machacek
(GM) model. The Higgs potential respects the global
SUð2ÞR symmetry, so that the custodial SUð2ÞV symmetry
remains after the electroweak symmetry breaking
[SUð2ÞL � SUð2ÞR ! SUð2ÞV]. There are ten physical sca-
lar states, which can be expressed by a SUð2ÞV 5-plet
ðHþþ

5 ; Hþ
5 ; H

0
5 ; H

�
5 ; H

��
5 Þ, a 3-plet ðHþ

3 ; H
0
3 ; H

�
3 Þ, and

two singlets ~H0
1 and ~H00

1 [3]. The scalar components in
the same multiplet are degenerate in mass at the tree level.
In the Higgs potential of the GM model, explicit Z2 viola-
tions can appear only in the trilinear scalar interaction, but
they must be forbidden to avoid excessive magnitudes for
masses of neutrinos. Neglecting such terms by imposing
the Z2 symmetry, all Higgs-boson masses in this model are
described in terms of the VEV, the mixing angles, and the
dimensionless coupling constants �i in the Higgs potential.
This situation is somewhat similar to the two-Higgs-
doublet model with the discrete Z2 symmetry [21], in
which perturbative unitarity gives upper bounds on all of
the Higgs-boson masses [16].

In our analysis, all possible two-body elastic-scattering
channels (91 channels) are taken into account to evaluate
the S-wave amplitude matrix in the GMmodel. Constraints
on the Higgs parameters are obtained by imposing the
condition of partial wave unitarity on the eigenmatrix of
the S-wave amplitude. Masses of all scalar bosons turn out
to be bounded from above, some of which receive much
stronger bounds as compared to that in the SM (712 GeV).
In particular, the mass of at least one of the charged Higgs
bosons should be less than about 400 GeV. At least one of
the neutral Higgs bosons is lighter than 322 GeV.
Furthermore, the upper bound of the lightest scalar boson,
whatever it would be, can be about 269 GeV. We also find
that, by using the experimental constraints from Zb �b re-
sults [11], the combined upper bound for the lightest Higgs
boson is lower than 269 GeV, depending on what the
lightest is. Therefore, the model can be well testable at
current and future collider experiments.

In Sec. II, a brief review of the GM model is given. The
transition matrix for two-body elastic scatterings is calcu-
lated in the high-energy limit, and its eigenmatrix is ob-
tained in Sec. III. In Sec. IV, the condition of S-wave
unitarity is imposed for the eigenmatrix of the transition
matrix, and bounds on the Higgs-boson masses are eval-
uated. Conclusions are presented in Sec. V.

II. GEORGI-MACHACEK MODEL

The GMmodel contains a complex SUð2ÞL doublet field
� (Y ¼ 1), a real SUð2ÞL triplet field � (Y ¼ 0), and a
complex SUð2ÞL triplet field � (Y ¼ 2) [3] and respects the

global SUð2ÞR symmetry in the Higgs potential [4]. They
can be described by the form of SUð2ÞL � SUð2ÞR multip-
lets � and � in the potential:

� ¼ �0� �þ
�� �0

� �
; � ¼

�0� �þ �þþ
�� �0 �þ
��� �� �0

0
B@

1
CA;

(2.1)

where � ¼ ð�þ; �0ÞT , � ¼ ð�þ; �0; ��ÞT , � ¼
ð�þþ; �þ; �0ÞT ,�� ¼ �ð�þÞ�, �� ¼ �ð�þÞ�, and �� ¼
�ð�þÞ� [5]. The most general Higgs potential is given by

V ¼ m2
1 Trð�y�Þ þm2

2 Trð�y�Þ þ �1 Trð�y�Þ2
þ �2 Trð�y�Þ2 þ �3 Trð�y�ÞTrð�y�Þ
þ �4 Trð�y��y�Þ

þ �5 Tr

�
�y �i

2
�
�j
2

�
Trð�yTi�TjÞ

þ�1 Tr

�
�y �i

2
�
�j
2

�
�ij
P þ�2 Trð�yTi�TjÞ�ij

P ;

(2.2)

where �i are the 2� 2 Pauli matrices and

�P ¼ Py�P; P ¼
�1=

ffiffiffi
2

p
i=

ffiffiffi
2

p
0

0 0 1
1=

ffiffiffi
2

p
i=

ffiffiffi
2

p
0

0
B@

1
CA: (2.3)

The neutral components of the doublet and the real and
complex triplets have the VEVs v�, v�, and v�, respec-

tively, which are defined as

�0 ¼ v� þ�0
r þ i�0

iffiffiffi
2

p ; (2.4)

�0 ¼ v� þ �0r ; (2.5)

�0 ¼ v� þ �0
r þ i�0

iffiffiffi
2

p : (2.6)

After electroweak symmetry breaking, the custodial
SUð2ÞV symmetry remains in the Higgs sector [SUð2ÞL �
SUð2ÞR ! SUð2ÞV], by which the real and complex triplets
have the same VEV v� � v� ¼ v�. Consequently, this

leads to � ¼ 1 at the tree level [4]. In this case, the

VEVs are constrained as v2 ¼ v2� þ 8v2�, where v ¼
ð ffiffiffi

2
p
GFÞ�ð1=2Þ ’ 246 GeV. Therefore, differently from

usual triplet models, v� can be of order 100 GeV in this
model without explicit inconsistency with the experimen-
tal value of the rho parameter. It is convenient to introduce
the doublet-triplet mixing angle �H:

tan�H ¼ 2
ffiffiffi
2

p
v�

v�
: (2.7)
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The experimental constraint on �H is discussed in
Ref. [11].

In the potential Eq. (2.2), the last two terms with the
coupling constants �1 and �2 explicitly violate the dis-
crete Z2 symmetry under the transformation of� ! � and
� ! ��. Without the Z2 symmetry, the model is allowed
to have the mass terms for the neutrinos by assigning of
lepton number �2 to the complex triplet field

iðh	Þab TLaC�2�̂ Lb þ H:c:; (2.8)

where �̂ ¼ �i

2 ðPy�Þi. In order to generate the tiny neutrino
masses, the Yukawa coupling h	 should be fine-tuned to be
very small as h	 �Oð10�12Þ for the triplet VEV of order
100 GeV. Since we would like to avoid such fine-tuning
with respect to the neutrino masses, we require the discrete
Z2 symmetry in the Higgs potential and prohibit the last

two terms in Eq. (2.2).1 Therefore, quarks and leptons
couple to the SUð2ÞL doublet field � in the same way as
the SM Yukawa coupling but do not to the triplet � at the
tree level. Because all of the masses of quarks and leptons
are obtained from the VEV in �, we do not have to worry
about FCNC, and it is expected to appear at most at the
same level as that in the SM. This property of the coupling
to fermions would give an additional constraint on the
value of the doublet-triplet mixing angle �H by tan�H <
Oð1Þ, since large values of tan�H ( � 1) imply that the top-
Yukawa coupling is much greater than Oð1Þ.

In the GM model, there are ten physical states in the
Higgs sector, which are classified as a 5-plet
(Hþþ

5 ; Hþ
5 ; H

0
5 ; H

�
5 ; H

��
5 ), a 3-plet (Hþ

3 ; H
0
3 ; H

�
3 ), and

two singlets H0
1 and H00

1 under the custodial SUð2ÞV sym-
metry. These are given in terms of the original component
fields and the doublet-triplet mixing angle �H as [5]

Hþþ
5 ¼ �þþ; (2.9)

Hþ
5 ¼ ð�þ � �þÞ= ffiffiffi

2
p
; (2.10)

H0
5 ¼ ð2�0r �

ffiffiffi
2

p
�0
rÞ=

ffiffiffi
6

p
; (2.11)

Hþ
3 ¼ cos�Hð�þ þ �þÞ= ffiffiffi

2
p � sin�H�

þ; (2.12)

H0
3 ¼ iðcos�H�0

i þ sin�H�
0
i Þ; (2.13)

H0
1 ¼ �0

r ; (2.14)

H00
1 ¼ ð ffiffiffi

2
p
�0
r þ �0rÞ=

ffiffiffi
3

p
: (2.15)

The 5-plet components do not include the component fields
from the isospin doublet field�, so that the states of the 5-
plet do not couple to the fermions at the tree level. On the
other hand, the 3-plet fields can couple to the fermions.
Because of invariance under the custodial SUð2ÞV symme-
try, states in the different multiplet cannot mix each other.
All members in the same SUð2ÞV multiplet are degen-

erate in mass at the tree level. The masses of the 5-plet and
the 3-plet are, respectively, given by

m2
H5

¼ ð�4sin
2�H � 3

2�5cos
2�HÞv2; (2.16)

m2
H3

¼ ��5

2
v2: (2.17)

On the other hand, two SUð2ÞV singlets can mix, and the
mass matrix

M 2

H0
1
;H00

1

¼ 8cos2�H�1

ffiffi
3
2

q
sin�H cos�Hð2�3 þ �5Þffiffi

3
2

q
sin�H cos�Hð2�3 þ �5Þ sin2�Hð3�2 þ �4Þ

0
B@

1
CAv2 (2.18)

is diagonalized by introducing the mixing angle 
. The
eigenvalues correspond to the masses m ~H0

1
and m ~H00

1

for the
mass eigenstates ~H0

1 and
~H00
1 .

From Eqs. (2.16), (2.17), and (2.18), the quartic cou-
plings �i are expressed in terms of the masses and the
mixing angles as

�1 ¼ ðm2
~H0
1

cos2
þm2
~H00
1

sin2
Þ=ð8v2cos2�HÞ; (2.19)

�2 ¼ ðm2
~H0
1

sin2
þm2
~H00
1

cos2
�m2
H5

þ 3m2
H3
cos2�HÞ=ð3v2sin2�HÞ; (2.20)

�3 ¼ ðm2
~H00
1

�m2
~H0
1

Þ cos
 sin
=ð ffiffiffi
6

p
v2 sin�H cos�HÞ

þm2
H3
=v2; (2.21)

�4 ¼ ðm2
H5

� 3m2
H3
cos2�HÞ=ðv2sin2�HÞ; (2.22)

�5 ¼ �2m2
H3
=v2: (2.23)

The SUð2ÞV 3-plet fields receive the constraints from the
current data of Z! b �b, B0 � �B0, and K0 � �K0 mixings
[24,25]. These data give bounds on the mass mH3

with the

mixing angle �H. The most stringent experimental con-
straint comes from Z! b �b. The mass mH3

is constrained

to be smaller than 1 (0.5) TeV for tan�H < 2 (1).

1The neutrino masses might be generated by any other mecha-
nism (e.g. [22]). We shall discuss it elsewhere [23].
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Although the 5-plet fields do not couple to the fermions,
the singly charged state in the 5-plet has a characteristic
coupling of H�

5 W
	Z, which appears only beyond the tree

level in multi-Higgs-doublet models [26]. Experimental
confirmation of a sizable coupling of H�

5 W
	Z with � ’

1 should be a strong indication for the GMmodel [27]. This
coupling is testable via the process p �p! W�H	 at the
Fermilab Tevatron [12], also via pp! W��Z�X ! H�X
[28] and the decay process H� ! W	Z [29] at the CERN
LHC, and further via the processes eþe� ! W	H�
[8,9,30] and eþe� ! 	 �	W��Z� ! 	 �	H� [31] at the fu-
ture International Linear Collider (ILC). Another striking
feature of models with complex isospin triplets, such as the
GM model, the left-right symmetric model, the littlest
Higgs model, and some models motivated by neutrino
masses, is the appearance of doubly charged states H��.
At hadron colliders, such doubly charged Higgs bosons are
studied via the pair production mechanism [10,32,33] as
well as the single production mechanism [33,34] and the
W-boson fusion mechanism [6,35]. They can also be in-
vestigated at the ILC and its e�e�, e��, and �� option in
various scenarios [36].

III. THE S MATRIX FOR TWO-BODY ELASTIC
SCATTERINGS

In this section, we calculate the transition matrix of
elastic scatterings of two scalar-boson states in the GM
model. The transition matrix Tð’1’2 ! ’3’4Þ is equiva-
lent to the S-wave amplitude h’3’4ja0j’1’2i at high
energies (

ffiffiffi
s

p � m2
W), where ’i represent longitudinally

polarized weak bosons or physical Higgs bosons of the
model. The condition of partial wave unitarity is given for
the S-wave amplitude matrix by [2,13]

jh’3’4ja0j’1’2ij< 1
2: (3.24)

We employ this condition in the high-energy limit to con-
strain the model parameters in the next section. Thanks to
the equivalence theorem [37], the S-matrix elements in
which longitudinally polarized weak bosons are in initial
and final states are equivalent to those in which these weak
bosons are replaced by the corresponding Nambu-
Goldstone bosons in the high-energy limit [13]. In addi-
tion, in this limit, only quartic couplings (scalar contact
interactions) of the Higgs-Goldstone couplings are relevant
to the unitarity conditions, which can be translated into the
bounds on the related Higgs-boson masses after Eq. (3.24)
is imposed. Therefore, we here evaluate the matrix
h’3’4ja0j’1’2i by taking into account all possible two-
body scalar channels in the high-energy limit and obtain all
of the eigenstates and the eigenvalues.

Under Oð4Þ [ ’ SUð2ÞL � SUð2ÞR], the field compo-
nents of �, �, and � are expressed by a 4 and a 9 repre-
sentation as

�D ¼ ð!1; !2; �
0
r ; �

0
i Þ; (3.25)

�T ¼ ð�1; �2; �3; �4; �1; �2; �
0
r ; �

0
i ; �

0
rÞ; (3.26)

respectively, where �þ ¼ ð!1 þ i!2Þ=
ffiffiffi
2

p
, �0 ¼

ð�0
r þ i�0

i Þ=
ffiffiffi
2

p
, �þþ¼ð�1þ i�2Þ=

ffiffiffi
2

p
, �þ ¼ ð�3 þ

i�4Þ=
ffiffiffi
2

p
, �0 ¼ ð�0

r þ i�0
i Þ=

ffiffiffi
2

p
, and �þ ¼ ð�1 þ

i�2Þ=
ffiffiffi
2

p
. We consider all possible two-body scattering

channels (�a�b ! �c�d) not only for the neutral two-
body states as initial and final states but also for the singly,
the doubly, the triply, and the quadruply charged two-body
states. There are totally 91 initial (or final) two-body states,
in which 25 are the neutral, 36 are singly charged, 22 are
doubly charged, 6 are triply charged, and the last 2 are the
quadruply charged states. We construct the 91� 91 tran-
sition matrix of high-energy S-wave amplitudes and then
calculate their eigenvalues.
The initial (final) two-body states can be treated sepa-

rately as �D�D, �T�T , and �D�T . The high-energy
S-wave amplitudes are block-diagonalized by the electric
charge and also the discrete Z2 symmetry (� ! � and
� ! ��). Each submatrix with respect to the �D�D or
�T�T states can also be classified by irreducible decom-
position of direct products of the representations for Oð4Þ
as

4 � 4 ¼ ð1ÞD 
 ð9Þ 
 ð6Þ; (3.27)

9 � 9 ¼ ð1ÞT 
 ð44Þ 
 ð36Þ: (3.28)

The only singlet and symmetric representations

ð1Þa ¼
X
k¼1

ð�k
aÞ2; (3.29)

ðsÞij ¼ �i
a�

j
a � 1

Na

X
k¼1

ð�k
aÞ2 (3.30)

contribute to the scatterings of our interests, where a ¼ D
or T, i; j ¼ 1–4 and s ¼ 9 for a ¼ D, or i; j ¼ 1–9 and
s ¼ 44 for a ¼ T, ND ¼ 4, and NT ¼ 9. For the �D�T

states which should be of the 4 � 9 representation, there is
no singlet representation so that Oð4Þ cannot help for the
classification. Furthermore, several additional discrete
transformations can be used to further classify the states,
which will be defined below.

A. Neutral channels

We outline further classification of the decomposed
irreducible states for the case of the neutral 25 two-body
channels (4 for �D�D, 11 for �T�T , and 10 for �D�T).
For �D�D states, we have the singlet state ð1ÞD and the
three neutral elements of ð9Þij [ð9Þ33, ð9Þ44, and ð9Þ34] in
which the C parity separates ð9Þ34 from the other states.
After taking the appropriate linear combination, we obtain
two separate states under the transformation of �r ! �i

and �i ! ��r as ðð9Þ33 � ð9Þ44Þ= ffiffiffi
2

p
. Thus, four eigen-

states of the transition matrix for the neutral �D�D !
�D�D channels are obtained [13].

MAYUMI AOKI AND SHINYA KANEMURA PHYSICAL REVIEW D 77, 095009 (2008)

095009-4



Next, we consider�T�T ! �T�T scatterings in which
both the initial and the final states are electrically neutral.
In addition to the singlet state ð1ÞT , we have 10 neutral
states from ð44Þij in which fð44Þ11 þ ð44Þ22; ð44Þ33 þ
ð44Þ44; ð44Þ55 þ ð44Þ66; ð44Þ77; ð44Þ88g are the diagonal ele-
ment states (i ¼ j) and fð44Þ35 þ ð44Þ46; ð44Þ36 �
ð44Þ45; ð44Þ78; ð44Þ79; ð44Þ89g are the off-diagonal element
states (i � j). Among the diagonal element states, the
linear combination ð44Þ77 � ð44Þ88 has a different property
under the transformation of �r ! �i and �i ! ��r. Then
linear combinations fð44Þ11 þ ð44Þ22 þ ð44Þ77 þ
ð44Þ88; ð44Þ33 þ ð44Þ44 þ ð44Þ55 þ ð44Þ66g and fð44Þ11þ
ð44Þ22�ð44Þ77�ð44Þ88; ð44Þ33þð44Þ44�ð44Þ55�ð44Þ66g
show a different property under the transformation of
�þþ��� $ �0�0 and �þ�� $ �þ��. The first two
states have completely the same property as that of the
singlet state ð1ÞT , so that the appropriate linear combina-
tion of these three states gives the three eigenstates. For the
off-diagonal element states, we can separate them by using
the C parity and the transformation of �! ��, so that
these states are block-diagonalized to two 2� 2 subma-
trices and one singlet. By diagonalizing the remaining 2�
2 matrices, we obtain all of the eigenstates for the
�T�T ! �T�T channels.

In order to diagonalize all of the �D�D and �T�T

states, we take linear combinations of the eigenstates of
�D�D and �T�T that have similar transformation prop-
erties. Consequently, all of the�D�D and�T�T states are
completely separated, and the eigenvalues of the transition
matrix for these channels are obtained.

Finally, by classifying the ten�D�T states by using the
C transformation as well as some discrete transformations
in a similar way to above, we completely diagonalized a
25� 25 scattering matrix for the electrically neutral two-
body states.

The neutral states jA0
i i (i ¼ 1–25), which give (at most

2� 2) block-diagonal transition matrices, are found as
below:

jA0
1i ¼ ð2�þ�� þ�0

i �
0
i þ�0

r�
0
rÞ=2

ffiffiffi
2

p
; (3.31)

jA0
2i ¼ ð2�þþ��� þ 2�þ�� þ 2�þ�� þ �0

i �
0
i

þ �0
r�

0
r þ �0r�

0
rÞ=3

ffiffiffi
2

p
; (3.32)

jA0
3i ¼ ð2�þ�� ��0

i �
0
i ��0

r�
0
rÞ=2

ffiffiffi
2

p
; (3.33)

jA0
4i ¼ ð�2�þþ��� þ �0

i �
0
i þ �0

r�
0
rÞ=2

ffiffiffi
2

p
; (3.34)

jA0
5i ¼ ð�0

i �
0
i ��0

r�
0
rÞ=2; (3.35)

jA0
6i ¼ ð�þ�� þ ���þ þ ffiffiffi

2
p
�0
r�

0
rÞ=2; (3.36)

jA0
7i ¼ �0

r�
0
i ; (3.37)

jA0
8i ¼ ð�þ�� � ���þ � ffiffiffi

2
p
i�0r�

0
i Þ=ð2iÞ; (3.38)

jA0
9i ¼ ð�0

i �
0
i � �0

r�
0
rÞ=2; (3.39)

jA0
10i ¼ ð2�þþ��� � �þ�� � �þ�� þ �0

i �
0
i þ �0

r�
0
r

� 2�0r�
0
rÞ=3

ffiffiffi
2

p
;

(3.40)

jA0
11i ¼ ð2�þþ��� � 4�þ�� � 4�þ�� þ �0

r�
0
r þ �0

i �
0
i

þ 4�0r�
0
rÞ=6

ffiffiffi
2

p
;

(3.41)

jA0
12i ¼ ð�0

r�
0
r � �0

r�
0
i Þ=

ffiffiffi
2

p
; (3.42)

jA0
13i ¼ ð�þ�� þ ���þ � ffiffiffi

2
p
�0
r�

0
rÞ=2; (3.43)

jA0
14i ¼ ð�þ�� � ���þ þ ffiffiffi

2
p
i�0r�

0
i Þ=ð2iÞ; (3.44)

jA0
15i ¼ �0

r�
0
i ; (3.45)

jA0
16i ¼ f2ð�þ�� þ���þ þ�þ�� þ���þÞ

� ffiffiffi
2

p ð�0
r�

0
r þ�0

i �
0
i Þ � 2�0

r�
0
rg=3; (3.46)

jA0
17i ¼ ð�0

r�
0
r ��0

i �
0
i Þ=

ffiffiffi
2

p
; (3.47)

jA0
18i ¼ ð�0

i �
0
r þ�0

r�
0
i Þ=

ffiffiffi
2

p
; (3.48)

jA0
19i ¼ f2ð�þ�� ����þ ��þ�� þ���þÞ

þ ffiffiffi
2

p
ið�0

i �
0
r ��0

r�
0
i Þ � 4i�0

i �
0
rg=ð6iÞ; (3.49)

jA0
20i ¼ f�þ�� þ���þ þ�þ�� þ���þ þ ffiffiffi

2
p ð�0

r�
0
r

þ�0
i �

0
i Þ þ�0

r�
0g=3;

(3.50)

jA0
21i ¼ f�þ�� ����þ ��þ�� þ���þ

þ ffiffiffi
2

p
ið�0

r�
0
i ��0

i �
0
rÞ þ i�0

i �
0
rg=ð3iÞ; (3.51)

jA0
22i ¼ f�þ�� ����þ ��þ�� þ���þ

þ 2
ffiffiffi
2

p
ið�0

i �
0
r ��0

r�
0
i Þ þ 4i�0

i �
0
rg=ð6iÞ; (3.52)

jA0
23i ¼ f�þ�� þ���þ þ�þ�� þ���þ

� 2
ffiffiffi
2

p ð�0
r�

0
r þ�0

i �
0
i Þ þ 4�0

r�
0
rÞg=6; (3.53)

jA0
24i ¼ ð�þ�� þ���þ ��þ�� ����þÞ=2; (3.54)
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jA0
25i ¼ ð�þ�� ����þ þ�þ�� ����þÞ=ð2iÞ:

(3.55)

The state ð1ÞD and the three neutral linear-combined states
from ð9Þij, respectively, correspond to jA0

1i and

fjA0
3i; jA0

5i; and jA0
7ig. The state ð1ÞT and the linear-

combined states from ð44Þij correspond to jA0
2i and jA0

i i
(i ¼ 4; 6; 8; 11–15), respectively. The first eight states
block-diagonalize the transition matrix to four 2� 2 sub-
matrices, and the other seventeen states give eigenstates.

B. Singly charged channels

There are 18 singly charged states with the electric
charge þ1 among all of the two-body states. The charge
conservation ensures that these states are composed of a
subset among all of the states with various electric charges.
The corresponding high-energy transition matrix is con-
sequently (block-)diagonalized by the following states:

jAþ
1 i ¼ ð�þ�0

r þ�þ�0
i Þ=

ffiffiffi
2

p
; (3.56)

jAþ
2 i ¼ ð ffiffiffi

2
p
�þþ�� þ �þ�0

r þ �þ�0
i Þ=2; (3.57)

jAþ
3 i ¼ ð�þ�0

r ��þ�0
i Þ=

ffiffiffi
2

p
; (3.58)

jAþ
4 i ¼ ð ffiffiffi

2
p
�þþ�� þ �þ�0

r � �þ�0
i Þ=2; (3.59)

jAþ
5 i ¼ ð ffiffiffi

2
p
�þþ�� � �þ�0

r � �þ�0
i þ 2�þ�0rÞ=2

ffiffiffi
2

p
;

(3.60)

jAþ
6 i ¼ ð ffiffiffi

2
p
�þþ�� � �þ�0

r þ �þ�0
i þ 2�þ�0rÞ=2

ffiffiffi
2

p
;

(3.61)

jAþ
7 i ¼ ð ffiffiffi

2
p
�þþ�� � �þ�0

r � �þ�0
i � 2�þ�0rÞ=2

ffiffiffi
2

p
;

(3.62)

jAþ
8 i ¼ ð ffiffiffi

2
p
�þþ�� � �þ�0

r þ �þ�0
i � 2�þ�0rÞ=2

ffiffiffi
2

p
;

(3.63)

jAþ
9 i ¼ ð�þ�0

r þ �þ�0
i Þ=

ffiffiffi
2

p
; (3.64)

jAþ
10i ¼ ð�þ�0

r � �þ�0
i Þ=

ffiffiffi
2

p
; (3.65)

jAþ
11i ¼ ð�þþ�� � 2�þ�0r � �þ�0

r � �þ�0
i � �þ�0

r

þ �þ�0
i Þ=3; (3.66)

jAþ
12i ¼ ð�þ�0

r þ�þ�0
i þ

ffiffiffi
2

p
�þ�0

r þ
ffiffiffi
2

p
�þ�0

i Þ=
ffiffiffi
6

p
;

(3.67)

jAþ
13i ¼ ð�þ�0

r ��þ�0
i þ

ffiffiffi
2

p
�þ�0

r �
ffiffiffi
2

p
�þ�0

i Þ=
ffiffiffi
6

p
;

(3.68)

jAþ
14i ¼ ð4�þþ�� þ 4�þ�0

r � �þ�0
r � �þ�0

i � �þ�0
r

þ �þ�0
i Þ=6; (3.69)

jAþ
15i ¼ ð�þ�0

r þ �þ�0
i � �þ�0

r þ �þ�0
i Þ=2; (3.70)

jAþ
16i ¼ ð ffiffiffi

2
p
�þ�0

r þ
ffiffiffi
2

p
�þ�0

i � �þ�0
r � �þ�0

i Þ=
ffiffiffi
6

p
;

(3.71)

jAþ
17i ¼ ð ffiffiffi

2
p
�þ�0

r �
ffiffiffi
2

p
�þ�0

i � �þ�0
r þ �þ�0

i Þ=
ffiffiffi
6

p
;

(3.72)

jAþ
18i ¼ ð2�þþ�� ��þ�0r þ �þ�0

r þ �þ�0
i þ �þ�0

r

� �þ�0
i Þ=3: (3.73)

The 18 singly charged states with the electric charge �1
can be obtained by the C transformation for the above
states with the charge þ1.

C. Doubly charged channels

There are 11 doubly charged two-body states with the
electric charge þ2. We can decompose the subset of the
transition matrix for these states to at most 2� 2 matrices
by the following linear combination:

jAþþ
1 i ¼ �þ�þ; (3.74)

jAþþ
2 i ¼ ð�þ�þ � �þþ�0rÞ=

ffiffiffi
2

p
; (3.75)

jAþþ
3 i ¼ �þ�þ; (3.76)

jAþþ
4 i ¼ ð�þþ�0

r � �þþ�0
i Þ=

ffiffiffi
2

p
; (3.77)

jAþþ
5 i ¼ �þ�þ; (3.78)

jAþþ
6 i ¼ ð�þþ�0

r þ �þþ�0
i Þ=

ffiffiffi
2

p
; (3.79)

jAþþ
7 i ¼ ð�þ�þ þ �þþ�0rÞ=

ffiffiffi
2

p
; (3.80)

jAþþ
8 i ¼ ð�þ�þ þ�þ�þ þ �þþ�0

rÞ=
ffiffiffi
3

p
; (3.81)

jAþþ
9 i ¼ ð�þ�þ ��þ�þ � �þþ�0

i Þ=
ffiffiffi
3

p
; (3.82)

jAþþ
10 i ¼ ð�þ�þ þ�þ�þ � 2�þþ�0

rÞ=
ffiffiffi
6

p
; (3.83)

jAþþ
11 i ¼ ð�þ�þ ��þ�þ þ 2�þþ�0

i Þ=
ffiffiffi
6

p
: (3.84)

The corresponding doubly charged two-body states with
the charge �2 can be obtained by C transformation in the
above states with the charge þ2.
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D. Triply charged channels

There are three triply charged states with the electric
charge þ3, and the subset of the transition matrix for the
initial and final states can be diagonalized by the following
eigenstates:

jAþþþ
1 i ¼ �þþ�þ; (3.85)

jAþþþ
2 i ¼ �þþ�þ; (3.86)

jAþþþ
3 i ¼ �þþ�þ: (3.87)

All of the eigenstates with the opposite electric charge can
be obtained by the C transformation of these eigenstates
with the charge þ3.

E. Quadruply charged channels

Finally, we have only one quadruply charged state for
each electric charge of þ4 and �4:

jAþþþþ
1 i ¼ �þþ�þþ; (3.88)

jA����
1 i ¼ ������: (3.89)

F. Eigenvalues of the transition matrix for all channels

In summary, the transition matrix T has been block-
diagonalized as

T ¼

T0 0 0 0 0 0 0 0 0
0 Tþ 0 0 0 0 0 0 0
0 0 T� 0 0 0 0 0 0
0 0 0 Tþþ 0 0 0 0 0
0 0 0 0 T�� 0 0 0 0
0 0 0 0 0 Tþþþ 0 0 0
0 0 0 0 0 0 T��� 0 0
0 0 0 0 0 0 0 Tþþþþ 0
0 0 0 0 0 0 0 0 T����

2
6666666666666664

3
7777777777777775

; (3.90)

where block-diagonal transition submatrices for the neu-
tral, the singly charged, the doubly charged, the triply
charged, and the quadruply charged two-body states T0,
T�, T��, T���, and T����, respectively, are given by

T0 ¼ diagðX1;X2;X2;X2; y1; y1; y2; y2; y2; y2; y2; y3; y3;

y3; y3; y3; y4; y4; y4; y5; y5Þ; (3.91)

T� ¼ diagðX3;X3; y6; y6; y7; y7; y2; y2; y3; y3; y3; y4; y4;

y4; y4; y5Þ; (3.92)

T�� ¼ diagðX4;X5;X5; y2; y3; y3; y4; y4Þ; (3.93)

T��� ¼ diagðy3; y2; y2Þ; (3.94)

T���� ¼ 2y2: (3.95)

Here Xi are the 2� 2 matrices, whose eigenvalues x�i are
given by

x�1 ¼ 12�1 þ 22�2 þ 14�4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12�1 � 22�2 � 14�4Þ2 þ 144�2

3

q
; (3.96)

x�2 ¼ 4�1 þ 4�2 � 2�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�1 � 4�2 þ 2�4Þ2 þ 4�2

5

q
;

(3.97)

x�3 ¼ 4�2 þ 4�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�2 � 4�1Þ2 þ 4�2

5

q
; (3.98)

x�4 ¼ 8�1 þ 4�2 � 2�4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8�1 � 4�2 þ 2�4Þ2 þ 8�2

5

q
;

(3.99)

x�5 ¼ 12�2 þ 14�4 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

2 þ 4�2�4 þ 17�2
4

q
: (3.100)

The eigenvalues yi are obtained as

y1 ¼ 8�2 þ 16�4; (3.101)

y2 ¼ 8�2 þ 4�4; (3.102)

y3 ¼ 4�3 þ �5; (3.103)

y4 ¼ 4�3 � 2�5; (3.104)

y5 ¼ 4ð�3 þ �5Þ; (3.105)

y6 ¼ 8�2 þ 4ð2þ ffiffiffi
2

p Þ�4; (3.106)

y7 ¼ 8�2 þ 4ð2� ffiffiffi
2

p Þ�4: (3.107)

Although the transition matrix between initial and final
two-body states is originally 91� 91, the number of inde-
pendent eigenvalues turns out to be only 17.
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IV. UNITARITY BOUNDS ON THE MASSES

In this section we analyze mass bounds on the Higgs
bosons in the GM model, imposing the condition of per-
turbative unitarity in Eq. (3.24) to the transition matrix
given in the previous section. Consequently, we obtain
17 inequalities with respect to all of the independent
eigenvalues of the transition matrix T in Eq. (3.90) as

jx�1 j;jx�2 j; jx�3 j; jx�4 j; jx�5 j; jy1j; jy2j; jy3j; jy4j; jy5j; jy6j; jy7j
< 8�: (4.108)

These eigenvalues are, respectively, given in Eqs. (3.96),
(3.97), (3.98), (3.99), (3.100), (3.101), (3.102), (3.103),
(3.104), (3.105), (3.106), and (3.107) as a combination of
the dimensionless coupling constants �i (i ¼ 1–5) in the
Higgs potential, and �i are related to the Higgs-boson
masses through Eqs. (2.19), (2.20), (2.21), (2.22), and
(2.23); these constraints can be translated into the bounds
on the masses m ~H0

1
, m ~H00

1

, mH3
, and mH5

and on the mixing

angles �H and 
.
We here show the numerical results on the Higgs mass

bounds. Figure 1 shows the allowed regions of the masses
(a) in the mH3

�mH5
plane, (b) in the mH3

�m ~H0
1
plane,

and (c) in the m ~H0
1
�m ~H00

1

plane. We vary the Higgs-boson

masses in the range mH3
, mH5

, m ~H0
1
, m ~H00

1

< 1 TeV and the

mixing angles for 0< �H � �=2 and ��=2<
 � �=2.
In each figure, the conditions of perturbative unitarity in
Eq. (3.24) are satisfied inside the regions. In Fig. 1(a), the
light shadowed region is excluded by the Z! b �b result.

Figure 1(a) shows that mH3
and mH5

are bounded from

above, respectively, by about 400 700 GeV. These upper
bounds come from jx�1 j< 8�, which gives the most strin-
gent constraint among the inequalities in Eq. (4.108). For
mH3

* 170 GeV, mH5
is bounded from above whose bor-

der is approximately corresponding to �4 ’ 0 or mH5
’ffiffiffi

3
p
mH3

with �H ’ 0. Owing to the factor
ffiffiffi
3

p
, the more

strict constraint is given on mH3
than on mH5

. For mH3
&

170 GeV, on the other hand, the upper bound on mH5

(290 GeV) is realized at �H ’ �=2. When all masses other

than mH3
are zero, mH3

is bounded by mH3
<

ffiffiffiffiffiffiffiffiffiffiffiffi
2�=3

p
v ( ’

356 GeV) from jx�1 j< 8�. However, numerical analysis
shows that the actual upper bound is a few decades GeV
greater. This excess comes from some delicate cancellation
in Eq. (3.96). When we impose the experimental data from
Z! b �b which give the constraint on the combination of
mH3

and �H [11], the allowed region is further limited in

the dark shadowed regions. The upper bounds on mH3
and

mH5
do not change, but the remaining allowed region is in

the vicinity of mH5
’ ffiffiffi

3
p
mH3

.

In Fig. 1(b), we can see that the upper bound on m ~H0
1
is

about 710 GeV, which is almost the same as that on the
mass of the SM Higgs boson [13]. Larger values of m ~H0

1

are allowed for smaller values of 
 and � as well as
smaller mH5

and m ~H00
1

values. For instance, by taking the

limit 
! 0, �H ! 0, mH5
! 0, and m ~H00

1

! 0, we obtain

m ~H0
1
<

ffiffiffiffiffiffiffiffiffiffiffiffi
8�=3

p
v ( ’ 712 GeV) in the condition jxþ1 j< 8�.

The mass bound for another singlet ~H00
1 can be obtained by

replacing m ~H0
1
with m ~H00

1

and 
 with 
þ �=2, which can

be seen from Eqs. (2.19), (2.20), and (2.21). Consequently,
the allowed regions in the mH3

�m ~H00
1

plane are given by

the same as in Fig. 1(b). We find that, contrary to the result
in Fig. 1(a), there are only a few differences in the case
where we include the Z! b �b data.
The allowed region in the m ~H0

1
�m ~H00

1

plane in Fig. 1(c)

is symmetrical about the line of m ~H0
1
¼ m ~H00

1

( � m). It is

notable that at least one singlet receives a very strict
constraint from perturbative unitarity. The mass of lighter

singlet, either ~H0
1 or ~H00

1 , is bounded from above by
322 GeV. In analytic calculation, this upper bound is

obtained asm<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�=11

p
v ( ’ 322 GeV) from jx�1 j< 8�.

In the following, we evaluate the upper bound onmlightest

[ � minðmH3
; mH5

; m ~H0
1
; m ~H00

1

Þ]. We start from the case in

which the constraints from the Zb �b results are switched
off. When the 3-plet is the lightest, we obtain the upper
bound on mlightest ( ¼ mH3

) as

mlightest < 269 GeV; (4.109)

which is considerably lower than that of the SM Higgs
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FIG. 1. Allowed regions of the masses of the Higgs bosons (a) in the mH3
�mH5

plane, (b) in the mH3
�m ~H0

1
plane, and (c) in the

m ~H0
1
�m ~H00

1
plane. In (a), the light shadowed regions are excluded by the Zb �b results.
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boson, 712 GeV. This condition comes from the constraints
jxþ1 j< 8� and jx�5 j< 8�. A similar analysis has been

done for mlightest ¼ mH5
, m ~H0

1
, and m ~H00

1

in order, and the

same bound as in Eq. (4.109) is derived for each case.
Whenmlightest ’ 269 GeV, all of the masses are degenerate

in mass (mH3
¼ mH5

¼ m ~H0
1
¼ m ~H00

1

). The situation turns

out to be quite similar to the situation of the two-Higgs-
doublet model with the discrete symmetry, where the light-
est of all Higgs masses are bounded at 410 GeV [16]. In the
case of the GMmodel, the number of the two-body states is
greater than that in the two-Higgs-doublet model. (The
neutral two-body states are 14 channels in the two-
Higgs-doublet model and 25 channels in the GM model.)
Thereby we have obtained stronger bounds than the two-
Higgs-doublet model. Finally, when we take into account
the Zb �b results [11], the angle �H is more limited for
smaller values of mH3

. Consequently, the combined upper

bound onmlightest becomes lower than 269 GeV. Depending

on what the lightest is, the combined upper bound turns out
to be about 249 (176) GeV when mH3

, m ~H0
1
, or m ~H00

1

(mH5
)

is the lightest.
We have not included the LEP direct search results,

which give the lower bound mHSM
> 114 GeV in the SM

[38]. In the GM model, similar lower mass bounds can be
obtained for neutral Higgs bosons but depending on the
mixing angles, which would slightly affect the upper
bounds by using the results in Figs. 1(a)–1(c). We have
taken into account only the Z! b �b result as the experi-
mental constraint [11], because this constraint drastically
changes the bound in themH3

�mH5
plane and also that on

mlightest.

V. CONCLUSIONS

In this paper, we have analyzed unitarity constraints on
the Higgs-boson masses in the GM model, which includes
a real and a complex isospin triplet field but predicts � ¼ 1
at tree level. All possible two-body elastic-scattering chan-
nels (91 channels) have been taken into account to con-
struct the S-wave amplitude matrix in the high-energy
limit. The condition of S-wave unitarity in Eq. (4.108)
has been applied to the eigenmatrix.

We have found that all of the Higgs bosons receive their
masses from the VEV under the discrete Z2 symmetry, so
that all of the masses can be bounded from above by the

condition of perturbative unitarity. In particular, the upper

bound on the mass of the SUð2ÞV 3-plet is about 1=
ffiffiffi
3

p
lower than that on the SM Higgs-boson mass (712 GeV).
Hence, at least one of the singly charged Higgs-boson
masses is bounded from above at about 400 GeV. The
mass of the lighter SUð2ÞV singlet scalar state, either ~H0

or ~H0
0, turns out to be bounded from above by about

300 GeV. Furthermore, the mass of the lightest Higgs
boson among the 5-plet, the 3-plet, and the two singlet
states, whatever it would be, receives very strong constraint
from above; i.e., mlightest ’ 270 GeV. The point of the

parameter space at which mlightest takes its maximum value

corresponds to that where all of the mass parameters are
degenerate. The combined upper bound with the Zb �b
results becomes about 150 GeV (95% C.L.). Therefore,
the model turns out to be well testable at collider experi-
ments. The SUð2ÞV 5-plet and 3-plet have the doubly and
singly charged states, so that the distinctive phenomeno-
logical features of this model should also appear in the
physics of charged Higgs bosons. Detailed phenomeno-
logical features will be discussed elsewhere.
In the analysis above, we have considered the Higgs

potential with the Z2 symmetry, neglecting the trilinear
scalar terms of �1 and �2. The imposition of the Z2

symmetry in our analysis would be justified to avoid large
excess of the neutrino masses. When we do not respect the
Z2 symmetry, the upper bounds in the above results be-
come relaxed according to the scales of �1 and �2, which
have linear mass dimension. Unless �1 and �2 are sub-
stantially larger than Oð100Þ GeV, our results above can
sufficiently be applied by small relaxation.
Finally, in this paper, we have employed partial wave

unitarity to constrain parameters of the GM model at the
tree level. A more detailed study with the radiative effects
such as vacuum stability or triviality might give more strict
bounds on the Higgs-boson masses in this model.
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