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We show that for a force mediated by a vector particle coupled to a conservedUð1Þ charge, the apparent
range and strength can depend on the size and density of the source, and the proximity to other sources.

This chameleon effect is due to screening from a light charged scalar. Such screening can weaken

astrophysical constraints on new gauge bosons. As an example we consider the constraints on chame-

leonic gauged B� L. We show that although Casimir measurements greatly constrain any B� L force

much stronger than gravity with range longer than 0:1 �m, there remains an experimental window for a

long-range chameleonic B� L force. Such a force could be much stronger than gravity, and long or

infinite range in vacuum, but have an effective range near the surface of the earth which is less than a

micron.
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I. INTRODUCTION

Searches for equivalence principle violation and devia-
tions from the inverse square law place stringent con-
straints on any new force. It is generally believed that
new forces must be either very short range or much weaker
than gravity. Since new Uð1Þ gauge interactions which are
weaker than gravity are in conflict with known string
theory constructions, it is commonly assumed that any
new gauge interaction must have range shorter than a few
microns. However previous analyses of experimental con-
straints on new vector forces have assumed linear equa-
tions of motion. While linearity is a reasonable
approximation in many cases, it is never exact [1].
Significant nonlinearity can vastly weaken the experimen-
tal constraints on gauge couplings for new forces.
Nonlinear forces have been dubbed ‘‘chameleons’’[2],
and there have been several analyses of constraints on
scalar chameleons [1,3–8]. However for new Uð1Þ gauge
forces, all previous analyses [9,10] have assumed the
forces to be linear. In this paper we will show that for a
new Uð1Þ gauge interaction, if the theory contains a
charged scalar field, then the new force is chameleonic,
and the constraints on its vacuum range and coupling
strength can be substantially weakened. As a specific in-
teresting example, we consider the allowed parameter
space for a chameleon vector boson coupled to the differ-
ence between baryon and lepton number (B� L).

II. QUANTUM GRAVITYAS MOTIVATION FOR
NEW GAUGE FORCES

Before launching into the study of experimental con-
straints, in this section we consider the theoretical motiva-
tion for new long-range forces, the motivation for

chameleons, and review the theoretical lower bound on
the strength of the coupling.
There are many reasons in fundamental theory to con-

sider new Uð1Þ forces, some of which have recently been
summarized in an excellent review [11]. New forces are
common features of string constructions, unified gauge
theories, and extra dimensional theories. There has also
long been interest in the explanation of the conservation
laws for global charges, and speculation that new gauge
invariances could play a role. Recently it has been argued
that experimental detection of new forces could shed light
on foundational quantum gravity issues [12].
Avariety of quantum gravity based considerations imply

that there are no exact global symmetries in nature. For
example, there are no global symmetries in string theory,
an explicit candidate for a theory of quantum gravity. Also,
global charges can disappear into black holes, which then
evaporate by emitting Hawking radiation, which is inde-
pendent of any global charge [13].
Absence of exact global symmetry can be reconciled

with the experimental success of the minimal standard
model (MSM). In the MSM, baryon number (B) and lepton
number (L) are anomalous, with only the combination B�
L preserved by anomalous electroweak processes. At tem-
peratures well below the weak scale, such anomalous
processes occur exponentially rarely. Thus B and L are
separately approximately conserved in the MSM, except
during early times when the Universe was extremely hot.
The conservation of B and L may be explained by the
‘‘accidental’’ absence of renormalizable gauge invariant
symmetry breaking operators involving the fields of the
minimal standard model. Provided that neutrino masses are
Majorana, and provided the low-energy particle states are
simply those of the MSM, it is possible that B and L
conservation are merely an inevitable feature of low-
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energy physics, rather than any fundamental symmetry
principle.

Most extensions of the standard model do not share the
feature of automatic accidental baryon and lepton number
conservation. For instance if neutrinos are Dirac particles,
then their right-handed components are ‘‘sterile’’ under the
standard model gauge interactions, and, unless forbidden
by a new symmetry, a relevant lepton number violating
dimension-three operator

MijNiNj þ H:c: (1)

could give Majorana masses to Ni, the three right-handed
gauge singlets. Absence of such a term is evidence for a
symmetry forbidding it. Thus Dirac neutrinos would be
evidence for a new symmetry, which is not simply an
accident of the emergent properties of the long-range
effective theory. Consistency with string theory and the
previously discussed quantum gravity considerations
would then suggest a new gauge invariance principle.

Even if neutrino masses are Majorana, there are com-
pelling reasons to expect new gauge interactions. There are
many proposed extensions of the MSM, motivated by a
variety of considerations. The most compelling motiva-
tions are the gauge hierarchy problem, and the strong
evidence for dark matter. In most extensions of the
MSM, such as the minimal supersymmetric standard
model (MSSM), the automatic nature of low-energy B
and L conservation is lost unless additional symmetries
are present. Usually it is assumed that the required addi-
tional symmetry is global, in apparent contradiction with
quantum gravity, although it is possible in some models for
the additional symmetry to be a discrete remnant of a short-
distance gauge invariance. A new long-range gauge inter-
action could help explain why otherwise allowed terms are
absent or suppressed.

Naively, a new gauge invariance could be associated
with an arbitrarily weak coupling. However according to
the Weak Gravity Conjecture [12] any Uð1Þ gauge invari-
ance must be associated with a force stronger than gravity.
The argument derives from the holographic principle [14–
16] which states that the amount of information which can
be stored in any region is bounded by the boundary area in
Planck units. This principle has been argued to be a likely
feature of any theory of quantum gravity, and has been
used to argue that the number of types of stable black hole
remnants must be finite. In Ref. [12], Arkani-Hamed et al.
argue that the holographic principle implies that the gauge
coupling g of any Uð1Þ gauge interaction must satisfy

g > ms=MPl (2)

where MPl is the Planck scale and ms is the mass of the
lightest charged particle (here the charge is normalized to
1). In addition, they argue that monopoles of mass less than
MPl=gmust exist. Since monopole masses are proportional
to �=g2 in an effective Uð1Þ gauge theory with cutoff �,

such a Uð1Þ must break down at or lower than a scale

�� gMPl: (3)

Thus, for instance, if B� L were gauged, in an effective
theory valid below 100 GeV, the weak gravity conjecture
implies that the associated force between two neutrons
from B� L gauge boson exchange would have to be at
least �103 times stronger than gravity, and the associated
gauge coupling g must satisfy

g * 10�17: (4)

No such force has been seen by searches for equivalence
principle or inverse square law violation. The B� L force
could be short range due to a Higgs mechanism from a
vacuum condensate of a B� L charged scalar field. The
phase of this field is eaten by the Higgs mechanism, but the
modulus can be excited, implying the existence of a new
scalar particle as well as a vector.
In the next section we will show that such a boson

implies a chameleonic nature for the B� L force, and so
the experimental bounds must be reexamined. We also
consider the case where there is no vacuum condensate,
but there exists a light scalar with a positive mass which
condenses in matter and screens the B� L force for suffi-
ciently large sources. We will argue that there is a parame-
ter region such that the B� L force is substantially
screened from detection near the surface of the earth.

III. CHAMELEON VECTOR FORCE

In this section we show how a new Uð1Þ force can be
weakened through screening by a scalar condensate.
As a specific example, we consider a renormalizable

extension of the standard model, in which the B� L
symmetry is gauged. We call the new vector boson the
‘‘paraphoton.’’ To cancel gauge anomalies and allow neu-
trino masses we add three right-handed neutrinos. In addi-
tion, we add a complex scalar field swhich carries charge q
charged under B� L, and has mass squared m2. We will
consider both possibilities for the sign of m2.
Ordinary matter has net positive B� L charge. Since a

force proportional to B� L has not been observed, either
the coupling must be extremely weak, or there must be a
mechanism to screen the charge.
When m2 is positive, in the vacuum there is no s con-

densate, and the vacuum range of the B� L force is
infinite. We will show however that any sufficiently large
chunk of matter will contain an s condensate and so the
B� L force between sufficiently large objects will be short
range. For negative m2 there is a vacuum s condensate and
the B� L force has finite range in vacuum. The chameleon
effect must still be considered in a constraint analysis, as
the effective range may be much shorter in matter.
The following argument demonstrates that with a mass-

less paraphoton, it is energetically favorable for any suffi-
ciently large piece of ordinary matter to contain a
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condensate of scalar s particles to screen the B� L charge.
Note that due to Fermi blocking it is energetically preferred
to screen with light scalars than with light fermions such as
neutrinos [17]. We consider a sphere of constant charge
density, and total B� L charge Q. The total energy stored
in the B� L field per unit charge grows as the square of the
radius R. For a sufficiently large object, the energy in the
B� L field is large enough that it is energetically favorable
to screen the field by forming a condensate of s bosons
inside the object. The energy per unit charge that would be
stored in an unscreened field is

E

Q
¼ 12�g2Q

5R

¼ 16g2�2�R2

5
� 0:06 eV

�

1030 m�3

�
g

10�8

�
2

�
�

R

10�5 m

�
2

(5)

where � is the neutron density and E is the total field
energy. Because the energy per unit charge grows with
object size, it is favorable to screen the charge of suffi-
ciently large objects. In the following section we will show
that in the case where screening is energetically favorable,
the scalar field effectively obtains a negative mass squared
inside a charged object, hence an unscreened configuration
is unstable to s condensate formation.

Since the energy per unit charge of a scalar condensate is
at leastm=q, a light scalar is a prerequisite for screening of
the charge of small objects. The smallest object separation
for which sensitive force tests exist is�10 �m, and typical
neutron densities in ordinary solids are of order 1030 m�3.
For example, with an 0:02 eVmass scalar of B� L charge
q� 1, it is energetically favorable for the B� L force
exerted by a 20 �m radius sphere to be screened, provided
g * 10�8. For nonspherical objects, the object sizeR in the
above calculation should be replaced by a factor which
depends on the shape as well as the overall volume of the
object. For example, for a similar calculation for a charged
disk the factor R in the last line of Eq. (5) should be

replaced with c
ffiffiffiffiffiffi
rR

p
, where c is a number of order 1, R is

the radius of the disk and r is its thickness.
When m2 is negative the paraphoton acquires a vacuum

mass

mV ¼ j ffiffiffi
2

p
qgh0jsj0ij: (6)

In conventional interpretations of searches for new forces,
a hypothetical force is parametrized by a Yukawa potential
of rangem�1

V , and strength � (between 2 neutrons) relative
to gravity

� � g2

4�GNm
2
N

: (7)

However in matter, the value of the s condensate can be
substantially larger than it is in vacuum, reducing the range

of the vector force, and changing its apparent strength. Any
massive vector particle receiving mass from the Higgs
mechanism has a chameleon nature. However the chame-
leon effect is substantial only when there exists a scalar
whose potential is flat enough so that the scalar expectation
value changes significantly in the presence of a background
charge density.

A. Approximations for chameleon vector force
calculations

We now turn to more detailed consideration of the
coupled s and paraphoton dynamics, assuming an s con-
densate inside macroscopic chunks of ordinary matter.
We begin by reviewing scalar chameleonic fields [1–8].
For a real field  coupled to a static source j, with

potential Vð Þ, a static configuration which minimizes
the total energy solves the equation of motion

�r2 þ @V

@ 
¼ j: (8)

For a constant source, a solution  0 for  can be found
such that

@V

@ 

�������� ¼ 0

¼ j: (9)

The effective mass for  excitations in a constant back-
ground field  is

meff ¼
ffiffiffiffiffiffiffiffiffi
@2V

@ 2

s �������� ¼ 0

: (10)

The screening length 1=meff is the effective length scale of
the force mediated by the  field inside a large constant
density object. Effectively the field is only sourced by the
matter within this length scale.
For an object of finite size which is much larger than

1=meff , physical arguments and numerical studies [1] show
that  !  0 in the bulk of the object. Outside the surface
of the object,  falls rapidly on a scale of order 1=meff .
Thus between large objects, 1=meff is the effective range
over which the force is strong. Furthermore only a ‘‘thin
shell’’ of thickness 1=meff acts as a source for the field. The
vacuum range of the force is 1=m, the inverse Compton
wavelength of the particle associated with quantized vac-
uum excitations. When 1=meff is much shorter than 1=m,
then, on scales between 1=meff and 1=m, there is a much
weaker residual force. For the case of a quartic potential,
the strength �eff compared to gravity of the residual force
is of order [1]

�eff � 1

�M1M2GN

; (11)

where � is the self-coupling [1].
A significant chameleon effect for a gauge particle

requires at least two fields. We will consider a model
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with a charged scalar, s and vector B�, with matter acting

as a source for the B� field, and the B� field in turn acting

as negative term in the potential for s.
The Lagrangian for our model is

L ¼ ð@� þ iqgB�Þs�ð@� � iqgB�Þs�m2jsj2 � �

2
jsj4

� 1

4
F��F

�� � gB�j
�: (12)

Depending on the sign ofm2, this is either scalar QED or
the Abelian Higgs model, with a background charge source
j�. The scalar field s will condense inside macroscopic

objects and screen the charge. To estimate the range of a
chameleon force between macroscopic objects, it is useful
to first find the values of the s and B fields deep inside the
objects which will minimize the total energy. We can then
determine screening lengths for the s and B fields. As for a
scalar chameleon, when both these screening lengths are
short compared with the object size, a reasonable approxi-
mation is to take the fields inside the object to equal the
values they would have inside an infinite-sized object.
Outside a large object the fields drop to their vacuum
values over length scales of order of their screening
lengths.

We consider a time-independent background charge

density j0 ¼ �, and ~j ¼ 0. To minimize the total energy
we set the magnetic field to zero, and allow an s field
carrying a time-independent charge density �s

�s ¼ �iqðD0ss
� � s�D0sÞ; (13)

and no current density. Wework in a gaugewith ~B ¼ 0. For
a minimal energy configuration of given charge, we take s
to have the form jsð ~xÞje�iqwt. It is then convenient to define
a field

! � wþ gB0; (14)

which is gauge invariant under the residual gauge invari-
ance. For a spatially uniform configuration,! is the energy
per unit charge contained in the s condensate, which, for
constant fields and � ¼ 0, is simply the s particle mass
divided by its charge. In general, nonzero � raises q! to a
value greater than m. We will refer to q! as the inverse
scalar screening length. Note that ! depends on the back-
ground charge density �.

To minimize the total energy for a static configuration
where! and jsj are position dependent, one must solve the
coupled, nonlinear equations of motion

r2jsj ¼ ðm2 þ �jsj2 � q2!2Þjsj
r2! ¼ �g2�þ 2q2g2!jsj2: (15)

Examination of these equations shows that
ffiffiffi
2

p
qgjsj acts

as the effective mass for the gauge field, while the combi-
nation m2 þ �jsj2 � q2!2 acts as an effective mass

squared for s. When this quantity is negative, it indicates
an instability.
As a first step in finding an approximate solution for

these fields in a macroscopic object, we consider a spatially
uniform background charge density �. We will refer to the
values of ! and jsj which minimize the total energy for
uniform background charge � as !0 and s0. Finite energy
requires the s condensate to neutralize the charge density
of the background which implies

� 2q2!0s
2
0 ¼ �s ¼ ��: (16)

The total energy density subject to this constraint is mini-
mized when

!2
0 ¼

m2 þ �s20
q2

: (17)

The Eqs. (16) and (17) allow us to solve for both!0 and s0
inside large constant density objects, for either sign of m2.
We can rewrite Eq. (16) and (17) as

s20 ¼
�

2q

1

q!0

q2!2
0 ¼ m2 þ �s20 (18)

giving an equation for q!0:

2q!0ððq!0Þ2 �m2Þ � ��

q
¼ 0: (19)

The solution is

!0 ¼ 1

22=3q

2
4
0
@��=qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��=qÞ2 � 16

27
m6

s �
1=3

þ
�
��=q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��=qÞ2 � 16

27
m6

s 1
A

1=3
3
5

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2q2!0

s
; (20)

which gives manifestly real and nonnegative s0 and !0.
Because of the complexity of these formulae, it is conve-
nient to consider three limiting cases where they simplify
considerably.
Non-Chameleon Case: For negative m2, in the limit

jmj � ð��Þ1=3; (21)

we have

!0 � ��

2q2jm2j s0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2j=�

q
: (22)

The expectation value of the scalar field is approximately
the same inside a macroscopic object and in vacuum, and
the chameleon effect is negligible. The experimental con-
straints on this case have already been analyzed exten-
sively [9,10,18,19], and we will not consider them further.
Low-Density Chameleon Case: For positive m2, in the

limit of Eq. (21), Eq. (20) becomes
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!0 � m=q s0 �
ffiffiffiffiffiffiffiffiffiffi
�

2qm

s
: (23)

The charge density is low enough so that the parameter �
may be neglected, and the s particle self-interaction is
negligible. In this case m=q gives an approximate upper
bound on the strength of !, the static gauge field, and a
scalar condensate will form in any sufficiently large
charged object. There is a simple criterion for the minimal
size. The effective density-dependent screening length of
the paraphoton inside a large object is given by

‘V � ð ffiffiffi
2

p
qgs0Þ�1 ¼

ffiffiffiffiffiffiffiffi
!0

g2�

s
�

ffiffiffiffiffiffiffiffiffiffiffi
m

qg2�

s
: (24)

From the definition of ‘V in Eq. (24), we see that the
condition that !0, the energy per unit charge of an
unscreened configuration, should be less than the
unscreened energy per unit charge given in Eq. (5), is
equivalent to the condition that the screening length is
less than the size of the object,

‘V < R; (25)

up to factors of order 1.
High-Density Chameleon Case: For either sign ofm2, in

the high-density limit

jmj � ð��Þ1=3 (26)

an approximate solution inside sufficiently large objects is

!0 � ð��Þ1=3
21=3q4=3

s0 � �1=3

�1=6ð2qÞ1=3 : (27)

In this regime the parameter m2 is too small to be impor-
tant. The vector screening length is approximately

‘V � ð ffiffiffi
2

p
qgs0Þ�1 � �1=6

gq2=321=6�1=3
: (28)

B. Chameleons and the thin shell condition

We now consider the properties of static fields for
charged objects of finite size R. For Eqs. (16) and (17) to
yield the correct values of the vector and scalar fields deep
inside the object, it is necessary that both ‘V;S � R, where
‘V is defined in Eq. (24), and

‘S � 1

meff

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �s20

q ¼ 1

q!0

: (29)

Then the total energy density for the field configuration is
dominated by the volume inside the object, and so we
expect the solution deep inside the objects to approach
Eq. (20). We will refer to the case of ‘S;V � R as the

thin shell case. From the definition of ‘V given in
Eq. (24) and from the requirement that !0 should be less
than the unscreened E=Q given in Eq. (5), we see that

‘V � R is possible only if

g *

ffiffiffiffiffiffiffiffiffi
1

�R3

s
(30)

that is, the total charge of the object has to be much larger
than 1=g2.
Throughout this paper, when estimating laboratory con-

straints on new forces, we will assume sources have a
charge density of order 1030=m3; , a typical density for
solid matter. For centimeter-sized objects of typical solid
density, a thin shell is possible only for g * 10�12. Far
from the object, the fields fall to zero. Examination of
Eq. (15) shows that outside the object, in the region where
! � !0, that is, the region where the gauge field has not
yet decayed, the s field does not decay either. Hence the
scalar condensate always decays to its vacuum value at an
equal or longer length scale than does the gauge field. Note
from Eq. (15) that for constant s, the equation for! is just a
Yukawa equation. Thus outside the object, the gauge field
decays exponentially on a length scale ‘V . Beyond ‘V , s
decays with the density-dependent effective length scale
‘S.

C. Chameleons beyond the thin shell condition

We now consider the case of smaller objects. If ‘V > R,
the entire object sources the gauge field. The total energy
stored in the gauge field is then not substantially affected
by screening. It is therefore energetically favorable to have
the scalar field take its vacuum value, and there is no
significant chameleon effect. There could however be a
large chameleon effect with ‘S > R. In this case the fields
do not approach constant values inside the object and we
must rely on numerical analysis for an accurate approxi-
mate solution. For order of magnitude estimates, we may
use energetic and dimensional analysis considerations, as
we do here.
If we neglect the scalar potential, we may easily obtain

an estimate of the order of magnitude of the scalar and
vector fields inside a spherical object of radius R. It is
reasonable to assume that the value of s does not vary by
more than an order of magnitude inside the object in this
regime, since there is no parameter to set a shorter length
scale for the variation of s. We call the value of s at the
surface of the object s0. We assume

s0 � h0jsj0i; (31)

the vacuum expectation value of s, since otherwise there is
no significant chameleon effect. We then neglect h0jsj0i.
Assuming the energy stored in the s field is dominated by
kinetic rather than potential terms, this energy scales as s20,
and by dimensional analysis is of order s20R. The screening
length of the vector field in the vicinity of the object is of
order 1=jgqs0j. For jRgqs0j � 1, the total energy stored in
the vector field is of order g2�2R3=ðg2q2s20Þ. Minimizing
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the combined energy leads to the order of magnitude
estimate for the surface value of s in this regime

s0 �
ffiffiffiffiffiffiffi
�R

q

s
: (32)

Note that this estimate is independent of g, but does
assume that Eq. (30) is satisfied.

Comparison of the value of the scalar field kinetic
energy and potential energy shows that our neglect of the
scalar potential is reasonable as long as m2 � 1=R2 and
�� 1=ð�R3Þ. For larger values of m or � the scalar
potential is relevant. For either m� 1=R or ��
1=ð�R3Þ we may use the thin shell approximation dis-
cussed in the previous section.

IV. EXPERIMENTAL CONSTRAINTS ON
CHAMELEONIC B� L

A. Laboratory constraints on non-thin shelled
chameleons

If we use the results of the previous section to examine
the force between two similar non-thin shelled objects, we
must take into account that although the vector fields fall
off very rapidly over a scale much shorter than R, the scalar
fields do not, and will mediate an attractive force between

objects with a range ~‘ of order ‘S which we assume to be
longer than the typical object size. We may estimate the
strength of such a force by comparing the value of s0 with
x, the value at the surface of the object of a massless scalar
field sourced by a Yukawa coupling yeff ,

x ¼ yeff�R
2ffiffiffiffiffiffiffi

4�
p ; (33)

to find an effective Yukawa coupling

yeff �
ffiffiffiffiffiffiffiffiffiffiffiffi
4�

q�R3

s
: (34)

Thus the force between two similar objects would have
strength compared with gravity �eff which is roughly of
order

�eff � y2eff
4�GNm

2
N

� 1

qm2
nGN�R

3
: (35)

For q� 1, this force is weaker than gravity only for objects
with total mass greater than about 1038 GeVwhich is about
1011 kg.

These estimates are very rough, and have made over-
simplifying assumptions. However the estimates imply that
laboratory-sized objects with a non-thin shelled scalar
condensate attract each other via a new force which is
many orders of magnitude stronger than gravity. It is clear
that unless we consider light charged scalars with expo-
nentially large values of q, table top experiments rule out
any parameter regime where laboratory-sized objects have

their charges screened by a non-thin shelled scalar
condensate.

B. Casimir constraints

Ordinary materials with an s condensate are very good
B� L charge conductors. In any m2 > 0 thin shelled cha-
meleon case, gauged B� L should result in a Casimir
force from B� L quantum fluctuations, in addition to the
Casimir force for electromagnetism [20]. Similarly, even

withm2 < 0, if the vacuum screening length is ‘ð0ÞV , there is

a Casimir effect at distance scales between ‘ð0ÞV and ‘V . In
the traditional Casimir effect [20,21] between perfectly
conducting parallel plates, the free electrons enforce
boundary conditions on the photon, limiting the available
modes between the conductors and creating an inward
pressure on the conductors. This attractive force is com-
pletely independent of the gauge coupling for perfect con-
ductors, and the gauge coupling only becomes relevant in
the regime of finite conductivity when the skin depth of the
conductor is well above the plate separation, destroying the
boundary conditions imposed on the vector field.
In a perfect conductor, the free electrons will impose the

same boundary conditions on the paraphoton as the photon.
This Casimir force due to the existence of the paraphoton
equals the Casimir force due to the photon, seemingly far
outside of experimental constraints. But the gauge cou-
pling affects the magnitude of the Casimir force in the case
of finite conductivity, which is the relevant case for experi-
mental constraints.
Modern experiments have determined the Casimir force

within 5% of its theoretically predicted value over a range
of geometry scales of nearly 2 orders of magnitude. If B�
L gauge bosons are light, then the Casimir force due toB�
L must be suppressed by some mechanism. Since the
relevant gauge boson couplings are to electrons for the
Casimir effect, the scaled gauge coupling provides the
means to suppress the B� L Casimir force. For materials
with finite conductivity, the skin depth can exceed the plate
separation, relaxing the boundary conditions imposed by
the conductors and suppressing the Casimir force.
In practice, to reduce the Casimir force beyond an ob-

servable level, the skin depth must greatly exceed the plate
separation. Lamoreaux [22] has calculated corrections to
the Casimir force between parallel plates for three real
materials relevant to experiments and found the correction
factor is above 0.6 when the skin depth is on the order of
the plate separation. Therefore, we do not expect the B� L
Casimir force to subside until the skin depth is much larger
than the plate separation. The skin depth is related to the
plasma frequency in the metal by

� ¼ 1

!p

(36)

where the electromagnetic plasma frequency !p is
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!e ¼
�
�ee

2

me

�
1=2

(37)

and �e is the free electron density, and me the electron
mass. For the B� L force the s also contributes to the
conductivity. Replacing �e in Eq. (48) by the scalar charge
density q!0jsj2, e by the B� L gauge coupling g, and me

by the effective mass/unit charge !0, gives the paraphoton
plasma frequency !p to be

!p ¼ mV: (38)

and

� ¼ ‘V: (39)

Current tests span the separation range of 0.1 to 6 �m [23–
26], with the best bound coming in the earliest modern
Casimir force measurement by Lamoreaux [23], which
used Au coated plates with a 6 �m separation, and thick-
ness of 0.5 cm.

As discussed in the next section, as long as q� 1we can
safely assume that ‘S is less than the plate separation or
else the energy contained in the scalar field would imply a
large force between the plates. Thus a new B� L force

with vacuum range ‘ð0ÞV > 0:1 �m, and screening length

‘V � ‘ð0ÞV is ruled out by the paraphoton quantum fluctua-
tion contribution to Casimir tests. This would seem to
constrain the vacuum range of any new chameleon gauge
force much stronger than gravity to be less than�0:1 �m.
That is to say, the vacuum mass of any new gauge boson
with a coupling strong enough to lead to a chameleon
effect in laboratory objects must be greater than of order
2 eV. However, we note that all Casimir measurements are
performed near the surface of the Earth. Since the Earth is a
very large object, we must consider its effect on the values
of the fields near its surface. We will address this effect in
Sec. IVD.

C. Short-range tests of the inverse square law

These tests will provide highly complementary con-
straints to the Casimir constraints considered in the pre-
vious section as they give strong upper bounds on g as a
function of ‘V and ‘S.
We assume the chameleon force is largely screened at

distance scales larger than the greater of ‘V and ‘S.
In the ‘S < ‘V limit, we have a repulsive force with

constraints similar to those on a force of relative strength
given by Eq. (7), and effective range ‘V .
In the previous section we saw that Casimir constraints

require ‘V to be larger than 6 �m, unless ‘ð0ÞV is shorter
than 0:1 �m or unless ‘S > 6 �m. However searches for
new forces at short distances have put constraints on new
forces in this range. The strongest constraints at 6 �m
come from an experiment at Stanford [19]. Any force in
this range must have �eff < 109 or g < 10�14. According
to Eq. (30), for q� 1, this value of g is too small to allow
for an s condensate in a metallic density object of a size
less than of order 1000 km. Similarly, when ‘S is longer
than 6 �m, there will be additional energy density in the s
condensate which will lead to an attractive force between
the objects. An estimate of the force per unit area between
parallel plates of separation less than ‘S is just the energy
density in the condensate which is

Fs=A ¼ �! ¼ �

q‘S
: (40)

We may compare this with the gravitational force/unit area
Fg=A between two parallel plates of thicknesses L1 and L2

and mass density �m

Fg=A ¼ �2
mL1L2GN

2
: (41)

For thin plates the ratio �eff between these two forces is
enormous:

�eff � 2� 1014
�

2ð�=1030 m�3Þ
qð�m=ð2 gm cm�3ÞÞ2ðL1=1 cmÞðL2=1 cmÞð‘S=1 cmÞ

�
:

Clearly, for q� 1, the case ‘S > ‘V is ruled out for a thin
shelled chameleon. As we saw in Sec. III C, the force
between non-thin shelled chameleons is also very strong
compared to gravity. Thus the results on searches for new
forces in the 6 �m range, when combined with the Casimir
measurements, and the lower bound on the gauge coupling
for a chameleon effect, would seem to rule out any cha-
meleon force with vacuum range longer than �0:1 �m. A
possible loophole, discussed in the next section, is that
these experiments are not done in isolation.

D. The effect of doing experiments near a large source:
the Earth

The most stringent searches for new forces either use the
Earth as a source or take place near the surface of the Earth.

The total B� L charge of the Earth Q is of order

Q� 1051: (42)

We see from Eq. (30) that provided there exists a light
scalar of charge of order 1, the lower bound on the coupling
for chameleonic screening of the charge of the Earth is

g * 10�25: (43)

Thus any force strong enough to be seen in any current
experiment can be screened in the Earth.
An interesting chameleon region is where ‘V is shorter

than the laboratory limit of �0:1 �m but ‘S is much
longer. Then no laboratory-sized object will act as a sig-
nificant chameleon source within a distance from the sur-
face of the Earth of order ‘S. A force with vacuum range of

CHAMELEON VECTOR BOSONS PHYSICAL REVIEW D 77, 095006 (2008)

095006-7



infinity could escape detection in any experiment which
either uses the Earth as a source or is closer to the surface
of the Earth than ‘S, unless the experiment is sensitive to a
distance shorter than ‘V . A scale ‘S of order a few hundred
meters is sufficient to eliminate the inverse square law
violation constraints on forces with ‘V < 0:1 �m, inde-
pendent of the vacuum range.

E. Chameleons and long-range gravitational tests

The strongest constraints on the strength of new forces
arise at ranges longer than 10 km, from tests of the inverse
square law and equivalence principle violation. In
Refs. [9,10,18] a variety of constraints are given. In the
absence of screening, any new force of range longer than
�107 m, coupled to B� L, must have coupling g less than
10�24 from equivalence principle violation searches. This
limit is slightly stronger for a force of range comparable to
the Earth-Moon distance. However, we can use Eq. (5) to
show that for a long-range B� L force with coupling
greater than 10�24, provided there exists a charged scalar
lighter than 10�9 eV, the B� L charge of the Earth will be
screened and the force will not be detectable in experi-
ments using the Earth as a source.

In Ref. [1] it was argued that measurements of GN

inferred from measurements of g at various lake ocean
depths constrain new forces which are unscreened in labo-
ratory Cavendish measurements but are screened in the
Earth to be less than 10�3 gravitational strength, corre-
sponding to g� 10�20. These limits will not apply if ‘S is
of order a hundred meters, corresponding to a scalar lighter
than �10�9 eV.

We conclude that a new B� L force with astronomical
range in vacuum may be screened in any searches for new
forces using large sources such as the Earth, or taking place
near the surface of the Earth. The main constraint on the
strength of such a force would come from precision parti-
cle physics measurements, which, as discussed in
Sec. IVG and Ref. [27], are sensitive to couplings as small
as g� 10�5.

F. Chameleon forces and astrophysics

Any new particle which is lighter than a few MeV and
long mean free path in matter, must face stringent bounds
on its couplings from supernovae and stellar cooling [28].
Such a particle could be emitted from the bulk of a star or
supernova and result in higher thermal conductivity or
energy loss than is consistent with astrophysical con-
straints. As discussed in Ref. [27], such bounds can be
avoided for chameleon vector bosons, whose masses scale
as the cube root of the density in the high-density regime,
allowing for Boltzmann suppression of the effects in stellar
cores and supernovae. Thus new chameleon forces can
have a range and strength which makes them relevant for
neutrino physics [27] or for dark matter annihilation [29–
31].

G. Atomic physics constraints

Constraints on short-range forces which are stronger
than gravity can come from precision atomic physics mea-
surements. For instance in the case of gauged B� L, the
presence of the paraphoton alters the Coulomb potential,
an effect that is most easily realized in energy level shifts in
single electron atoms. Except for neutrons, the paraphoton
and photon couple to matter in a similar way, although with
different strengths and range. When the range of the para-
photon is much longer than the Bohr radius of an atom,
then we may approximate the potential as Coulombic.
The Coulomb potential from a nucleus with atomic

number Z and mass number A is

VðrÞ ¼ �Ze2 þ Ag2

r
: (44)

In single electron atoms, this gives rise to the energy levels

EnðZ; AÞ ¼ me

2@2n2
ðZe2 þ Ag2Þ2 (45)

where we just want the leading-order correction due to the
paraphoton. It is useful to put the energy levels in terms of
the Rydberg, since it is very precisely measured. In the
presence of the paraphoton, the Rydberg is

Ry ¼ me

2@2
ðe2 þ g2Þ2 ¼ 1

2
me�

2
e (46)

where any mass number dependence in the energy levels
will appear for higher A atoms. Note that the measured
value of �e would be 4�ðe2 þ g2Þ, since fine structure
constant measurements almost exclusively take place in
systems where the paraphoton and photon are indistin-
guishable. Then, with N ¼ A� Z,

EnðZ; AÞ ¼ Ry

n2

�
Zþ g2

4��e
N

�
2
: (47)

Therefore, the leading-order correction to the energy levels
is given by

EnðZ; AÞ � EnðZ; A; g ¼ 0Þ ¼ 2ZN

n2
Ry

g2

4��e
þOðg4Þ:

(48)

Since this correction term must be less than the discrep-
ancy between the currently best understood experimental
and theoretical values of the energy levels,

g2 <
n2

ZN

�Eexp -th
n ðZ; AÞ
Ry

2��e: (49)

It is clear the best bound comes from ground state energy
levels—the bound is reduced by a factor of n2 over other
levels, and the theoretical and experimental values are
much more precisely determined in general. In fact, since
the absolute energy of the level must be measured, the
experimental errors will greatly exceed the theoretical
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ones, giving the bound for these levels of

g <

ffiffiffiffiffiffiffiffiffiffiffiffi
2��e
ZN

s �
�E

exp
1 ðZ; AÞ
Ry

�
1=2
: (50)

Since it is generally difficult to create high Z single elec-
tron atoms, a simple bound comes from 4He. If
�Eexp

1 ð2; 4Þ ¼ 10�5 eV, then

g < 6:5 	 10�5: (51)

Along with this constraint, there are constraints at all
orders in �e, from the fine structure to the Lamb shift.
These constraints arise from two distinct effects, the mass
number effect described above and new vacuum polariza-
tion effects on the paraphoton, arising from interactions of
the paraphoton with the s.

A well-known constraint for new light gauge bosons
comes from measurement of the anomalous magnetic mo-
ment of the electron [32], which requires [27] that for a
new boson which is much lighter than the electron, g <
1:7 	 10�5.

H. Collider tests

For completeness, we note that couplings for heavier
paraphoton masses are constrained by collider experi-
ments, including precision electroweak measurements.
The existence of the s field will not weaken these con-
straints. In principle eþe� scattering cross sections set a
limit on the couplings of new forces of any range longer
than of order 10�18 m. The cross section for paraphoton
radiation would be suppressed over photon radiation by a
factor of g2=e2, and the paraphoton would only affect the
total cross section eþe� ! X by a factor of g4=e4.
Precision electroweak corrections and the effects of mixing
with the Z boson are also suppressed by g. If g & 10�2,
then LEP and other eþe� experiments would not have
detected a paraphoton.

I. Cosmological constraints

Stringent cosmological constraints on new light particles
come from nucleosynthesis, and from the observed fluctu-
ations in the cosmic microwave background (CMB).
Current abundances of Helium, Deuterium, He3, and
Li6;7 are fairly consistent with a standard model calculation
in which at most one additional light species of neutrino is
in thermal equilibrium. The calculated Helium abundance,
already a bit high compared to observation in the minimal
standard model, would come out even higher if either the
paraphoton or the charged scalar were lighter than an MeV
and had a thermal abundance [33–37]. A possible loophole
occurs if the scalar potential is flat enough. Then there
could be a large scalar condensate during the nucleosyn-
thesis epoch, which would make the paraphoton much
heavier than the temperature, and reduce the cross section
for producing s particles. Alternatively, the paraphoton

coupling could be small enough so that paraphoton and s
production rates are not in thermal equilibrium during
nucleosynthesis. In the absence of a large s condensate,
the most severe constraint comes from comparing the rate
for paraphoton radiation with the expansion rate of the
universe. Paraphoton production is of order �2

emg
2T, where

T is the nucleosynthesis temperature of about an MeV, �em

is the fine structure constant, and the expansion rate of the
universe scales as T2=mPl. Thus the paraphoton can remain

out of equilibrium provided that g &
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=mPl

p
=�em �

10�9: If the paraphoton is in equilibrium it contributes
slightly more than an additional neutrino species to the
total energy density, which is marginally disfavored.
Similarly, if the right-handed neutrinos and the s particle
are in equilibrium this would be problematic. Since these
production rates go as g4T,

g & 10�6 (52)

is small enough.
In addition, there are CMB constraints on the number of

new light species in equilibrium around the time of recom-
bination, and on the scattering cross sections of neutrinos
[38–41], although currently these limits do not constrain
the parameters as much as nucleosynthesis.

V. A MODEL FOR EXPONENTIALLY LARGE
SCALAR CHARGE

In the previous sections we have assumed that s carries
charge of order 1, although a scalar carrying exponentially
large charge would be effective at allowing a new force to
evade existing constraints via screening. In this section we
discuss a possible mechanism to get a new force which is
apparently weaker than gravity in the visible sector,
although stronger in a hidden sector. Consider a new
Uð1Þ force operating in a hidden sector with a long but
finite range ‘hidden, with coupling constant g0, and a new,
shorter range Uð1Þ force in the visible sector, with range
‘visible, and coupling constant g. Kinetic mixing between
the two newUð1Þ forces could lead the longer range hidden
sector force to couple to the visible sector with an effective
coupling to visible sector fields as large as g‘2visible=‘

2
hidden.

Note that the coupling g0 to a hidden sector field could be
much larger. This model could also provide a mechanism
for large apparent q. If s is part of the hidden sector this
could provide a mechanism for q as large as of order
ðg0‘2hiddenÞ=ðg‘2visibleÞ, allowing for a viable chameleon

force.

VI. CONCLUSIONS

We have shown that new vector forces can exhibit
similar chameleon effects as scalar forces; that is, the
effective range of the force can vary according to the size
and density of the source. This variation is substantial
when there exists a light scalar which carries the new force
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charge. This scalar will condense inside macroscopic ob-
jects and screen the force. For the case of infinite vacuum
range, the chameleon effect will be significant in any
sufficiently large source. For forces with finite vacuum
range the chameleon effect is important in any large source
of sufficiently high density.

We have reconsidered the limits on gauged B� L, in the
presence of a light scalar. We find that the chameleon effect
can greatly weaken the constraints from searches for in-
verse square law violation or equivalence principle viola-
tion. However such a chameleon vector boson can
contribute to the Casimir force, and when Casimir con-
straints are considered, a new long-range force should be
much weaker than gravity with two possible loopholes:
either the charge carried by the scalar field is exponentially
large, or the scalar is lighter than of order 10�9 eV. Similar
conclusions apply to gauged baryon or lepton numbers.

There are several possible interesting allowed regions
for a vector chameleon. One interesting case is a chame-
leonic vector force which is screened for any object larger
than a few kilometers in size, or near the surface of such an

object. Detection of such a boson would require both the
source and detector to be small, and located in space.
Another interesting chameleon is a vector boson which
locally is light enough and strongly enough coupled to
affect particle physics experiments, but which is much
heavier in extreme environments such as the cores of stars
and supernovae. Applications for the latter chameleon
include possible effects on neutrino oscillation experi-
ments [27] and on dark matter annihilation [29–31].
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