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We propose a solution to the �=B� problem in gauge mediation. The novel feature of our solution is

that it uses dynamics of the hidden sector, which is often present in models with dynamical supersym-

metry breaking. We give an explicit example model of gauge mediation where a very simple messenger

sector generates both � and B� at one loop. The usual problem, that B� is then too large, is solved by

strong renormalization effects from the hidden sector which suppress B� relative to �. Our mechanism

relies on an assumption about the signs of certain incalculable anomalous dimensions in the hidden sector.

Making these assumptions not only allows us to solve the �=B� problem but also leads to a characteristic

superpartner spectrum which would be a smoking gun signal for our mechanism.
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Models with gauge mediated supersymmetry breaking
[1–10] are attractive because they introduce no new flavor
violation beyond the standard model.1 However, gauge
mediation is not free of problems. In this paper we are
concerned with the �=B� problem [19], which is particu-

larly severe in gauge mediation. Solutions to the �=B�

problem usually involve an elaborate messenger sector or
extra light particles, often requiring fine-tuning of parame-
ters. In this paper we point out an alternative solution to the
�=B� problem, which does not require a complicated

messenger sector or new particles at the weak scale.
The B� problem in gauge mediation is related to the �

problem, which is common to all supersymmetric models.
The effective low-energy minimal supersymmetric stan-
dard model (MSSM) Lagrangian contains a supersymmet-
ric Higgs mass term Z

d2��HuHd: (1)

Natural electroweak symmetry breaking requires that the
mass parameter � is of the same size as superpartner
masses. Relating the supersymmetry preserving� parame-
ter to the supersymmetry violating soft masses is the �
problem in supersymmetric theories. In supergravity,
Giudice and Masiero proposed a simple solution [20]: the
� term stems from a higher-dimensional operator coupling
the supersymmetry breaking field X to the MSSM Higgs
fields, such that the � term in Eq. (1) is generated when X
is replaced by its supersymmetry breaking vacuum expec-
tation value (vev) FX,Z

d4�k�
1

M
XyHuHd !

Z
d2��HuHd with �¼ k�

FX

M
:

(2)

Here M is the mediation scale and it is given by MPlanck in
supergravity theories. The gaugino massesMa (a labels the
three SM gauge groups) come from similar higher-
dimensional operators

Z
d2�wa

1

M
XWaWa ! Ma ¼ wa

FX

M
: (3)

If all these operators are generated by supergravity we may
assume that the coupling constants k� andwa are of order 1

and we find ��Ma as desired.
Another important part of the Higgs potential is the B�

term. Natural electroweak symmetry breaking requires
B� ��2. The B� term arises from a higher-dimensional

operator (the B� operator)

Z
d4�kB

1

M2
XyXHuHd ! B� ¼ kB

jFXj2
M2

: (4)

In many models, kB is generated with a similar size as k�
and wa. If, in addition, kB � k� � wa �Oð1Þ as in mini-

mal supergravity with the Giudice-Masiero mechanism,
then we obtain the desired relations B� ��2 �M2

a.

The situation is more complicated in models with gauge
mediation. Here gaugino and scalar masses are generated
from gauge loop diagrams involving messenger fields of
mass M. The � and B� terms cannot be generated by

gauge loops because the operators Eqs. (2) and (4) are
forbidden by a Peccei-Quinn symmetry. A simple way to
generate a � term is to break Peccei-Quinn symmetry by
coupling the Higgs superfields to the messengers in the
superpotential. Now � and B� terms are generated by the

one-loop diagrams shown in Fig. 1 and we expect kB �
k� � wa � 1=16�2. Hence� is naturally of the size of the

gaugino masses which also arise at one loop. However, the
fact that the B� operator is also generated at one loop

implies that the mass-squared parameter B� is too large

by a loop factor compared to �2 and the gaugino masses
squared
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B� � 16�2�2 � 16�2M2
a: (5)

This is the B� problem in gauge mediation.

Solutions to the above problem are nontrivial. The basic
point of the solution in [19] is to design the messenger
superpotential such that at the leading order only the �
term is generated—the B� operator in Eq. (4) is generated

at higher order. Models based on this scheme require extra
heavy gauge singlets with carefully chosen masses and
couplings. Another popular scheme is to introduce light
scalars as in the next to minimal supersymmetric standard
model (NMSSM). However, since it is difficult to obtain
soft masses for gauge singlets in gauge mediation, one
usually ends up either fine-tuning electroweak symmetry
breaking or predicting unacceptably light particles. For a
review of the B� problem in gauge mediation and refer-

ences, see [10].
In this paper we propose a new solution to the B�

problem: we start with a very simple messenger sector,
requiring that it generates a � term of the right size, but
allowing that the B� term at the messenger scale is too

large. We then argue that renormalization effects due to
strong hidden sector interactions can sufficiently suppress
the B� operator relative to the � operator at low energies.

This relative renormalization between � and B� due to

hidden sector interactions was also pointed out in [21].
Let us explain our mechanism in more detail. First, note

that since the MSSM interactions are weak they cannot
significantly suppress the B� term due to renormalization.

This is why solutions to the B� problem generally require

B� & �2 at the messenger scale even though phenome-

nology only requires this condition near the weak scale. On
the other hand, in many models of dynamical supersym-
metry breaking hidden sector interactions are strong and
can induce large renormalization. For our mechanism we
require a large positive anomalous dimension for the B�

operator to suppress B� relative to �2 at low energies.

A formalism for renormalization which takes into ac-
count arbitrary hidden sector interactions as well as MSSM
interactions was developed in [22,23]. We follow this
formalism and notation and adopt a holomorphic basis in

which no wave function renormalization is performed. We
begin with the renormalization of the � operator. It is well
known that in the holomorphic basis the superpotential is
not renormalized. This nonrenormalization theorem can be
generalized to Kähler potential operators which factor into
a product of a chiral visible sector operator times an
antichiral hidden sector operator

1

Md
O�

hOvj�4 : (6)

The proof assumes that the dimension of the operator in
question is low enough so that its renormalization can only
involve single insertions of higher-dimensional hidden-
visible interactions. Then its renormalization factorizes
into separate visible and hidden sector contributions, and
we can compute these contributions independently. To
compute the visible sector running, we treat the hidden
sector fields as background fields with an expectation value
for their ��2 components. This turns the operator in Eq. (6)
into a chiral superpotential for the visible fields which is
protected by the usual nonrenormalization theorem. By
supersymmetry, this is also true for the full operator with
arbitrary hidden sector fields. Similarly, as far as purely
hidden sector interactions are concerned the operator in
Eq. (6) is antichiral and therefore not renormalized.
Applying this result we see that the � operator is not

renormalized. Using a similar argument we can show that
the B� operator is not renormalized by visible sector

interactions because it is chiral in visible fields. However,
hidden sectors interactions do renormalize B� because the

operator is real in hidden sector fields and therefore not
protected by nonrenormalization theorems. Schematically,
these renormalizations are represented by the diagram in
Fig. 2.
This implies the following general form for the renor-

malization group equations of the couplings k� and kB
(again in the holomorphic basis)

FIG. 2. Interactions of the hidden sector field X renormalize
XyXHuHd.

FIG. 1. Superfield diagrams which generate the � and B�

operators at one loop. The fields in the loop are messengers. A
specific superpotential with couplings which generate such dia-
grams is given in Eq. (8).
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d

dt
k� ¼ 0 ) k�jE ¼ k�jM;

d

dt
kB ¼ �kB ) kBjE ¼ exp

�
�
Z 0

t
ds�ðsÞ

�
kBjM

� G

�
E

M

�
kBjM; (7)

where t ¼ lnðE=MÞ and E is the renormalization scale. � is
the anomalous dimension of the operator in the holomor-
phic basis. For example, if � is constant, then GðE=MÞ ¼
ðE=MÞ�.

We now see that if � is positive and of order 1 then we
can easily obtain large suppression factors G & 1=16�2

for the B� operator at low energies. This then implies that

B� & �2 at the scale where the hidden sector dynamics

ends. For our mechanism to work the hidden sector must be
strongly coupled over at least a couple of decades of energy
scales. The most familiar such theories are strongly
coupled conformal field theories.

Now we describe an explicit model which demonstrates
our mechanism. The model has the following features: a
very economical messenger sector which naturally predicts
a � parameter of the size of the gaugino masses (but B� is

too large at the messenger scale). Below the messenger
scale, our hidden sector fields have strong, approximately
conformal interactions which lead to large anomalous
dimensions for at least a couple of decades of running.
Assuming that the anomalous dimensions governing the
running of B� are positive we find that B� is suppressed to

acceptably small values. Finally, at an even lower scale,
supersymmetry is broken spontaneously in the hidden
sector.

A simple messenger sector that suffices our purposes
was described in [19]. The messengers R1, R2, �R1, and �R2

are vectorlike under the standard model gauge group and
couple to the gauge singlet X and the MSSMHiggses in the
superpotential

Wmessenger ¼ �R1ðMþ XÞR1 þ �R2ðMþ XÞR2 þHu
�R1R2

þHd
�R2R1; (8)

where all Yukawa couplings are assumed to be of order 1.
At the scale M the messengers are integrated out and the
higher-dimensional operators for�, B�, as well as gaugino

and scalar masses are generated. The operators in Eqs. (2)–
(4), all appear at one loop which implies the relation
wajM � k�jM � kBjM � 1=16�2 (i.e. the B� term is too

large: kB � 16�2k2�).

As our model of the hidden sector we take supersym-
metric QCDwith gauge group SUðNÞ and F flavors each of
Qþ �Q and Pþ �P in the fundamental and antifundamental
representations. The supersymmetry breaking field X is a
gauge singlet and couples to Q and �Q with the following
hidden sector superpotential:

Xð�2 þ �Q �QÞ þmðQ �Pþ P �QÞ þ �ðQ �QÞ2: (9)

Here m and � are mass parameters with m>�, � is a
Yukawa coupling, � is a coupling to be discussed below,
and all hidden sector flavor indices are contracted with �ij.

For 3
2N < 2F < 3N and at energies above m the theory

approaches an infrared attractive conformal fixed point for
both gauge and Yukawa couplings [24]. During this run-
ning the suppression of scalar masses and B� takes place.

At the scale m conformal symmetry is broken, the field X
decouples from the gauge dynamics, and supersymmetry
breaks at the scale �. While this story appears simple,
there are subtleties which will require us to modify the
model. We will now discuss these subtleties.
First, we study the renormalization of operators which

couple hidden and visible fields in the energy regime m<
E<M, where the hidden sector is governed by strong
conformal dynamics. As already shown above, operators
coupling chiral hidden sector operators to visible fields are
not renormalized in the holomorphic basis which we em-
ploy. The gauge-invariant nonchiral operators with the
lowest scaling dimensions of the hidden sector are presum-

ably the bilinears XyX, Qy
i Qj, �Qy

i
�Qj, P

y
i Pj, and �Py

i
�Pj. In

general, any of these operators may couple to the Higgs
bilinearZ

d4�
1

M2
HuHdðkXXyX þ kijQQ

y
i Qj þ �kijQ

�Qy
i
�Qj

þ kijPP
y
i Pj þ �kijP �Py

i
�PjÞ: (10)

Integrating out the messengers at scale M only generates
kX but hidden sector interactions can generate other cou-
plings through operator mixing. At one loop, the operator
QyQþ �Qy �Q is generated from the Yukawa interaction,
and at two loops the operator PyPþ �Py �P is generated
from gauge interactions. All other possible operators in
Eq. (10) are not generated. It is easy to understand why
they are not generated by considering the global symme-
tries of the model. Setting the coupling � ¼ 0 for the
moment, only the dimensionless � and the SUðNÞ gauge
coupling are relevant to the renormalization. Both preserve
SUðFÞQ � SUðFÞP � SUðFÞ �P non-Abelian flavor symme-

tries and several Uð1Þ symmetries. The non-Abelian flavor
symmetries together with the Uð1Þ symmetries forbid all
operators except XyX, QyQþ �Qy �Q, QyQ� �Qy �Q,
PyP� �Py �P, and PyPþ �Py �P. The two operators with
the minus signs contain Nöther currents corresponding to
two baryon number symmetries acting separately on theQ,
�Q and P, �P. The baryon number symmetries are preserved
by the interactions of the conformal field theory (CFT) and
therefore the corresponding currents are conserved.
Current conservation implies that these operators are not
renormalized in the canonical basis for the fields. The
holomorphic basis differs from the canonical one only by
wave function renormalization. And since wave function
renormalization is multiplicative new couplings to these
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currents cannot be generated in the holomorphic basis
either. The current PyPþ �Py �P is broken by the axial
anomaly but it is easy to see that diagrams proportional
to the anomaly only enter its renormalization at two loops.
This leaves us with three operators which mix in the
running of B� to all ordersZ

d4�
HuHd

M2

�
kXX

yX þ kQffiffiffiffiffiffiffiffiffiffi
2NF

p ðQyQþ �Qy �QÞ

þ kPffiffiffiffiffiffiffiffiffiffi
2NF

p ðPyPþ �Py �PÞ
�
: (11)

The operator coefficients k satisfy the renormalization
group equation

d

dt
k ¼ �k; (12)

where � is a 3� 3 dimensional matrix of anomalous
dimensions. Assuming that our theory is approximately
conformal, the anomalous dimensions are approximately
constant. Diagonalizing � and denoting its smallest eigen-
value by �<, we find that the operators in Eq. (11) are
suppressed by a mixing angle times ðEMÞ�< at low energies

E. The suppression turns into an enhancement if �< is
negative. In order to achieve sufficient suppression of the
B� operator we see that we must require ðEMÞ�< & 1=16�2

or �< * logð16�2Þ= logðM=EÞ, where E is now the energy
scale at which the hidden sector stops interacting. To put it
simply, all eigenvalues of the anomalous dimension matrix
must be of order 1 and positive.

Does our model satisfy this criterion? In the one-loop
approximation kP vanishes and the anomalous dimension
matrix � is only 2� 2

� ¼ 1

16�2

0 2�2
ffiffiffiffiffiffiffiffiffiffi
2NF

p
2�2

ffiffiffiffiffiffiffiffiffiffi
2NF

p
2�2 þ g2ðN2 � 1Þ=N

 !
: (13)

This matrix has one positive and one negative eigenvalue
which would be a problem. At strong coupling, the anoma-
lous dimensions are not calculable, they are expected to be
nonvanishing and of order unity but we do not know their
sign.

We will now show that for hidden sector operators
corresponding to conserved hidden sector currents of the
CFT the sign can be determined and is negative. Thus they
must be avoided in building suitable hidden sector models
by either breaking the corresponding symmetry in the CFT
or by preserving the symmetry also in the messenger sector
so that the dangerous operators are never generated. The
argument for why conserved current operators are danger-
ous is simple. In the canonical basis (which we will adopt
for the argument in this paragraph) such a conserved
current is not renormalized. Therefore the operator cou-
pling the current to the MSSM fields scales as 1=M2 even
in the presence of strong interactions. On the other hand,
the � term arises from a gauge-singlet antichiral operator
of the hidden sector multiplying the MSSM Higgs fields.

This operator has a positive anomalous dimension in the
canonical basis. This follows from unitarity arguments
which imply that the dimensions of chiral gauge-invariant
operators must be greater than one. Thus in the presence of
operators corresponding to conserved currents of the CFT
B� actually increases compared to �2. Therefore exact

currents of the CFT which are broken by messenger phys-
ics must be avoided for our mechanism to work.2

Equivalently, in the holomorphic basis, the � operator is
not renormalized, but the conserved current operator now
has a negative anomalous dimension leading to an un-
wanted enhancement of B�.
This is why we added the coupling �ðQ �QÞ2 to the super-

potential in Eq. (9). The CFT without this coupling has an
exact nonanomalousUð1Þ symmetry under which X carries
charge 2, Q and �Q carry charge �1, and P and �P carry
charge 1. This symmetry is broken by the messenger sector
and therefore a coupling of the corresponding current
2XyX �QyQ� �Qy �Qþ PyPþ �Py �P is generated by the
messenger interactions. Since the current is conserved in
the CFT, it does not scale away. To fix the problem we must
break the Uð1Þ symmetry by strong CFT interactions. This
is achieved with the coupling ðQ �QÞ2 which is relevant for
F < N.
Having broken all dangerous Uð1Þ symmetries of the

CFT we know that all three of kX, kQ, kP renormalize

strongly. Unfortunately, there is no known technique for
determining their anomalous dimensions. Therefore we
cannot determine if this specific model does indeed se-
quester the B� operator. This is a general feature of models

which employ our mechanism: since anomalous dimen-
sions must be large, they cannot be computed in perturba-
tion theory and even their sign is unknown. Thus we cannot
determine if any particular hidden sector model suppresses
B�. But we expect that among the large number of possible

hidden sector CFTs there are some which have only posi-
tive anomalous dimensions for the operators in question. In
the appendix we discuss a simple perturbative example for
a toy hidden sector (with no supersymmetry breaking)
where the anomalous dimensions have the required signs
for conformal sequestering of B�. We also show that
conformal field theories with weakly coupled Banks-
Zaks fixed points do not have the correct signs for all the
relevant anomalous dimensions to be suitable as sequester-
ing hidden sectors.
We now discuss supersymmetry breaking. At the scalem

(times renormalization factors from the wave functions of
the fields) the hidden sector quarks obtain masses and are
integrated out of the theory. The remaining flavorless
SQCD theory confines and generates a nonperturbative
superpotential which depends on the determinant of the
masses of the quarks through the matching of the holomor-

2This is similar to the constraints on currents of hidden sector
CFTs for conformal sequestering [25].
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phic gauge coupling. The particular choice of masses and
Yukawa couplings in Eq. (9) ensures that this dynamical
superpotential does not depend on X. Therefore the low-
energy superpotential for X only involves the linear term
W ¼ �2X and supersymmetry is broken spontaneously.
The scalar expectation value for X is stabilized at the origin
of field space by a nontrivial Kähler potential obtained
from integrating out the hidden sector quarks.3

What is the resulting pattern of MSSM soft masses? We
obtain the masses renormalized at the supersymmetry
breaking scale by replacing X with its expectation value
hXjFi ¼ F. Note that this expectation value is for the
holomorphic field X, it is not necessary to perform the
wave function rescaling to switch to the canonical X. Soft
masses which stem from operators linear in X are then

given by � g2

16�2
F
M . All squark and slepton masses as well

as B� arise from operators of the form XyX times visible
fields and are therefore negligibly small at the supersym-
metry breaking scale. They are regenerated by MSSM
renormalization group running from the intermediate scale
down to the weak scale. Except for the Higgs soft masses,
this spectrum is similar to the one of gaugino mediation
[27–30] which has been studied in the literature [29–31].
Renormalization of the Higgs soft masses is different from
the renormalization of other soft masses. The difference is
that the one-loop diagram of Fig. 3 involving the � opera-
tor of Eq. (2) along with hidden sector interactions gen-
erates the operator

R
d4�kHX

yXHyH=M2, whereH stands

for either of the MSSM Higgses. The Higgs soft masses
squared are then expected to be of the same order as the �
term at the intermediate scale because of this new additive
contribution to their renormalization group equations. For
details see [22,23].

We close with three comments about our mechanism for
solving the �=B� problem. First, our mechanism relies on

strong hidden sector interactions which are quite generic in
theories of dynamical supersymmetry breaking.

Second, the strong suppression of scalar masses at the
intermediate scale also suppresses flavor violation which
may have entered the scalar masses from high scale flavor

physics. Thus our mechanism for solving the B� problem

also makes the theory safer from flavor-changing-neutral-
current (FCNC) constraints. Interestingly, this allows rais-
ing the messenger scale to near the grand unified theory
(GUT) or string scale without having to worry about flavor
violation from stringy physics.
Third, throughout this work we used the holomorphic

basis, which is convenient because we are interested in the
scaling of the B� term relative to the � term. The soft

masses of MSSM superpartners are obtained after replac-
ing the holomorphic superfield X with its F-expectation
value. In this basis the wave function renormalization
factor ZX does not enter MSSM superpartner masses.
However the Z factor does appear in the relationship
between MSSM superpartner masses and the gravitino
mass [21,25,32,33]. Since we are relying on strong hidden
sector interactions one expects that ZX � 1 which makes
the gravitino much heavier than the MSSM superpartners.
Summary.—conventional solutions to the �=B� prob-

lem in gauge mediation rely either on complicated mes-
senger sectors with tuned parameters and/or on extra light
degrees of freedom. In this paper we propose a new solu-
tion. Our messenger sector is the simplest that generates �
of the same size as gaugino masses. Assuming a positive
sign for the relevant anomalous dimensions, the strong
hidden sector interactions suppress the B� operator such

that B� & �2 at the intermediate scale where the hidden

sector interactions end. MSSM interactions below the in-
termediate scale regenerate B�. We presented an explicit

example for a hidden sector model which realizes our
mechanism.

This work was supported in part by the Department of
Energy under Grant Nos. DE-FG02-01ER-40676 and DE-
FG02-91ER-40676 and an Alfred P. Sloan Research grant.
M. S. acknowledges the support of the Aspen Center for
Physics.
Note added.—During completion of the manuscript we

learned that Murayama, Nomura, and Poland are develop-
ing a similar solution to the �=B� problem [34].

FIG. 3. The � term renormalizes the Higgs soft masses.

3A one-loop diagram with quarks in the loop generates the
term �ðXyXÞ2=m2 in the Kähler potential which stabilizes the X
vev at the origin. However, the theory is strongly coupled at the
scale m and we cannot be sure about the sign of the Kähler term
beyond the one-loop approximation. A simple way to make this
calculation reliable is to add N new flavors of quarks T þ �T and
an N � N matrix of singlets Y with the superpotential WT ¼
YT �T � V2 TrY. This potential forces a complete breaking of the
gauge symmetry at the scale V � m, all newly added fields and
the gauge bosons pick up masses of order V, and the low-energy
theory of X,Q, �Q, P, �P is weakly coupled at the scale m so that a
perturbative calculation of the X Kähler potential is reliable.
Note that we must reduce the number of flavors of Q and P so
that the theory remains a strongly coupled CFTabove the scale V
and the superpotential term ðQ �QÞ2 remains relevant. Using a
maximization [26] and checking the Seiberg dual of our theory
we find that the desired fixed point exists for F near N=2.
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APPENDIX

In this appendix we discuss two examples of perturba-
tive field theories as toy models for the hidden sector and
compute the anomalous dimensions which determine
whether operators of the form 1

M2 kBX
yXHuHd sequester

relative to 1
M k�X

yHuHd.

Our first toy hidden sector has only a single chiral super-
field X with the superpotential

W ¼ �

3!
X3: (A1)

In the holomorphic basis k� is not renormalized but

d

dt
kB ¼ �kB ¼ 2j�j2

16�2
kB: (A2)

Thus the anomalous dimension of kB is positive as desired,
and B� is sequestered relative to �. Of course, this toy

hidden sector is not suitable for our mechanism because (ii)
Yukawa theories are not strongly coupled over a range of
energy scales, thus any sequestering effects are necessarily
small and (i) it is too simple to include supersymmetry
breaking.

As our second example we consider a conformal theory
with a perturbative Banks-Zaks (BZ) fixed point. We will
show that BZ fixed point theories necessarily have opera-
tors of the form 1

M2 kBX
yXHuHd which do not sequester in

the IR. Our proof of this statement will depend on the fact
that in BZ fixed point theories anomalous dimensions are
small so that (i) scaling dimensions of operators are close
to free field values and (ii) one-loop anomalous dimensions
dominate over higher loops. Neither of these properties
apply to the case of strongly coupled CFTs which are
needed to generate significant sequestering. Therefore
our ‘‘no-go’’ result for BZ theories does not extend to the
theories of interest, but BZ theories provide a nice labora-
tory to study the general mechanism of conformal
sequestering.

To start, we note that our BZ theory must contain a
gauge-invariant fundamental chiral superfield X so that
the �-term operator 1

M k�X
yHuHd is invariant and not

suppressed by higher powers of the messenger scale M.
Since we want operators involving XyX to sequester, X
must interact. Then its scaling dimension D½X� is greater
than 1 by unitarity (in the canonical basis). We adopt the
canonical basis for the arguments of this example. At weak
coupling in a conformal BZ theory all marginal super-
potential operators are trilinear in the fields. Hence the
only possibility for coupling X to the conformal dynamics
is to introduce a superpotential XQ �Q where Q and �Q stand
for any (not necessarily distinct) chiral superfields which
are charged under the BZ gauge group. This coupling gives
a positive anomalous dimension to X already at one loop.
Therefore operators of the form XyX must obtain even
larger positive anomalous dimensions at one loop in order

for them to sequester. We will now show that at least one
operator involving XyX has a vanishing anomalous dimen-
sion at one loop.
First note that in the canonical basis operators quadratic

in hidden sector fields (e.g. the B� operator) do not receive

corrections from hidden sector gauge interactions at one
loop. Current conservation at one loop implies that the
diagrams in Fig. 4 cancel with each other. We therefore
only need to focus on the renormalization due to Yukawa
couplings.
If X is charged under a global Uð1Þ symmetry which is

unbroken by the Yukawa couplings, then the corresponding
current is protected by a nonrenormalization theorem. This
current will involve the operator XyX and therefore the
anomalous dimension of the B� operator vanishes (at one
loop). Thus for sequestering to work we must introduce
Yukawa couplings to break any global Uð1Þ symmetry
under which X is charged. The absence of a global Uð1Þ
symmetry implies that the conformal R symmetry which
determines the scaling dimension of X must be uniquely
determined from the superpotential of the CFT. But since
the superpotential only contains trilinear terms the only
possible solution is that the scaling dimensions of the fields

FIG. 4. Operators quadratic in hidden sector fields receive no
corrections due to hidden sector gauge interactions at one loop.
Current conservation implies that the diagrams above cancel.

FIG. 5. Operators quadratic in hidden sector fields receive
corrections due to hidden sector gauge interactions at two loops.
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in these Yukawa couplings are all equal to 1. But thenX is a
free field by unitarity in contradiction to our initial
assumptions.

We conclude that for weakly coupled theories we have a
choice: if we insist on conformal symmetry we are forced
into allowing globalUð1Þ symmetries of the superpotential
leading to no sequestering (at one loop). Alternatively, we
can give up conformal symmetry as in our first example.

Let us reiterate that this argument does not carry over to
strongly interacting CFTs for two reasons. One is that for
strongly coupled CFTs anomalous dimensions are large
and superpotential couplings which are higher order in
fields may be marginal. Furthermore, gauge interactions

are now important to the renormalization. This is because
the cancellation in the renormalization of classically con-
served currents (Fig. 4) does not extend to higher loops
when there are anomalies. For example, diagrams of the
form shown in Fig. 5 do lead to sequestering of the bilinear
XyX. It was shown in [25] that in strongly coupled IR
attractive conformal field theories with no conserved
global currents all operators of the form XyX times
MSSM fields have positive anomalous dimensions. For
the purposes of solving the �=B� problem as advocated
in this paper we must further demand that these anomalous
dimensions are greater than twice the anomalous dimen-
sion of X.
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