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We calculate gravitational form factors of vector mesons using a holographic model of QCD. These

provide restrictions on the generalized parton distributions of vector mesons, via the sum rules connecting

stress tensor form factors to generalized parton distributions. We concentrate on the traceless part of the

stress tensor, which suffices to fix the momentum and angular momentum sum rules. The vector mesons

appear noticeably more compact measured by the gravitational form factors than by the charge form

factor.
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I. INTRODUCTION

In this paper we calculate gravitational form factors—
form factors for the stress or energy-momentum tensor—of
vector mesons using a hard-wall model of anti–de Sitter
space (AdS)/QCD.

There has been much interest in the AdS/CFT (confor-
mal field theory), or gauge/gravity, correspondence be-
cause it offers the possibility of relating nonperturbative
quantities in theories akin to QCD in 4 dimensions to
gravitationally coupled 5-dimensional theories that are
treated perturbatively [1]. Many applications have already
been made; see Refs. [2–15] and other works cited in those
references. However, for objects of particular interest to
hadron structure physics, such as ordinary parton distribu-
tion functions, form factors, transverse momentum depen-
dent parton distribution functions, and generalized parton
distributions, there is a smaller body of work, particularly
for the latter two topics.

Part of the interest in gravitational form factors comes
because of their connections to generalized parton distri-
butions (GPDs). GPDs are an important metric of hadron
structure, and can be loosely described as amplitudes for
removing a parton from a hadron and replacing it with one
of different momentum. Moments of the GPDs are related
to gravitational form factors. In particular, one of the
gravitational form factors measures the total angular mo-
mentum carried by partons, and historically, the possibility
to find the summed spin plus orbital angular momentum of
particular constituents of hadrons is what keyed the current
experimental and theoretical interest in GPDs [16,17].

The original AdS/CFT correspondence [1] related a
strongly coupled, large Nc, 4D conformal field theory
with a weakly coupled gravity theory on 5D AdS space.
In QCD, Nc is not large, nor is it a conformal field theory,
as evidenced by the existence of hadrons with definite
mass. Nonetheless, results obtained treating Nc as large
work surprisingly well, and one can argue that QCD be-
haves approximately conformally over wide regions of Q2

[8]. The AdS/CFT correspondence has been studied in both
a ‘‘top-down’’ approach, starting from string theory [2,4],

and a ‘‘bottom-up’’ approach, which uses the properties of
QCD to construct its 5D gravity dual theory [5–9]. We
follow the latter approach, particularly as implemented in
[5,6]. Some of the salient results include the meson spec-
trum, decay constants and electromagnetic form factors for
both the rho and the pi [11,12,18–20].
The model uses a sharp cutoff in the AdS space to

simulate the breaking of conformal symmetry. The unper-
turbed metric and relevant slice of 5-dimensional AdS
space is

ds2 ¼ 1

z2
ð���dx�dx� � dz2Þ; " < z < z0; (1)

where ��� ¼ diagð1;�1;�1;�1Þ. The z ¼ " wall, with

"! 0 understood, corresponds with the UV limit of QCD,
and the wall located at z ¼ z0 � 1=�QCD sets the scale for

the breaking of conformal symmetry of QCD in the IR
region. (Lower case Greek indices will run from 0 to 3, and
lower case Latin indices will run over 0, 1, 2, 3, 5.)
Within AdS/CFT, every operator OðxÞ in the 4D field

theory corresponds to a 5D source field �ðx; zÞ in the bulk.
Following the model proposed in [5,6], two of the corre-
spondences are

J
a�
L ðxÞ $ A

a�
L ðx; zÞ; J

a�
R ðxÞ $ A

a�
R ðx; zÞ; (2)

where Ja�L ¼ �qL�
�taqL and Ja�R ¼ �qR�

�taqR are the chi-
ral flavor currents.
In Lagrangian formulations of general relativity, the

source for the stress tensor T�� is the metric g��, whose

variation is given in terms of h��. We will use h�� in the

Randall-Sundrum gauge, wherein h�� is transverse and

traceless and also satisfies h�z ¼ hzz ¼ 0. Variations of

the metric tensor in a transverse and traceless gauge will
only give us the transverse-traceless part of the stress
tensor. This will, we shall see below, uniquely determine
4 of the 6, for spin-1 particles, form factors of the stress
tensor, including the two form factors that enter the mo-
mentum and angular momentum sum rules.
The layout of this paper is as follows. Sections II, III,

and IV, obtain the form factors of the stress tensor using the
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AdS/CFT correspondence. Specifically, Sec. II obtains
some necessary results for the purely gravitational parts
of the theory, and Sec. III similarly focuses on the vector
parts of the action, reviewing necessary results originally
obtained in [5,11]. Section IV works out the three-point
functions, and extracts from them the stress tensor matrix
elements.

Section V begins by giving the general expansion of the
stress tensor for spin-1 particles, as constrained by the
conservation law and symmetries, and then relates five
combinations of stress tensor form factors to integrals
over the five vector GPDs that exist for spin-1 particles
[21]. One of these relations is the spin-1 version of the X. Ji
or angular momentum sum rule [16]. The relations as a
whole are a set of constraints upon the spin-1 GPDs. We
also determine the radius of the vector meson from the
form factors that enter the momentum and angular mo-
mentum sum rules, and compare it to the electromagnetic
radius. Some conclusions are offered in Sec. VI.

II. GRAVITY SECTOR

The action on the 5-dimensional AdS space is

S5D ¼
Z
d5x

ffiffiffi
g

p �
Rþ 12þ Tr

�
jDXj2 þ 3jXj2

� 1

4g25
ðF2

L þ F2
RÞ
��
; (3)

where Fmn ¼ @mAn � @nAm � i½Am; An�, AL;R ¼ AaL;Rt
a,

with TrðtatbÞ ¼ �ab=2 and DmX ¼ @mX � iAmLX þ
iXAmR . Only the gravity and vector sectors of the above
action are needed in this paper, and we impose Neumann
boundary conditions on the z0 boundary.

In the purely gravitational part of the action,

SG ¼
Z
d5x

ffiffiffi
g

p ðRþ 12Þ; (4)

the metric is perturbed from its AdS background according
to

ds2 ¼ 1

z2
ðð��� þ h��Þdx�dx� � dz2Þ; 0< z < z0;

(5)

where (so far) hzz ¼ 0, hz� ¼ 0 gauge choices have been

used. The linearized Einstein equations are

0 ¼ �h��;zz þ 3

z
h��;z þ h��;�

� � 2h�ð�;�Þ�

þ ���

�
~h;zz � 3

z
~h;z � ~h;�

� þ h��;
��

�
þ ~h;��;

0 ¼ ~h;�z � h��;z;
�; 0 ¼ 3

z
~h;z þ ~h;�

� � h��;
��; (6)

which come from the ��, �z, and zz sectors of the

Einstein equation. The trace of h�� is denoted by ~h. In

transverse-traceless gauge, h��;
� ¼ 0 and h

�
� ¼ 0. The

equation of motion becomes

� z3@z

�
1

z3
@zh��

�
þ @�@�h�� ¼ 0: (7)

We do a 4D Fourier transform, and factor the trans-
formed solution as h��ðq; zÞ ¼ hðq; zÞh0��ðqÞ. With

hðq; 	Þ ¼ 1, then h0��ðqÞ is the Fourier transform of the

UV-boundary value of the graviton. The IR boundary
condition becomes @zhðq; z0Þ ¼ 0. The surface term from
the IR boundary obtained when varying the action then
vanishes. One finds

hðq; zÞ ¼ 


4
q2z2

�
Y1ðqz0Þ
J1ðqz0Þ J2ðqzÞ � Y2ðqzÞ

�
: (8)

For spacelike momentum transfer q2 ¼ �Q2 < 0, the so-
lution is conveniently rewritten as

H ðQ; zÞ ¼ 1

2
Q2z2

�
K1ðQz0Þ
I1ðQz0Þ I2ðQzÞ þ K2ðQzÞ

�
: (9)

Symmetry of the two-index tensor T�� implies that there
are 10 independent components. Conservation of energy-
momentum, q�T

�� ¼ 0, reduces this to 6 independent

components. T�� can be decomposed into transverse-

traceless part T̂�� with 5 independent components, which
leaves the transverse-not-traceless part with one indepen-
dent component given by ~T�� ¼ 1

3 ð��� � q�q�=q2ÞT,
where T is the trace of T��:

T�� ¼ T̂�� þ 1

3

�
��� � q�q�

q2

�
T: (10)

This conserved operator couples only to a transverse
source. A variation h0��, which is transverse and traceless,

can couple only to T̂��.

III. VECTOR SECTOR

Define the vector field V ¼ ðAL þ ARÞ=2 and the axial-
vector field A ¼ ðAL � ARÞ=2, and consider only the vec-
tor part of the action, Eq. (3):

SV ¼
Z
d5x

ffiffiffi
g

p
Tr

�
� 1

2g25
F2
V

�
; (11)

where ðFVÞmn ¼ @mVn � @nVm up to quadratic order in the
action. The metric used in this section is nondynamical, i.
e., only the unperturbed part of Eq. (5).
In the Vz ¼ 0 gauge, the transverse part of the vector

field satisfies the following equation of motion:

�
@z

�
1

z
@zV

a
�ðq; zÞ

�
þ q2

z
Va�

�
?
¼ 0: (12)

The solution can be written as

V?�ðq; zÞ ¼ Vðq; zÞV0
�ðqÞ; (13)
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where V0
�ðqÞ is the Fourier transform of the source of the

4D vector current operator JaV� ¼ �q��t
aq. Current con-

servation, q�J
�
V ¼ 0, requires that the source is transverse.

Therefore, only the transverse part of the UV boundary of a
5D vector field will be considered as the source of J

�
V .

Vðq; zÞ is called the bulk-to-boundary propagator for the
vector field, and has boundary conditions Vðq; 	Þ ¼ 1 and
@zVðq; z0Þ ¼ 0. The bulk-to-boundary propagator is

Vðq; zÞ ¼ 


2
zq

�
Y0ðqz0Þ
J0ðqz0Þ J1ðqzÞ � Y1ðqzÞ

�
: (14)

Evaluating the action, Eq. (11), on the solution leaves only
the surface term

SV ¼
Z d4q

ð2
Þ4 V
0�ðqÞV0

�ðqÞ
�
�@zVðq; zÞ

2g25z

�
z¼	
: (15)

The Kaluza-Klein (KK) tower of the � mesons can be
obtained from the normalizable solutions of Eq. (12) with
q2 ¼ m2

n. The boundary conditions for  nðx; zÞ, the nth
KK-mode �-meson’s wave function, are  nðz ¼ 0Þ ¼ 0
and @z nðz0Þ ¼ 0. The solutions are

 n ¼
ffiffiffi
2

p
z0J1ðmnz0Þ zJ1ðmnzÞ; (16)

and satisfy normalization conditions
Rðdz=zÞ 2

nðzÞ ¼ 1.
Using Green’s function methods to solve Eq. (12), one

can show that the bulk-to-boundary propagator can be
written in terms of a sum over the infinite tower of KK-
modes of the �-meson as

Vðq; zÞ ¼ �g5
X
n

Fn nðzÞ
q2 �m2

n

; (17)

where Fn ¼ ð1=g5Þð1z0 @z0 nðz0ÞÞjz0¼	. Similar results can be

obtained by incorporating the Kneser-Sommerfeld expan-
sion of Bessel functions. The constant Fn is the decay
constant of the vector meson, defined by

h0jJa�ð0Þj�bnðpÞi ¼ Fn�
ab"�ðpÞ: (18)

This can be seen by calculating 2-point function of
vector currents. Taking functional derivatives with respect
to V0 in the 5D action in Eq. (15), and changing V0�V0

� to

V0����V
0� using the restriction that V0 is transverse, one

finds

i
Z
d4xeiqxh0jT Ja�ðxÞJb�ð0Þj0i ¼ �ðq2Þ����

ab; (19)

where ��� ¼ ð��� � q�q�=q
2Þ is the transverse projec-

tor, and

�ðq2Þ ¼ �@zVðq; zÞ
g25z

��������z¼	
¼ 1

g25

X
n

ð 0
nð	Þ=	Þ2

q2 �m2
n þ i"

: (20)

Using Eq. (18), the left-hand side of Eq. (19) can be written
as

i
Z
d4xeiqxh0jT Ja�ðxÞJb�ð0Þj0i ¼

X
n

F2
n�

ab

q2 �m2
n þ i"

���;

(21)

which confirms the interpretation of Fn in Eq. (17) as the
decay constants of the �-meson tower.

IV. GRAVITATIONAL FORM FACTORS OF
VECTOR MESON

Stress tensor matrix elements of spin-1 particles defined
by h�anðp1ÞjT��ðqÞj�bnðp2Þi can be extracted from the 3-
point function

h0jT ðJa�ðxÞT��ðyÞJb�ðwÞÞj0i: (22)

The Fourier transform of the above 3-point function can be
expressed as hJa�ð�p2ÞT��ðqÞJb�ðp1Þi. In order to pick
up the correct term for the elastic stress tensor matrix
elements, we apply the completeness relation

X
n

Z d3p

ð2
Þ32p0
j�anðpÞih�anðpÞj ¼ 1 (23)

twice, then multiply it by

"��ðp2; 
2Þ"�ðp1; 
1Þðp2
1 �m2

nÞðp2
2 �m2

nÞ 1

F2
n

; (24)

and take the limit p2
1 ! m2

n and p
2
2 ! m2

n.
Consider the following part of the full action, Eq. (3),

SV ¼ � 1

4g25

Z
d5x

ffiffiffi
g

p
glmgpnFamnF

a
lp: (25)

Only hVV terms contribute to the 3-point functions,

h0jT J�ðxÞT̂��ðyÞJ�ðwÞj0i ¼ �2�3S

�V0
�ðxÞ�h0��ðyÞ�V0

�ðwÞ
;

(26)

where the functional derivative is evaluated at h0 ¼ V0 ¼
0.
The relevant terms in the action that contribute to the 3-

point function can be written as

SV ¼! 1

2g25

Z d5x

z
ð������h��½�F�zF�z þ ���F��F���Þ;

(27)

The energy-momentum tensor from Eq. (26) must be con-
served and traceless. Therefore, one may apply the
transverse-traceless projector

������h�� ! h��

��
��� � q�q�

q2

��
��� � q�q�

q2

�

� 1

3

�
��� � q�q�

q2

��
��� � q�q�

q2

��
: (28)
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Taking the functional derivatives and then extracting the
gravitational form factor from the 3-point function, one
obtains

h�anðp2; 
2ÞjT̂��ðqÞj�bnðp1; 
1Þi
¼ ð2
Þ4�ð4Þðqþ p1 � p2Þ�ab"�2�"1�

�
�
�Aðq2Þð4q½����ð�p�Þ þ 2���p�p�Þ

� 1

2
Ĉðq2Þ���ðq2��� � q�q�Þ

þDðq2Þðq2��ð���Þ� � 2qð���Þð�q�Þ þ ���q�q�Þ

� F̂ðq2Þq
�q�

m2
n

ðq2��� � q�q�Þ
�
; (29)

where p ¼ ðp1 þ p2Þ=2, q ¼ p2 � p1, a
½�b�� ¼ ða�b� �

a�b�Þ=2, and að�b�Þ ¼ ða�b� þ a�b�Þ=2. The invariant
functions are given by

Aðq2Þ ¼ Z2; Ĉðq2Þ ¼ 1

q2

�
4

3
Z1 þ

�
q2 � 8m2

n

3

�
Z2

�
;

Dðq2Þ ¼ 2

q2
Z1 þ

�
1� 2m2

n

q2

�
Z2;

F̂ðq2Þ ¼ 4m2
n

3q4
ðZ1 �m2

nZ2Þ; (30)

with

Z1 ¼
Z z0

0

dz

z
H ðQ; zÞ@z n@z n;

Z2 ¼
Z z0

0

dz

z
H ðQ; zÞ n n;

(31)

for spacelike momentum transfer.

The matrix element of T̂�� in Eq. (29) is indeed trace-
less. It is not traceless term by term, but rather is written in
a form that allows easy contact with the general expression
for spin-1 matrix elements of the stress tensor, to be given
shortly.

The difference between T̂��, the traceless part of the
stress tensor, and the full stress tensor is a term propor-
tional to ð��� � q�q�=q2Þ, shown in Eq. (10). Adding

such a term can only affect the terms Ĉðq2Þ and F̂ðq2Þ in
Eq. (29). The form factors Aðq2Þ and Dðq2Þ will not
change.

V. SUM RULES FOR THE GPDS

A. Stress tensor

The stress tensor is a symmetric and transverse two-
index object, and is even under parity and time reversal. As
such, it has six independent components, which can be
composed as a spin-2 operator plus a spin-0 operator. Its
matrix elements with spin-1 particles may in general be
expanded in terms of six Lorentz structures multiplying six

scalar functions,

hp2; 
2jT��jp1; 
1i ¼ "�2�"1�f�2Aðq2Þ���p�p�
� 4ðAðq2Þ þ Bðq2ÞÞq½����ð�p�Þ

þ 1

2
Cðq2Þ���ðq�q� � q2���Þ

þDðq2Þ½q�q���� � 2qð���Þð�q�Þ

þ q2��ð���Þ�� þ Eðq2Þ q
�q�

m2
n

p�p�

þ Fðq2Þ q
�q�

m2
n

ðq�q� � q2���Þg:

(32)

The second listed component has coefficient ðAþ BÞ to
notationally match the corresponding expansion for
spin-1=2 particles. Four of the scalar functions were given
from the gauge-gravity correspondence in the last section,
and one also learns that

Bðq2Þ ¼ Eðq2Þ ¼ 0: (33)

This is consistent with the proof given in [22] that the
anomalous gravitomagnetic moment Bð0Þ vanishes for any
composite system, although here we find that B vanishes
for all q2.

B. Vector GPDs for spin-1 particles

For a spin-1 particle, there are five vector GPDs, defined
by [21]

Z pþdy�

2

eixp

þy�hp2; 
2j �q
�
� y

2

�
�þq

�
y

2

�
jp1; 
1iyþ¼0;y?¼0

¼ �2ð"�2 � "1ÞpþH1 � ð"þ1 "�2 � q� "þ�
2 "1 � qÞH2

þ q � "1q � "�2
pþ

m2
n

H3 � ð"þ1 "�2 � qþ "þ�
2 "1 � qÞH4

þ
�
m2
n

ðpþÞ2 "
þ
1 "

þ�
2 þ 1

3
ð"�2 � "1Þ

�
2pþH5: (34)

Each of the GPDs has arguments, Hi ¼ Hiðx; �; tÞ, where
qþ ¼ �2�pþ and t ¼ q2, and they are related to form
factors for spin-1 particles by

Z 1

�1
dxHiðx; �; tÞ ¼ GiðtÞ; i ¼ 1; 2; 3;

Z 1

�1
dxHiðx; �; tÞ ¼ 0; i ¼ 4; 5:

(35)

The form factors are defined by the matrix elements of the
vector current,
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hp2; 
2j �qð0Þ��qð0Þjp1; 
1i ¼ �ð"�2 � "1Þ2p�G1ðtÞ
� ð"�1 "�2 � q� "

��
2 "1 � qÞ

�G2ðtÞ þ q � "1q � "�2
� p�

m2
n

G3ðtÞ: (36)

The Gi are in turn related to the charge, magnetic, and
quadrupole form factors by (� ¼ �t=ð4m2

nÞ) [23],

G1 ¼ GC � 2

3
�GQ; G2 ¼ GM;

ð1þ �ÞG3 ¼ �GC þGM þ
�
1þ 2

3
�

�
GQ;

(37)

normalized by GCð0Þ ¼ 1, GMð0Þ ¼ �d [magnetic mo-
ment in units ð2mnÞ�1], and GQð0Þ ¼ Qd (quadrupole mo-

ment in units m�2
n ).

C. Sum rules

For spin-1=2 constituents,

TþþðyÞ ¼ i

2
�qðyÞ�þ@$þqðxÞ (38)

or,

Tþþð0Þ ¼ ðpþÞ2
Z
xdx

Z dy�

2

eixp

þy�

�
�
�q

�
� y

2

�
�þq

�
y

2

��
yþ¼0;y?¼0

; (39)

so that there is a direct relation between the scalar func-
tions in the stress tensor matrix elements and integrals over
the GPDs. These read,

Z 1

�1
xdxH1ðx; �; tÞ ¼ AðtÞ � �2CðtÞ þ t

6m2
n

DðtÞ;
Z 1

�1
xdxH2ðx; �; tÞ ¼ 2ðAðtÞ þ BðtÞÞ;

Z 1

�1
xdxH3ðx; �; tÞ ¼ EðtÞ þ 4�2FðtÞ;

Z 1

�1
xdxH4ðx; �; tÞ ¼ �2�DðtÞ;

Z 1

�1
xdxH5ðx; �; tÞ ¼ þ t

2m2
n

DðtÞ:

(40)

(By time reversal invariance,H4 is odd in � while the other
vector GPDs are even in � [17,21].)

The relations between the stress tensor and the momen-
tum and angular momentum operators lead to the sum rules
(for any spin) [16],

2p0p��
1
2 ¼ hp; 
2jT0�jp; 
1i;

2p0
1�
1
2 ¼ i

�
@

@qx
hp2; 
2jT02jp1; 
1i � @

@qy

�hp2; 
2jT01jp1; 
1i
�
q¼0

;

(41)

where the latter is written for ~p in the z-direction. Applied
to spin-1 particles, this gives the normalizations

Að0Þ ¼ 1; Að0Þ þ Bð0Þ ¼ ðJzÞmax ¼ 1: (42)

When connected to the GPDs, the first of these is just the
momentum sum rule,

Z 1

�1
xdxH1ðx; 0; 0Þ ¼ 1; (43)

and the second gives the spin-1 version of the X. Ji sum
rule [16]

Z 1

�1
xdxH2ðx; 0; 0Þ ¼ 2ðJzÞmax ¼ 2: (44)

[Recall that 0 � � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�t=ð4M2 � tÞp
.]

Away from t ¼ 0, the gauge-gravity correspondence has
led to a set of constraints, of which wewill explicitly quote,

Z 1

�1
xdx

�
H1ðx; 0; tÞ � 1

3
H5ðx; 0; tÞ

�
¼ Z2ðtÞ;

Z 1

�1
xdxH2ðx; 0; tÞ ¼ 2Z2ðtÞ;

(45)

where the ZiðtÞ are explicitly known, and are shown graphi-
cally in Fig. 1.

D. Radii

The RMS radius obtained from the gravitational form
factor Aðq2Þ is defined from

5 10 15 20 Q2
QCD

2

0.2

0.4

0.6

0.8

1
Z2 , Z1 m 1

2

FIG. 1 (color online). Plot of Z2 (solid blue curve) and Z1=m
2
1

(dashed red curve), for the lightest vector meson state, with
momentum transfer in units of �QCD ¼ 1=z0.
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hr2igrav ¼ �6
@A

@Q2

��������Q2¼0
: (46)

For small Q2 we expand

H ðQ; zÞ ¼ 1�Q2z2

4

�
1� z2

2z20

�
þOðQ4z4Þ; (47)

and for the lightest vector meson obtain

hr2igrav ¼ 3:24

m2
1

¼ 0:21 fm2; (48)

where we identified m1 ¼ m�.

This is quite small. The charge radius of the rho-meson
obtained from AdS/CFT in [11] (and verified by us) is
hr2iC ¼ 0:53 fm2. Similar charge radius results are ob-
tained by a Dyson-Schwinger equation study [24] and
from lattice gauge theory [25]. The result indicates that
while the charge is spread over a certain volume, the
energy that contributes to the mass of the particle is con-
centrated in a smaller kernel.

E. High Q2 behavior

Asymptotically the nonzero form factors obtained from
AdS/QCD fall like 1=Q4 for A, C, and D and like 1=Q6 for
F.

To see this [19], note that at high Qz, the function H is
essentially 1

2Q
2z2K2ðQzÞ, and K2 falls asymptotically like

e�Qz. Hence the integrals for Z1;2ðq2Þ, given in Eq. (31),

are dominated by low z. Also note that the wave function
 n, shown in Eq. (16), is proportional to z2 as z! 0.
Hence, for high Q2,

Aðq2Þ ¼ Z2ðq2Þ ¼ Q2

8

Z 1

0
dz z5K2ðQzÞj 00

nð0Þj2

¼ 12j 00
nð0Þj2
Q4

¼ 24m4
n

�2
0;nJ

2
1ð�0;nÞQ4

; (49)

where �0;n is the nth zero of J0ðzÞ. One can similarly show

that Z1 � 1=Q2, and the results for C, D, and F follow.
The perturbative QCD (pQCD) predictions for the gravi-

tational form factors are not, to our knowledge, available in
the literature, but can be shown to be

A; B;C;D� 1=Q4 E; F� 1=Q6: (50)

The AdS/CFT results are in precise accord with this.
A complete explication of the pQCD results for the

stress tensor form factors would require extensive space
and is beyond the scope of the comments in this subsection.
However, as a reminder, for electromagnetic form factors
of vector mesons, the pQCD predicted scaling behavior is
[26]

GC � 1=Q2; GM;GQ � 1=Q4; (51)

with an additional result from hadron helicity conservation
that GC � ðQ2=6m2

nÞGQ [26]. One may examine [11] and

find that these scaling relations also follow from the AdS/
CFT correspondence.
A more detailed prediction follows if the 0 ! 0 helicity

amplitude, in the light front frame, is highly dominant
[27,28]. This is

GC:GM:GQ ¼
�
1� Q2

6M2

�
:2:� 1; (52)

a result one also obtains in AdS/CFT [11]. (One may
further wish to examine some comments about this relation
in [29].)
It was first pointed out in [30] that AdS/CFT could give

scaling results that are in accord with pQCD. It is interest-
ing that AdS/CFT can obtain scaling results identical to
dimensional analysis results, which depend on the number
of quarks in a bound state [31], when there are no quarks
explicitly present in the AdS/CFT correspondence.
Reference [30] also pointed out, however, that the powers
of the perturbative QCD coupling were not the same in the
two predictions, which we also see here, as the perturbative
QCD coupling is not seen in the AdS/CFT results.

VI. CONCLUSIONS

We have worked out the gravitational form factors of the
vector mesons using the AdS/CFT correspondence and
have given the sum rules connecting the gravitational
form factors, which can also be called stress tensor or
energy-momentum tensor form factors, to the vector me-
son GPDs.
A striking numerical result is the smallness of the vector

meson radius as obtained from Aðq2Þ, the gravitational
form factor that enters the momentum sum rule. This
suggests that the energy that makes up the mass of the
meson is well concentrated, with the charge measured by
the electromagnetic form factors spreading more broadly.
Extensions of the present work include considering

AdS/CFT implications for stress tensor form factors of
the pion, whose electromagnetic properties were studied
in the AdS/CFT context in [18–20]; flavor decompositions
[2,4,32] of the stress tensor, particularly in connection with
the angular momentum sum rule; and applying the present
considerations to nucleons [7]. We hope to return to these
topics, but for the moment they lie beyond the scope of this
paper.
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