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In this article we examine the layer phase of the five-dimensional, anisotropic, Abelian gauge model.

Our results are to be compared with the ones of the 4D U(1) gauge model in an attempt to verify that four-

dimensional physics governs the four-dimensional layers. The main results are as follows: (i) From the

analysis of Wilson loops we verified the 1
R behavior, in the layered phase, for the potential between heavy

charges. The renormalized fine structure constant in the layer phase is found to be equal to that of the 4D

Coulomb phase, �layer ¼ �4D. (ii) Based on the helicity modulus analysis we show that the layers are in

the Coulomb phase while the transverse bulk space is in the confining phase. We also calculated the

renormalized coupling �R and found results compatible with those obtained from the Coulomb potential.

Finally, we calculated the potential in the 5D Coulomb phase and found 1
R2 behavior for the static q �q

potential. From the study of the helicity modulus we have a possible estimate for the five-dimensional

renormalized fine structure constant in the region of the critical value of the bare gauge coupling.

DOI: 10.1103/PhysRevD.77.094511 PACS numbers: 11.15.Ha

I. INTRODUCTION

The idea that we live on a hypersurface embedded in a
higher dimensional space has attracted the interest of par-
ticle physicists and cosmologists in connection with the
hierarchy and the cosmological constant problems. These
ideas are motivated by string and M theory, which are
formulated in multidimensional spaces. One version is to
consider the extra dimensions as flat, compactified to a
large scale, MKK � 1

R , varying from the Planck scale to a

few TeV depending on the number of extra dimensions
[1,2]. An alternative concept is the so-called brane world
scenario [3], where all of the particles are localized on a
three-dimensional submanifold (brane), embedded in a
multidimensional manifold (bulk), while gravitons are
free to propagate in the bulk. This model, in five dimen-
sions, implies a nonfactorizable space time geometry of the
form AdS5 around the brane, assuming a negative five-
dimensional cosmological constant. The four-dimensional
particles are expected to be gravitationally trapped on the
brane. Indeed, gravitons and scalars for the second
Randall-Sundrum (RS2) model [3] have a localized solu-
tion on the brane, plus a continuum spectrum. Gravitons,
scalars, and fermions also exhibit a normalizable zero
mode localized on the brane if we assume a nontrivial
scalar background in the bulk, such as a kink toward the
extra dimension [4]. The most difficult task is the massless
non-Abelian gauge field localization on the brane, as any
acceptable mechanism must preserve the charge universal-
ity [5]. A localization mechanism that may be triggered by
the extra dimensional gravity is proposed by the authors of
Refs. [6–8]. It is based on the idea of the construction of a
gauge field model which exhibits a nonconfinement phase

on the brane and a confinement phase on the bulk, that is to
say, a Higgs mechanism driven by the coupling with grav-
ity. Thus, gauge fields, and more generally fermions and
bosons with gauge charge, cannot escape into the bulk
unless we give them energy greater than the mass gap
�G, which emerges from the nonperturbative confining
dynamics of the gauge model in the bulk. In a previous
work [9] we have studied the 4þ 1-dimensional pure
Abelian gauge model on the lattice with two anisotropic
couplings, independent from each other and the coordi-
nates, focusing our attention on the study of the phase
diagram and the order of the phase transitions. With this
model we wanted to explore the possibility of a gauge field
localization scheme based on the observation that the
anisotropy of the couplings produces a new phase, the
layer phase, which mimics the Coulomb behavior in four
dimensions but confines along the fifth, transverse direc-
tion. This model had been known since the mid-1980’s
when Fu and Nielsen proposed it as a new way to achieve
dimensional reduction [10]. It is defined on a D-
dimensional space containing d-dimensional subspaces.

If the dðd�1Þ
2 couplings in the d-dimensional subspaces are

identical (�) and the remaining DðD�1Þ�dðd�1Þ
2 coupling

coefficients are also to be taken as identical (�0), then for
a certain range of parameters (typically �0 � 1

d and

� � Oð1Þ)1 this new phase emerges. The confinement
along the ðD� dÞ directions and the resulting detachment
of the d-dimensional layers leads to the following physical
picture. Charged particles in the layer phase will mainly
run only along the layers, since if they attempt to leave the
layers in which they belong, they will be driven back by a
linear potential, analogous to the one responsible for quark
confinement. Also gauge particles will follow the layers

*kfarakos@central.ntua.gr
+vrentsps@central.ntua.gr 1This result comes from the mean field analysis of the theory.

PHYSICAL REVIEW D 77, 094511 (2008)

1550-7998=2008=77(9)=094511(14) 094511-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.094511


since there is no massless particle (photon) moving across
the layers. We must note here, however, that a stable layer
phase exists only if D � 5 and d ¼ D� 1 for the U(1)
model. For d � 3 we cannot have a layer phase since
lattice gauge theory in less than four dimensions exhibits
confinement for all finite values of the coupling constant,
rendering the three-dimensional subspaces of the model
incapable of realizing a Coulomb phase. Also, due to the
asymmetric role of � and �0 in the action, there is no layer
phase with their roles reversed.

Many numerical investigations of the model have been
made using Monte Carlo techniques, verifying the struc-
ture of the phase diagram and the properties of the different
phases [11–13]. In one of them [11] the presence of fer-
mions in the model was investigated. The analysis, both
analytical (mean field approximation) and numerical
(Monte Carlo simulations) revealed that the qualitative
characteristics of the phase diagram remained unchanged,
even though a slight restriction of the layer phase was
observed in favor of the Coulomb one. In [12] the authors
analyzed the structure of a U(1) model when the coupling
�0 in the fifth dimension depends on the coordinates ex-
ponentially, like in the RS model [3]. In Ref. [13] the 5D
anisotropic Abelian Higgs model was analyzed and the
existence of a layer Higgs phase was established. Finally,
we would like to mention the main results in [9] for the
phase diagram of the pure U(1) anisotropic gauge model:
(i) a weak first order phase transition between the 5D
strong phase and the layer phase with the characteristics
of 4D U(1) and (ii) strong indications for a second order
transition between the layer phase and the 5D Coulomb
phase. In a preliminary study of the six-dimensional U(1)
model, we have found that the characteristics of the strong-
layer phase transition remained the same, but at the same
time, the transition between the layer phase and the 6D
Coulomb phase turned into a strong first order one.

For the case of the anisotropic non-Abelian SU(2) gauge
model, the above picture changes [14]. Now the critical
dimension for the formation of the layers is D ¼ 6 giving
as a minimal dimension for the layers d ¼ 5. But, as it is
shown in Ref. [15] a layer Higgs phase in the non-Abelian
5D model exists if one includes a scalar field in the adjoint
representation.

In the present work we will focus our attention on the
study of the long range interactions of charged particles on
the layers, in an attempt to further justify our previous
assumption [9] that the layers incorporate all the features
that emerge in ordinary U(1) gauge theory in four dimen-
sions. To this end, a very significant step is the establish-
ment of the Coulomb law, and for that we follow the usual
approach: Measurements of Wilson loops (on the layers
and for the four-dimensional model), subsequent extrac-
tion of the potential, and, finally, estimates for the string
tension (�) and the renormalized charge or fine structure
constant (�) are obtained. An equally important by-

product of the above analysis is the determination of the
role of layer-layer interactions and their consequences (if
any) for the physical picture in the layers.
Our work is organized as follows. In Sec. II we present

the four-dimensional model along with the various analysis
techniques used throughout this paper. In Sec. III we
present the layer phase results and a comparison with their
4D counterparts, and finally, in Sec. IV, we concentrate on
the 5D Coulomb phase in order to show the clear distinc-
tion (both qualitative and quantitative) from the layer
phase, as well as attempt to explore the very nature of
what should be a five-dimensional Coulomb law.

II. THE FOUR-DIMENSIONAL CASE

A. Wilson loops and the static potential

One of the observables used in lattice gauge theories
with great physical significance is the Wilson loop defined
as the gauge invariant quantity consisting of an ordered
product of link variables along a contourC. If we denote by
Ul such a link variable, then the Wilson operator is defined
as

WC ¼ Y
l2C

Ul (2.1)

and its expectation value on a rectangular loop C is

WðR̂; T̂Þ � hWC½U�i; (2.2)

where R̂ and T̂ are the (dimensionless) spatial and temporal
extension of the contour C. The symbol h. . .i denotes the
expectation value with respect to the 4d gauge action:

S4D ¼ �
X

x;���

ð1� ReðU��ðxÞÞÞ:

From the asymptotic behavior of the above quantity, we
can (in principle) derive the potential between two static
charges using numerical methods through the formula

V̂ðR̂Þ ¼ � lim
T̂!1

lnWðR̂; T̂Þ
T̂

: (2.3)

There are also R-independent self-energy contributions

to V̂ðR̂Þ that one has to take into account (see next section).

B. Helicity modulus and the renormalized coupling

Avery useful quantity for the characterization of phases
in lattice gauge theories is the helicity modulus (h.m.), first
introduced in this context by P. de Forcrand and M.
Vettorazzo [16]. It characterizes the response of a system
to an external flux and has the behavior of an order pa-
rameter. It is zero in a confining phase and nonzero in a
Coulombic one [16,17].
The helicity modulus is defined as

hð�Þ ¼ @2Fð�Þ
@�2

���������¼0
(2.4)
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where � is the external flux and Fð�Þ the flux dependent
free energy given by

Fð�Þ ¼ � lnðZð�ÞÞ;

Zð�Þ ¼
Z

D�e

P
stack

ð� cosð�Pþ�ÞÞþP
stack

ð� cosð�PÞÞ (2.5)

with Zð�Þ the partition function of the system due to the
presence of the external flux.

P
stack is the sum over the

stack of plaquettes, of a given orientation (e.g. �, �) in
which the extra flux is imposed (�P ! �P þ�) and

P
stack

is its complement, consisting of all the plaquettes that
remained unchanged. An observation that will subse-
quently play an important role is that the partition function
Zð�Þ of Eq. (2.5) and hence the flux free energy is clearly
2� periodic. So, the extra flux we impose on the system is
defined only as modð2�Þ.

If we take, for example, stack ¼ f���ðx; y; z; tÞj� ¼ 1;

� ¼ 2; x ¼ 1; y ¼ 1g, then, with a suitable change in var-
iables, we can spread the extra flux uniformly to all the
plaquettes in the ð�� �Þ plane. The partition function now
becomes

Zð�Þ ¼
Z

D�e
�
P

ð��Þplanes cosð�Pþðð�Þ=L�L�ÞÞþ�
P

ð��Þplanes cosð�PÞ

(2.6)

and from Eq. (2.4) we get for the h.m.

hð�Þ ¼ 1

ðL�L�Þ2
�� X

ð��Þplanes
ð� cosð�PÞÞ

�

�
�� X

ð��Þplanes
ð� sinð�PÞÞ

�
2
��

(2.7)

with the sum extending to all planes parallel to the given
orientation.

Now, consider, for the moment, the classical limit (� !
1) for the action of Eq. (2.6) where all the fluctuations are
suppressed. In this limit the flux is distributed equally over
all the plaquettes of each plane and does not change as we
cross parallel planes. If we expand the classical action in
powers of the flux [16], since in the thermodynamic limit
�

L�L�
is always a small quantity, we find

Sclassicalð�Þ ¼ 1

2
��2 V

ðL�L�Þ2
þ constant

) Fclassicalð�Þ � Fclassicalð0Þ

¼ 1

2
��2 V

ðL�L�Þ2

where V is the lattice volume, V ¼ L�L�L�L�.

The above expression for the free energy F holds all the
way up to the phase transition, where fluctuations are
present, if one only replaces the bare coupling by a renor-
malized coupling: � ! �Rð�Þ (for details see [16,17]).

Upon replacing �Rð� 1
e2R
Þ ! 1

4��R
the above expression

becomes

F½finite ��ð�Þ � F½finite ��ð0Þ ¼ �R

2
�2

�
L�L�

L�L�

�

¼ �2

8��R

�
L�L�

L�L�

�
: (2.8)

The above equation does not show any periodicity in�. To
remedy this situation we have to consider all configurations
whose flux is a multiple (k) of 2�.

Fð�Þ ¼ � ln

�X
k

e�ð�R=2ÞðL�L�=L�L�Þð�þ2�kÞ2
�
: (2.9)

Now we can define �Rð�Þ implicitly from the equation

@2Fð�; �RÞ
@�2

���������¼0
¼ h0ð�Þ � hð�Þ or alternatively;

@2Fð�; �RÞ
@�2

���������¼�
¼ h�ð�Þ: (2.10)

As Eqs. (2.9) and (2.10) show, the renormalized coupling
equals the helicity modulus up to exponentially small
corrections [16].

C. Measurements

Our Monte Carlo calculations for the case of four-
dimensional QED are restricted to volumes V ¼ 124,
144, and 164. For all lattice sizes, the work of Jersak
et al. [18] has been closely followed. We used a 5-hit
Metropolis algorithm supplemented by an over-relaxation
method. About 105 sweeps were used for thermalization,
and more than 2� 105 measurements, 10 sweeps apart
from each other, for the determination of mean values.
For the case of V ¼ 164 all planar rectangular Wilson
loops with R ¼ 1; . . . ; 6 and T ¼ 1; . . . ; 8 were calculated,
while for the rest we used R, T < L

2 loops in an effort to

minimize finite size effects.
In general, one has to extract the potential from the

logarithms of the expectation values of Wilson loops for
large T.

� lnhWC½U�i ¼ VðRÞ � T þ const: (2.11)

This, however, requires a large enough volume to deal
with the many issues that emerge in lattice calculations.
Finite size effects are a constant ‘‘threat’’ to the validity of
the results, and in addition, finite T effects must also be
taken into account in the extraction of the potential. This
means that significant deviations from a linear dependence
on T should be investigated. To this end, a third term in the
above equation is introduced,

� lnhWC½U�i ¼ constþ VðRÞ � T þ C

T
(2.12)

with C actually being a function of R.
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The form of the ‘‘correction’’ term is an open question
but we choose � 1

T as it is the simplest (and most obvious)

choice. The potential VðRÞ has been calculated using both
linear [Eq. (2.11)] and nonlinear [Eq. (2.12)] dependence
of the logarithms on T, at a variable number of points
dependent on the volume under consideration, giving com-
parable results within errors. The resulting values were
fitted to a superposition of linearþ Coulomb potentials:

VðRÞ ¼ �ccR� �cc

R
þ const (2.13)

and

VðRÞ ¼ �lcR� �lcVlcðRÞ þ const (2.14)

with VlcðRÞ the lattice Fourier transform of a massless
bosonic propagator [18,19], which not only respects the
momentum cutoff but also accounts for the periodicity of
the lattice.

VlcðRÞ ¼ 4�

L3
s

X
~k�0

ei
~k ~RP

3
j¼1 2ð1� cosðkjÞÞ

;

kj ¼ 0;
2�

Ls

; . . . ;
2�ðLs � 1Þ

Ls

:

(2.15)

All measurements focused on the Coulomb phase, start-
ing from values near the critical point and extending to
larger values of �. In Table I we present the results for
several volumes using both the continuum [Eq. (2.13)] and
the lattice Coulomb potential [Eq. (2.14)] obtained from
the nonlinear fitting [Eq. (2.12)]. The notation we use is

indicative. With cc we imply the use of the continuum
Coulomb potential ( 1R ) and with lc the use of the lattice

Coulomb potential [Eq. (2.15)]. A few remarks are now in
order. First of all, the estimates of � using the two different
types of potentials show a systematic deviation of the order
of 0.010–0.020, which was also found to be true by Jersak
et al. [18]. Second, it is evident from Table I that the values
of � show a quick convergence to the infinite volume limit,
as their difference, between the biggest volumes that we
used (144 and 164), is well within errors. The string tension
starts at relatively large values due to finite size effects for
the smaller system under study, only to reach a final value
of 0.003 as the volume increases. This result is slightly
bigger than the one found by Jersak et al. It appears that the
reason for this systematic overestimation of� has its origin
in the insertion of the extra term (� 1

T ) of Eq. (2.12). This

extra term inserts an ’’effective’’ string tension that adds up
to the measurement, but this was anticipated. In Ref. [19] it
was found that the static charge potential obtained from
Wilson loops acquires a confining contribution ’ cR

T2 for

finite volume. This term has exactly the same form as the
term ( CT ) that we have added by hand, and consequently,

we have enhanced an already present confining contribu-
tion to the potential. One could, in general, monitor the
contribution of this extra term and subtract it in order to
remedy the inconsistency appearing between the values of
the string tension (�), as they are obtained through the use
of Eqs. (2.11) and (2.12) (Tables I and II). Unfortunately,
knowledge of the precise functional dependence of C from
R is required, a topic that proves not to be an easy task. So,
in order to extend our measurements for the renormalized
charge to smaller volumes, we have enhanced the signal for
the string tension. This, however, does not affect the ob-
tained values of �, a fact most apparent in the subsequent
analysis. In Table II we present our results for a linear fit
[Eq. (2.11)] and L ¼ 16 for both types of potentials (con-
tinuum Coulomb and lattice Coulomb). Comparing with
Table I, for L ¼ 16, one can see that by reaching a big
enough volume the extra term does not play any substantial
role. Insofar as � is concerned, linear and nonlinear fits
give exactly the same results (within errors) (Fig. 1). The
string tension � is found to be smaller and compatible with
zero within the statistical errors. The linear fit gives us a
more convincing signal for the vanishing of the string
tension with values comparable with the ones found by
Jersak et al. [18].

TABLE I. Results for the nonlinear fitting.

L ¼ 16
� �cc �cc �lc �lc

1.015 0.1860(20) 0.0033(5) 0.1693(9) 0.0027(3)

1.020 0.1765(16) 0.0035(4) 0.1605(9) 0.0030(3)

1.030 0.1631(13) 0.0036(3) 0.1484(11) 0.0030(3)

1.050 0.1472(12) 0.0033(3) 0.1339(11) 0.0027(3)

L ¼ 14
� �cc �cc �lc �lc

1.015 0.1883(34) 0.0039(10) 0.1692(12) 0.0024(3)

1.025 0.1716(26) 0.0040(10) 0.1540(11) 0.0027(3)

1.030 0.1632(23) 0.0034(10) 0.1474(14) 0.0023(4)

1.040 0.1577(29) 0.0035(10) 0.1414(12) 0.0027(3)

1.050 0.1472(21) 0.0045(15) 0.1329(14) 0.0020(4)

L ¼ 12
� �cc �cc �lc �lc

1.013 0.1975(2) 0.0060(10) 0.1765(12) 0.0041(3)

1.015 0.1906(2) 0.0060(10) 0.1708(14) 0.0040(3)

1.025 0.1730(2) 0.0055(20) 0.1552(12) 0.0040(2)

1.050 0.1537(2) 0.0055(10) 0.1366(10) 0.0038(2)

1.060 0.1466(2) 0.0055(10) 0.1307(10) 0.0034(2)

1.100 0.1338(2) 0.0050(10) 0.1182(10) 0.0035(2)

1.200 0.1087(2) 0.0050(10) 0.0968(10) 0.0026(2)

TABLE II. Results from the linear fit and L ¼ 16.

L ¼ 16
� �cc �cc �lc �lc

1.015 0.1868(30) 0.0010(7) 0.1698(23) 0.0020(6)

1.020 0.1771(26) 0.0005(6) 0.1610(23) 0.0010(6)

1.030 0.1638(22) 0.0003(5) 0.1488(20) 0.0010(5)

1.050 0.1476(20) 0.0003(4) 0.1342(18) 0.0008(5)
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In 1982 Luck [20], using the close analogy between the
two-dimensional XYmodel and four-dimensional compact
QED, arrived, by means of a weak-coupling expansion, at
the following form for the behavior of the renormalized
fine structure constant:

�ð�Þ ¼ �c � const�
�
1� �c

�

�
	

(2.16)

with �c ’ 0:15 and 	 ’ 0:5. The analysis led him to the
conclusion that the square of the renormalized charge takes
a universal value e2c � 4��c ¼ 1:90� 0:10 at the decon-
finement point.

By making use of Eq. (2.16) and the most accurate (to
our knowledge) value for the critical � in four dimensions
[�c ¼ 1:011 133 1ð21Þ [21]], we present in Table III our
results for �c and 	, where the last row (L ¼ 16) refers to
the results of the linear fit and the L ¼ 10 entry actually
amounts to a 16� 103 lattice volume. Our values are in
very good agreement with those found in Ref. [18] and
those predicted through theoretical calculations [20]. The
systematic error in the analysis due to the presence of 
�c

turns out to be insignificant.
A pleasing fact is that both types of potentials manage to

describe equally well our data, giving identical results
(within errors) and thus providing us with a signal for the
existence of a massless photon in the Coulomb phase. The

only noticeable difference between the two sets comes
from the appearance of a systematic volume dependence
for �c�lc, with evidence that better accuracy is provided by
the lattice potential, as it better takes into account the
system volume. Finally, the inclusion of the extra term
(� 1

T ) proved quite efficient, since it allowed us to obtain

the required information even at smaller volumes.

III. THE FIVE-DIMENSIONAL ANISOTROPIC
MODEL, LAYER PHASE

A. The model

In this section we consider the five-dimensional aniso-
tropic U(1) lattice gauge model with two couplings, � and
�0:

S5Dgauge ¼ �
X

x;1��<��4

ð1� ReðU��ðxÞÞ

þ �0 X
x;1���4

ð1� ReðU�5ðxÞÞ (3.1)

where

U��ðxÞ ¼ U�ðxÞU�ðxþ �s�̂ÞUy
�ðxþ �s�̂ÞUy

� ðxÞ;
U�5ðxÞ ¼ U�ðxÞU5ðxþ �s�̂ÞUy

�ðxþ �55̂ÞUy
5 ðxÞ

are the plaquettes defined on the 4d subspace (�, � ¼ 1, 2,
3, 4) and on the plane containing the transverse fifth
direction (x5), respectively.

2 The link variables are defined
as:

U� ¼ expði��ðxÞÞ; U5 ¼ expði�5ðxÞÞ;

and in terms of them the plaquette variables can be written
as

U��ðxÞ ¼ expði���ðxÞÞ; U�5ðxÞ ¼ expði��5ðxÞÞ

with the definitions

��� ¼ ��ðxÞ þ ��ðxþ �s�̂Þ � ��ðxþ �s�̂Þ � ��ðxÞ;
��5 ¼ ��ðxÞ þ �5ðxþ �s�̂Þ � ��ðxþ �55̂Þ � �5ðxÞ:

Before we proceed we would like to define the helicity
modulus for this model. The anisotropy of the couplings
and the resulting enrichment of the phase diagram intro-
duces the necessity for two kinds of h.m.: one probing the
response of the system to an external flux through the
spatial planes (�� �) and one for the transverse planes
(�� 5).

TABLE III. Results for �c and 	.

L �c�cc �c�lc 	cc 	lc �2
d:o:f:

10 0.230(25) 0.208(24) 0.31(8) 0.33(10) 1.05

12 0.209(7) 0.200(4) 0.38(5) 0.34(3) 0.80

14 0.211(23) 0.190(10) 0.44(20) 0.45(13) 0.75

16 0.211(16) 0.190(9) 0.42(16) 0.43(10) 0.20

16 0.211(23) 0.192(21) 0.43(10) 0.42(15) 0.10

FIG. 1. Results from linear and nonlinear fits from the 164

lattice for the continuum Coulomb (upper curves) and lattice
Coulomb (lower curves) potentials, respectively.

2By �s and �5 we denote the two different lattice spacings:
one referring to the four-dimensional subspaces and the other to
the transverse fifth direction.
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hsð�Þ ¼ 1

ðL�L�Þ2
��X

P

ð� cosð���ÞÞ
�

�
��X

P

ð� sinð���ÞÞ
�
2
��

; (3.2)

h5ð�0Þ ¼ 1

ðL�L5Þ2
��X

P0
ð�0 cosð��5ÞÞ

�

�
��X

P0
ð�0 sinð��5ÞÞ

�
2
��

(3.3)

with the sum of Eq. (3.3) extending on all the plaquettes on
the transverse plane.

The phase diagram of this model includes three distinct
phases (Fig. 2). For large values of the couplings ð�;�0Þ
the model lies in a Coulomb phase on a 5D space. Now,
with � fixed, as �0 decreases the system will eventually
develop a behavior according to which the force in four
dimensions will be Coulomb-like while in the fifth direc-
tion the system will exhibit confinement. This is the new
layer phase. For small values of both � and �0 the force is
confining in all five directions and the corresponding phase
is the strong phase.

The Wilson loops and the helicity moduli are expected
to exhibit different behaviors as one crosses the phase
boundaries. In the strong (confinement) phase all Wilson
loops obey the area law, while at the same time the helicity
modulus is zero throughout the appropriate range of pa-
rameters, both signaling confinement. In the 5D Coulomb
phase the opposite picture emerges. Wilson loops obey the
perimeter law with the helicity modulus being nonzero and
scaling with the lattice length as � and �0 increase. A five-
dimensional Coulomb-type force is present. Finally, the
layer phase consists of a mixture of both aforementioned
phases. The Wilson loops constrained in the 4d subspaces
(W�� with 1 � �, � � 4) obey the perimeter law, while at

the same time, those that contain the fifth direction (W�5,

1 � � � 4) show an area law behavior. The helicity
modulus also shows two different behaviors. The space
h.m. [hSð�Þ] has a nonzero value in the layer phase, while
the transverse h.m. [h5ð�0Þ] is constrained to a zero value
as one would expect from a confining force (Fig. 8).

B. Measurements

The calculations of this section are dedicated entirely to
the layer phase for the range of parameters �0 ¼ 0:2 and
1:015 � � � 1:40. In order to illustrate the qualitative and
quantitative agreement between the layer phase of the five-
dimensional model and the corresponding 4d systems, we
focus on 16� 104 and 125 volumes, which in the context
of the layer phase translate to ten and 12 layers of volume
16� 103 and 124 each.3 Every layer is (to a very large
extent) decorrelated [13] from the others, and every quan-
tity measured on it is a random variable with a given
distribution. So, it really does not matter which layer we
choose to observe, since each one of them will demonstrate
exactly the same behavior. If we treat the system as a
whole, this would only amount to an increase in statistics.
In order to probe the physics in the layers, all planar
rectangular Wilson loops with R ¼ 1; . . . ; 5 and T ¼
1; . . . ; 8 and R ¼ 1; . . . ; 6 and T ¼ 1; . . . ; 6, depending on
the case under study, were constructed from link variables
living only on the four-dimensional subspaces (U�,� ¼ 1,

2, 3, 4),4 while at the same time, independent runs were
made to the corresponding four-dimensional models (V ¼
16� 103, V ¼ 124) for a straightforward comparison.
Following the same steps as in the previous section, we
investigated the long range correlations, in terms of the
dimensionless parameter �ð�Þ, in these two different
systems.

1. The 16� 104 case

We use Eq. (2.12) in order to extract the potential from
the mean values of the Wilson loops. All points with T ¼
1, 2 were excluded from the fits, even T ¼ 3 for R � 4
(Fig. 3) [18]. We were able to determine the potential VðRÞ
only at four points R ¼ 1; . . . ; 4 for each value of � (be-
cause of the ‘‘noise’’ introduced by finite size effects) and
to compare these values with the ones from the four-
dimensional model.
The obtained values were fitted to a superposition of

linearþ Coulomb potentials for both forms of the latter
(continuum and lattice). The � 1

R behavior describes the

data well [Fig. 4(a)] and gives results compatible with the
ones obtained from the 4Dmodel [Fig. 4(b)]. This serves as
a first signal for the presence of a four-dimensional
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FIG. 2. The phase diagram of the theory.

3In the notation that will be used from now on, 4D will signify
the four-dimensional model, while 4d signifies the four-
dimensional subspaces (layers) of the five-dimensional system.

4Although finite size effects forced us to disregard all border-
line sizes.
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Coulomb law in the layer phase. Second, and most impor-
tant, is the fact that equally good results are provided by
means of the four-dimensional lattice propagator
[Eq. (2.15)], a quantity that describes the long range inter-
actions in four-dimensional lattices. The success in the
description of the data comes as strong evidence of the
four-dimensional nature of the layers.

So, it seems that both signals, the ( 1R ) form of the

potential in the layers and the success of the massless
bosonic propagator in the description of the data, which
by itself could be considered as evidence of the presence of
a massless boson acting as mediator to the forces in the
layer, point to the existence of a 4d gauge particle in the
layer phase with all the characteristics of an ‘‘ordinary’’
photon. In Tables IVand V we present the results for � and
� for the two models, 16� 104 and 16� 103. The simi-
larity between the two sets of measurements is very en-
couraging. The two systems reveal exactly the same
behavior (as it is demonstrated by the two measured quan-
tities) regardless of the form chosen for the Coulomb
potential.

We repeat the whole analysis for the linear case using
Eq. (2.11) since our correction term only affects the T
direction, and, as is evident from our four-dimensional
study, the value T ¼ 16 proves to be sufficient. The agree-
ment between the relevant sets of measurements (Tables VI
and VII) is extremely good (indistinguishable within the
errors) as one can also see in Figs. 5(a) and 5(b).

2. The 125 case

The analysis presented above is now repeated for a
larger system, 125, in an attempt to further strengthen our
results. For the extraction of the potential from Wilson
loops, only Eq. (2.12) has been used. Although we had to
restrict ourselves to smaller Wilson loops, due to the
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FIG. 3. The logarithms of the expectation values for Wilson
loops at � ¼ 1:030 and lattice volume V ¼ 16� 104. The lines
are the result of the fitting with Eq. (2.12). The error bars are
smaller than the symbol size.
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FIG. 4. (a) The potentials in the layer phase, V5D ¼ 16� 104

from � ¼ 1:015 (upper curve) to � ¼ 1:070 (lower curve). The
lines represent a fit with Eq. (2.13) using the continuum
Coulomb form. (b) Comparison of the 4d layer potential with
the usual 4D potential for � ¼ 1:015, as obtained from
Eq. (2.13) using the continuum Coulomb form.

TABLE IV. Results from the layer phase using the continuum
Coulomb potential.

V ¼ 16� 104 V ¼ 16� 103

� �layer �layer �4D �4D

1.015 0.1910(88) 0.0110(35) 0.1907(80) 0.0110(33)

1.030 0.1677(78) 0.0107(30) 0.1683(75) 0.0108(30)

1.050 0.1517(55) 0.0098(32) 0.1522(68) 0.0100(27)

1.070 0.1411(64) 0.0093(26) 0.1412(67) 0.0093(26)

1.080 0.1367(62) 0.0090(25) 0.1370(63) 0.0090(25)

1.090 0.1330(62) 0.0087(24) 0.1332(20) 0.0088(25)

1.100 0.1295(63) 0.0085(23) 0.1298(30) 0.0083(19)

1.200 0.1101(40) 0.0079(23) 0.1093(23) 0.0070(20)

1.300 0.0900(100) 0.0065(35) 0.0932(17) 0.0060(18)

1.400 0.0830(40) 0.0054(22) 0.0822(40) 0.0049(16)
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smaller extent of the lattice in the ’’time’’ direction, and
utilize a much larger statistics for the 5D model, the
aforementioned picture does not change.

We present our results for the potential VðRÞ in Figs. 6(a)
and 6(b). The continuum Coulomb potential ( 1R ) is used to

fit the data from R ¼ 1 to R ¼ 5 with extremely good
accuracy; �2 is always in the range 0.8–1.1.

As it is evident from Fig. 6 and Tables VIII and IX,
where we compare results for the two different systems—
124 in the Coulomb phase and 125 in the layer phase—for
the same �, the presented consistency cannot pass unno-
ticed. It is not only the qualitative characteristics of the
layer phase that point to the four-dimensional nature of the
forces governing the layers, but also the quantitative agree-
ment with results from the pure 4D model. We found that
all results from this section for the effective fine structure
constant fall in the same region of values, making them
almost indistinguishable, as Fig. 7 shows.

3. The renormalized fine structure constant, a summary
of results

We find, with the help of Eq. (2.16) and Tables IVand V,
fitting �ð�Þ using �c ¼ 1:011 133 1ð21Þ, that

TABLE V. Results using the lattice Coulomb potential.

V ¼ 16� 104 V ¼ 16� 103

� �layer �layer �4D �4D

1.015 0.1747(80) 0.0097(34) 0.1753(73) 0.0097(34)

1.030 0.1541(70) 0.0096(29) 0.1546(70) 0.0096(28)

1.050 0.1394(64) 0.0089(27) 0.1397(63) 0.0090(27)

1.070 0.1296(61) 0.0083(25) 0.1322(69) 0.0083(25)

1.080 0.1256(59) 0.0080(24) 0.1258(59) 0.0081(25)

1.090 0.1221(59) 0.0078(24) 0.1223(54) 0.0079(24)

1.100 0.1189(56) 0.0075(23) 0.1192(50) 0.0075(22)

1.200 0.1065(60) 0.0068(24) 0.0981(48) 0.0062(20)

1.300 0.0792(96) 0.0057(20) 0.0855(44) 0.0054(17)

1.400 0.0763(38) 0.0048(16) 0.0754(39) 0.0043(16)

TABLE VI. Results for the continuum Coulomb potential,
linear fits.

V ¼ 16� 104 V ¼ 16� 103

� �layer �layer �4D �4D

1.015 0.1967(133) 0.0097(51) 0.1974(136) 0.0098(52)

1.030 0.1734(120) 0.0095(46) 0.1741(115) 0.0095(45)

1.050 0.1567(112) 0.0088(43) 0.1574(112) 0.0089(43)

1.070 0.1459(107) 0.0083(41) 0.1462(106) 0.0083(41)

1.080 0.1413(101) 0.0080(39) 0.1418(103) 0.0081(40)

1.090 0.1372(101) 0.0079(35) 0.1378(100) 0.0078(33)

1.100 0.1341(97) 0.0076(37) 0.1344(95) 0.0077(35)

1.200 0.1115(90) 0.0075(35) 0.1105(83) 0.0063(32)

1.300 0.0961(70) 0.0054(28) 0.0965(75) 0.0055(27)

1.400 0.0860(66) 0.0048(25) 0.0864(65) 0.0050(25)

TABLE VII. Results for the lattice Coulomb potential, linear
fits.

V ¼ 16� 104 V ¼ 16� 103

� �layer �layer �4D �4D

1.015 0.1806(122) 0.0083(50) 0.1812(124) 0.0080(50)

1.030 0.1592(110) 0.0082(45) 0.1597(111) 0.0080(50)

1.050 0.1438(103) 0.0076(43) 0.1444(103) 0.0076(40)

1.070 0.1339(98) 0.0072(40) 0.1341(98) 0.0073(40)

1.080 0.1296(93) 0.0069(38) 0.1301(94) 0.0070(40)

1.090 0.1259(91) 0.0067(36) 0.1264(92) 0.0068(40)

1.100 0.1230(89) 0.0065(37) 0.1234(85) 0.0064(35)

1.200 0.1024(86) 0.0076(36) 0.1013(76) 0.0055(33)

1.300 0.0883(66) 0.0047(27) 0.0884(69) 0.0051(30)

1.400 0.0790(60) 0.0042(25) 0.0793(60) 0.0040(20)
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FIG. 5. (a) The � 1
R behavior of the potential in the layer phase

and comparison with the 4D analog. (b) Results for � from 4D
and 5D in the layer phase using the linear fit with T in the
logarithm of the Wilson loops for the lattice potential. The lines
come from the fitting with Eq. (2.16) and are identical.
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�c�cc ¼ 0:230ð30Þ; 	cc ¼ 0:32ð10Þ; �c�lc ¼ 0:210ð30Þ; 	lc ¼ 0:32ð10Þ ðV ¼ 16� 104Þ;
�c�cc ¼ 0:230ð25Þ; 	cc ¼ 0:31ð8Þ; �c�lc ¼ 0:208ð24Þ; 	lc ¼ 0:33ð10Þ ðV ¼ 16� 103Þ:

And for the linear fits, from Tables VI and VII, we have
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FIG. 6. (a) Comparison of the 4d layer potential with the usual
4D potential for � ¼ 1:025 and lattice volumes 125 and 124.
(b) Potentials from the 4d layer phase using the 125 lattice
volume.

TABLE VIII. Results for the continuum Coulomb potential.

V ¼ 125 V ¼ 124

� �layer �layer �4D �4D

1.015 0.1898(32) 0.0080(20) 0.1906(16) 0.0075(15)

1.025 0.1778(40) 0.0070(10) 0.1730(15) 0.0060(10)

1.050 0.1541(33) 0.0060(10) 0.1537(12) 0.0060(10)

1.100 0.1333(26) 0.0050(5) 0.1338(13) 0.0050(10)

TABLE IX. Results for the lattice Coulomb potential.

V ¼ 125 V ¼ 124

� �layer �layer �4D �4D

1.015 0.1735(10) 0.0060(20) 0.1708(14) 0.0040(2)

1.025 0.1588(10) 0.0052(20) 0.1552(12) 0.0040(2)

1.050 0.1386(6) 0.0045(14) 0.1366(10) 0.0038(2)

1.100 0.1184(5) 0.0037(11) 0.1182(10) 0.0035(2)
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FIG. 7. (a) All the results for � for the continuum Coulomb
potential from this section. (b) All the results for � using the
lattice Coulomb potential from this section.
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�c�cc ¼ 0:235ð49Þ; 	cc ¼ 0:32ð16Þ; �c�lc ¼ 0:216ð45Þ; 	lc ¼ 0:32ð16Þ ðV ¼ 16� 104Þ;
�c�cc ¼ 0:238ð52Þ; 	cc ¼ 0:31ð16Þ; �c�lc ¼ 0:219ð48Þ; 	lc ¼ 0:31ð16Þ ðV ¼ 16� 103Þ:

Finally, from Tables VIII and IX we have

�c�cc ¼ 0:210ð17Þ; 	cc ¼ 0:45ð18Þ; �c�lc ¼ 0:200ð06Þ; 	lc ¼ 0:370ð04Þ ðV ¼ 125Þ;
�c�cc ¼ 0:221ð05Þ; 	cc ¼ 0:34ð03Þ; �c�lc ¼ 0:200ð04Þ; 	lc ¼ 0:334ð25Þ ðV ¼ 124Þ;

using the continuum (cc) and lattice Coulomb (lc) poten-
tials, respectively.5.

We can conclude that the layer-layer interactions are
negligible, and as a result, the interaction between two
charges on a layer is a long range Coulomb interaction
with a massless photon.

4. Results from the helicity modulus

The main effort, as far as the h.m. is concerned, was
focused on volumes 124 and 125 for the four- and five-
dimensional systems, respectively. We supplement the 5D
results with data from our previous work [9].

As Fig. 8 and Table X reveal, the 4d subspaces (layers)
of our model realize the above transition the exact same
way as a 4D system realizes the passage from a confining
phase to the Coulomb phase. The transverse h.m. [h5ð�0Þ]
remains zero throughout the transition, indicating confine-
ment through the fifth direction, while at the same time, the
space h.m. [hSð�Þ], measured on the layers, obtains the
same values as the corresponding quantity of the four-
dimensional model.

Using the values we found from the helicity modulus
(Table X) and adopting the behavior of Eq. (2.16) for �, we
have

�c-layer ¼ 0:198ð4Þ; 	layer ¼ 0:28ð2Þ ðV ¼ 125Þ;
�c�4D ¼ 0:201ð2Þ; 	4D ¼ 0:276ð8Þ ðV ¼ 124Þ:
These results are to be added to the ones of the previous

subsection, and the excellent agreement for the renormal-
ized fine structure constant �c with the lattice Coulomb
results must be noticed.

IV. THE COULOMB PHASE

Looking in the 5D ð�;�0Þ phase diagram (Fig. 2) there is
a separate phase for big values of � and �0, which we
mention as a Coulomb 5D phase. In order to characterize
this phase we calculate the potential VðRÞ between two
heavy charges using the same techniques as in Secs. II and
III. If we follow the diagonal line � ¼ �0, there is a first
order phase transition between the 5D strong phase and the

5D Coulomb phase for approximately � ¼ �0 ¼ 0:74, as
we show in Fig. 9.
For this part of our study we go deep in the 5D Coulomb

phase following the diagonal line of � ¼ �0 in the phase
diagram for the biggest volume under study (125). By
taking the gauge couplings �, �0 to be equal, the previous
anisotropy of the model is now lost. As a consequence,
most equations used in the previous sections receive an
almost natural generalization to five dimensions.
Because of the passage from a four-dimensional world

(3þ 1) to a higher dimensional one (nþ 3þ 1), the form
of the Coulomb potential changes. The � 1

r behavior no

longer holds. The extra dimensions add powers to the
denominator resulting in a 1

r1þn power law. We remind the
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FIG. 8. The space and transverse helicity modulus (zero value
points) as we perform the transition from the 5D confining phase
to the layer one, for various lattice volumes and �0 ¼ 0:20.

TABLE X. Results for the helicity modulus and the corre-
sponding values of �.

V ¼ 125 V ¼ 124

� hð�Þlayer �layer hð�Þ4D �4D

1.015 0.4941(22) 0.1611(7) 0.4908(8) 0.1622(4)

1.025 0.5455(15) 0.1460(5) 0.5462(5) 0.1458(3)

1.050 0.6216(14) 0.1281(4) 0.6196(4) 0.1285(2)

1.100 0.7134(9) 0.1116(4) 0.7133(5) 0.1116(2)

1.200 0.8526(6) 0.0934(3) 0.8520(3) 0.0935(1)

5Although the values of �c come very close to the value �
12

predicted at large R from the picture of the rough string [22], this
should be ascribed to the small four-dimensional volume.
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reader that

VðrÞ /
Z d3þnk

ð2�Þ3þn
ei

~k ~r 1

~k2
;

and for the case n ¼ 1 we found 1
4�2r2

using for the calculation spherical coordinates

~k ¼ ðk sin�2 sin�1 cos�; k sin�2 sin�1 sin�; k sin�2 cos�1; k cos�2Þ; d4k ¼ k3dkd� sin�1d�1sin
2�2d�2

ð0< k <1; 0<�< 2�; 0< �1 <�; 0< �2 <�Þ:

Keeping all this in mind, a natural generalization of
Eq. (2.13) would be, for the case of a five-dimensional
Coulomb potential,

V5DðRÞ ¼ constþ �5DRþ �̂5D

R2

with �̂5D ¼ e2

4�2
� �5D

�
:

(4.1)

Equation (4.1) describes our data well (Fig. 10 and
Table XI), while at the same time, additional endorsement
comes from the fact that all attempts to use the four-
dimensional potentials for the description of the data
were fruitless, with a �2

d:o:f: ranging from 7 to 20, thus

excluding any connection with a 4D law. Another point
worth mentioning is that, even if we subtract the confining
term (�5DR) from Eq. (4.1), we still get acceptable results
(�2

d:o:f: ’ 1–1:2) with the resulting change in the values of

�̂5D being within errors.
The generalization of Eq. (2.15) for the lattice Coulomb

potential to five dimensions reads
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FIG. 9. (a) Hysteresis loop of the mean value of the plaquette
for a lattice volume V ¼ 85. (b) Hysteresis loop for the helicity
modulus h5Dð�Þ, for the same volume.

TABLE XI. Results from the 5D Coulomb potential and V ¼
125.

� �̂5D �5D �2=d:o:f:

1.100 0.0330(9) 0.00033(24) 0.67

1.200 0.0293(8) 0.00033(25) 0.74

1.300 0.0264(6) 0.00028(18) 0.66
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FIG. 10. Potential in the 5D Coulomb phase, Vol ¼ 125, for
three different values of the coupling � ¼ �0. The error bars are
smaller than the symbols used.
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V5D
lc ðRÞ ¼ 4�2

L4
s

X
~k�0

ei
~k ~RP

4
j¼1 2ð1� cosðkjÞÞ

;

kj ¼ 0;
2�

Ls

; . . . ;
2�ðLs � 1Þ

Ls

;

(4.2)

V5DðRÞ ¼ �5D
lc R� �̂5D

lc V
5D
lc ðRÞ þ const: (4.3)

In Table XII we show the results from the 5D lattice
Coulomb potential. These values are not so good from the
point of view of the �2 value, as the ones obtained from the
continuum Coulomb potential. They show a systematic
deviation of order 10% from our previous results, but
that was also the case for the measurements of Sec. III.
Nevertheless, they constitute a second estimate for the
effective fine structure constant in five dimensions.

Finally we go on and measure the helicity modulus for
this phase to acquire our final estimate for �. Because of
the homogeneity of the model in the line � ¼ �0, the
choice of the plane in which the extra flux is imposed is
not restricted, since all the planes are now equivalent.
Every possible choice will lead us to the same result (a
fact verified by our measurements). So, we continue with
what we shall generally call a helicity modulus in 5D
[h5Dð�Þ] measured on the �� planes.

h5Dð�Þ ¼ 1

ðL�L�Þ2
�� X

ð��Þplanes
ð� cosð�PÞÞ

�

�
�� X

ð��Þplanes
ð� sinð�PÞÞ

�
2
��

: (4.4)

Let us pause here for a moment to consider the classical
limit of the above equation. With all fluctuations sup-
pressed we have (following Sec. II B)

S5Dclassicalð�Þ ¼
1

2
��2 V5D

ðL�L�Þ2
¼ 1

2
��2

L�L�L�L�L


ðL�L�Þ2

¼ 1

2
��2L
 ! Fclassicalð�Þ � Fclassicalð0Þ

¼ 1

2
��2L
:

Again, with the replacement � ! �R and the use of
Eq. (2.10), we have for the helicity modulus

h5Dð�Þ � �Rð�ÞL
: (4.5)

Hence the h.m. scales with the lattice length, and as one
approaches the infinite volume limit, the signal obtained
from this quantity is infinitely enhanced. Although the
argument presented above is based mainly on the classical
approach, this is indeed the case, and the helicity modulus
applied for the five-dimensional system behaves exactly as
Eq. (4.5) predicts. So, in order to extract the value of �R,
the appropriate rescaling is needed. To that end, all mea-
surements in this section concerning the h.m. are the

product of the simple rescaling that Eq. (4.5) suggests,

ðh5Dð�Þ ! h5Dð�Þ
L


Þ. In Table XIII one can find the verifica-

tion of all this, where the estimates from the two lattice
volumes (85 and 125) are identical, within the error bars.
As Table XIII shows, the agreement between the values

of �̂ as they are obtained from the five-dimensional helicity
modulus and the corresponding lattice Coulomb potential
(Table XII) is almost perfect. The measurements of the
helicity modulus are extended near the critical point in
order to sketch the behavior of the effective renormalized
charge �̂5Dð�Þ as we approach the transition. We observe
that there is no volume dependence, as the difference
between the results from the two lattice volumes is within
the statistical errors.

V. CONCLUSIONS

Throughout this whole investigation we observed no
discrepancy between the two systems at any point: The
4D pure U(1) gauge model in the Coulomb phase and the
anisotropic 5D U(1) model in the layer phase exhibit
exactly the same behavior. All signals point to the four-
dimensional nature of the long range interactions in the
layers and the presence of a massless particle, the photon.
The obtained agreement responds, indirectly, to another
difficult matter, namely, the role of the layer-layer inter-
actions in the physical picture. It seems, to the extent which
we can observe, that there is no evidence of any significant
influence that could lead to an essential alteration from the
known four-dimensional laws. To clarify this point we
would like to add a few remarks regarding the nature of
the gauge particle. Fu and Nielsen, in a follow-up work

TABLE XII. Results from the 5D lattice Coulomb potential
and V ¼ 125.

� �̂5D
lc �5D

lc �2=d:o:f:

1.100 0.0298(4) 0.0005(3) 1.68

1.200 0.0265(6) 0.0004(2) 1.90

1.300 0.0239(10) 0.0004(2) 1.80

TABLE XIII. The helicity modulus and the resulting values of
�̂ for the five-dimensional Coulomb phase and two lattice
volumes 85 and 125

V ¼ 125 V ¼ 85

� ¼ �0 hð�Þ5D �̂5D hð�Þ5D �̂5D

0.800 0.5017(4) 0.0505(2) 0.5014(4) 0.0506(2)

0.900 0.6312(4) 0.0402(2) 0.6306(5) 0.0402(3)

1.000 0.7460(3) 0.0339(2) 0.7458(3) 0.0340(2)

1.100 0.8547(3) 0.0297(1) 0.8539(7) 0.0297(1)

1.200 0.9611(2) 0.0264(1) 0.9610(2) 0.0264(1)

1.300 1.0653(3) 0.0238(1) 1.0657(2) 0.0238(1)

1.400 1.1693(2) 0.0217(1) 1.1694(2) 0.0217(1)
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[10], have thoroughly examined the properties of this
gauge particle. Their analysis suggested, from a strong
coupling expansion point of view, that to lowest-order
approximation the photon propagator is identical with the
one in the isotropic four-dimensional U(1) gauge field
model. But, upon corrections the propagator received con-
tributions from the layer-layer coupling (�0). Taking into
account the contributions of all graphs consisting of pla-
quettes connecting neighboring layers (by means of an
effective action), they have managed to show that to order
�04

photon propagator ¼ ordinary photon propagator

�
�
1� 1

48

�04

�

�

for links in the same layer.6 But, for the range of our
measurements, corrections of this order of magnitude are
not reliable, taking into account our error estimates. It is
beyond our measuring capabilities to examine the possible
reprecautions of such a term and the differentiations that it
could lead. On the optimistic side though, for the whole
range of the parameters that we used for our analysis, this
correction ranges from 0.999 967 (starting point) to
0.999 976 (end point). So we strongly doubt that any mean-
ingful diversion from the four-dimensional law can be
found.

A second point that deserves attention is the use of the
helicity modulus for the extraction of the renormalized
coupling [�Rð�Þ]. The obtained information from the use
of this quantity is in very good agreement with the results
obtained from the traditional method of determination of
�R using the Wilson loops, with one advantage: it is much
cheaper, from a computer time point of view, to use the
helicity modulus than to resort to Wilson loops. The re-
quired information comes directly from a single measure-
ment, without any intermediate steps, thus reducing
drastically the complexity of the method, compared to
the usual approach. To that end (and) for the characteriza-
tion of the various phases of our model, we find the helicity
modulus a much better tool than Wilson loops.

Finally, in the 5D Coulomb phase we found that the
values of the effective �5Dð¼ ��̂5DÞ are smaller than the
values of the effective �4D ¼ �layer as our results indicate,

and also that the effective �5D is slightly bigger than the

bare coupling �0 ¼ g2
0

4� ¼ 1
�

1
4� , where g

2
0 ¼ g2

5

� ’ g25�UV is

the dimensionless 5D bare U(1) gauge coupling.7 The
values of � that we used for the determination of the 5D
Coulomb potential are far away from the phase transition.
In order for someone to be able to compare results between
4D and 5D, an extrapolation up to the critical point is
necessary. To that end, we calculated the helicity moduli
for two different volumes (Table XIII) and fitted the results
using Eq. (2.16) under the assumption that there is no
drastic change in the behavior of �̂ as we go to five
dimensions, and consequently, that the equation remains
valid for the particular case under study. We used the
critical value of � as a free parameter and found that (i)
there is no volume dependence and (ii) the renormalized
fine structure constant takes the value of �c�5D ¼
0:218ð48Þ, a value near to the one in four dimensions and
	 ¼ 0:49ð37Þ. Unfortunately the quality of the fit was not
pleasing (�2d:o:f: ¼ 0:0007, hence the large errors), but it
did manage to reproduce the value of the critical � in the
correct region (�c ¼ 0:741).
Because the 5D QED is not a perturbatively renormaliz-

able field theory and the gauge coupling has mass dimen-
sions (g25 �M�1), powers of the cutoff �UV appear in the

calculations of loop corrections (see [2] and references
therein) to the vertex and self-energy graphs. In the lattice
calculations the cutoff does not appear explicitly but only
implicitly through the volume dependence of Monte Carlo
results. So, in the presence of matter fields, we expect a
strong volume dependence for the effective renormalized
charge �5Dð�Þ in the extrapolation to the critical � and to
the infinite volume, different from what we found in the
present paper for the pure U(1). This study is outside the
scope of this work, but we believe that it deserves further
investigation.
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6An ordinary propagator means a propagator for which �0 ¼
0 so that all layers are isolated from each other.

7Here � is the 5D lattice spacing and �UV the ultraviolet
cutoff.

ESTABLISHMENT OF THE COULOMB LAW IN THE LAYER . . . PHYSICAL REVIEW D 77, 094511 (2008)

094511-13



[1] I. Antoniadis, Phys. Lett. B 246, 377 (1990); I. Antoniadis
and K. Benakli, Phys. Lett. B 326, 69 (1994); Nima
Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.
Rev. D 59, 086004 (1999); Phys. Lett. B 429, 263
(1998); C. P. Bachas, J. High Energy Phys. 11 (1998) 023.

[2] K. R. Dienes, E. Dudas, and T. Gherghetta, Nucl. Phys.
B537, 47 (1999); Keith R. Dienes, Emilian Dudas, and
Tony Gherghetta, Phys. Lett. B 436, 55 (1998).

[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999); 83, 3370 (1999); B. Bajc and G. Gabadadze, Phys.
Lett. B 474, 282 (2000); I. Oda, Phys. Lett. B 496, 113
(2000); A. Perez-Lorenzana, J. Phys. Conf. Ser. 18, 224
(2005).

[4] A. Kehagias and K. Tamvakis, Phys. Lett. B 504, 38
(2001); V.A. Rubakov and M. E. Shaposhnikov, Phys.
Lett. 125B, 136 (1983); 125B, 139 (1983); H.
Davoudiasl, J. L. Hewett, and T.G. Rizzo, Phys. Lett. B
473, 43 (2000); T. Gherghetta and A. Pomarol, Nucl. Phys.
B586, 141 (2000); A. Pomarol, Phys. Lett. B 486, 153
(2000).

[5] V. A. Rubakov, Phys. Usp. 44, 871 (2001); S. L. Dubovsky
and V.A. Rubakov, Int. J. Mod. Phys. A 16, 4331
(2001).

[6] K. Farakos and P. Pasipoularides, Phys. Lett. B 621, 224
(2005).

[7] K. Farakos and P. Pasipoularides, Phys. Rev. D 73, 084012
(2006).

[8] K. Farakos and P. Pasipoularides, Phys. Rev. D 75, 024018
(2007).

[9] P. Dimopoulos, K. Farakos, and S. Vrentzos, Phys. Rev. D
74, 094506 (2006).

[10] Y. K. Fu and H. B. Nielsen, Nucl. Phys. B236, 167 (1984);
B254, 127 (1985).

[11] A. Hulsebos, C. P. Korthals-Altes, and S. Nicolis, Nucl.
Phys. B450, 437 (1995).

[12] P. Dimopoulos, K. Farakos, A. Kehagias, and G.
Koutsoumbas, Nucl. Phys. B617, 237 (2001).

[13] P. Dimopoulos and K. Farakos, Phys. Rev. D 70, 045005
(2004); P. Dimopoulos, K. Farakos, and S. Nicolis, Eur.
Phys. J. C 24, 287 (2002); P. Dimopoulos, K. Farakos,
C. P. Korthals-Altes, G. Koutsoumbas, and S. Nicolis, J.
High Energy Phys. 02 (2001) 005.

[14] D. Berman and E. Rabinovici, Phys. Lett. 157B, 292
(1985); Y. K. Fu, Liang-Xin Huang, and Da-Xin Zhang,
Phys. Lett. B 335, 65 (1994).

[15] P. Dimopoulos, K. Farakos, and G. Koutsoumbas, Phys.
Rev. D 65, 074505 (2002).

[16] M. Vettorazzo and P. de Forcrand, Nucl. Phys. B, Proc.
Suppl. 129, 739 (2004); Nucl. Phys. B686, 85 (2004);
Phys. Lett. B 604, 82 (2004).

[17] J. L. Cardy, Nucl. Phys. B170, 369 (1980).
[18] J. Jersak, T. Neuhaus, and P.M. Zerwas, Nucl. Phys. B251,

299 (1985); Phys. Lett. 133B, 103 (1983).
[19] G. Cella, U.M. Heller, V. K. Mitrjushkin, and A. Vicere,

Phys. Rev. D 56, 3896 (1997).
[20] J.M. Luck, Nucl. Phys. B210, 111 (1982).
[21] G. Arnold, B. Bunk, T. Lippert, and K. Schilling, Nucl.

Phys. B, Proc. Suppl. 119, 864 (2003).
[22] M. Luscher, K. Symanzik, and P. Weisz, Nucl. Phys.

B173, 365 (1980); M. Luscher, Nucl. Phys. B180, 317
(1981); Marco Panero, J. High Energy Phys. 05 (2005)
066.

K. FARAKOS AND S. VRENTZOS PHYSICAL REVIEW D 77, 094511 (2008)

094511-14


