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The B�B� coupling is a fundamental parameter of chiral effective Lagrangian with heavy-light mesons

and can constrain the chiral behavior of fB, BB, and the B! �l� form factor in the soft pion limit. We

compute the B�B� coupling with the static heavy quark and the OðaÞ-improved Wilson light quark.

Simulations are carried out with nf ¼ 2 unquenched 123 � 24 lattices at � ¼ 1:80 and 163 � 32 lattices

at � ¼ 1:95 generated by the CP-PACS collaboration. To improve the statistical accuracy, we employ the

all-to-all propagator technique and the static quark action with smeared temporal link variables. These

methods successfully work also on unquenched lattices, and determine the B�B� coupling with 1%–2%

statistical accuracy on each lattice spacing.
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I. INTRODUCTION

One of the major subjects in particle physics is to
determine the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix elements in order to test the standard model and find a
clue to the physics beyond. While the precision of the
experimental data from B factories has been improving
significantly, there are still large uncertainties in the CKM
matrix elements due to the theoretical errors, which in-
cludes those in the lattice determination of the weak matrix
elements for the B mesons.

It is often the case that a symmetry helps to obtain
nonperturbative results in field theories. For example, the
chiral Lagrangian based on the approximate chiral sym-
metry can help one to understand the quark mass depen-
dence of the light mesons and also to derive nontrivial
relations between different physical quantities related by
the chiral symmetry. For the B mesons, there is another
symmetry called ‘‘heavy quark symmetry’’ which appears
in the limit of infinitely large quark mass. Based on this
symmetry, one can construct the heavy meson effective
theory, which gives a systematic description of the heavy-
light mesons including 1=M corrections. Using this effec-
tive theory, one can understand the light quark mass de-
pendence of various physical observables of the B meson
weak matrix elements and can also derive nontrivial rela-
tions between different quantities, provided the low energy
constants are determined from some method.

The heavy meson effective Lagrangian has a single low
energy constant at the leading order of the 1=M expansion.
This constant, ĝb, is called the B�B� coupling. Once the
B�B� coupling is determined, the heavy meson effective
theory can predict various quantities which are important

for CKM phenomenology [1]. For example, the light quark
mass dependence of the B meson decay constant and the
bag parameter can be determined as
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F and B are the low energy constants associated with these
operators, and correspond to those quantities in the chiral
limit of the light quark. Also the form factor fþðq2Þ for the
semileptonic decay B! �l� can be expressed in terms of
the B� meson decay constant fB� and ĝb as

fþðq2Þ ¼ � fB�

2f�

�
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þ fB
fB�

�
; (3)

where v is the velocity of the B meson, k is the pion
momentum, and � ¼ mB� �mB. Therefore it is quite im-
portant to determine the B�B� coupling very precisely
from lattice QCD simulations. For this purpose, one of
the promising approaches is to use the heavy quark effec-
tive theory (HQET) with nonperturbative accuracy includ-
ing 1=M corrections. HQETallows systematic treatment of
the b quark in the continuum theory where 1=M correc-
tions can also be systematically included with nonpertur-
bative accuracy.
Despite its usefulness, it is very difficult in practice to

calculate the matrix elements for heavy-light systems with
HQET [2–4]. This is because in the heavy-light system the
self-energy correction to the static quark gives a significant
contribution to the energy, which results in an exponential
growth in time of the noise to signal ratio of the heavy-light
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meson correlators. In fact, recent results of ĝ1 are

ĝ1 ¼ 0:51� 0:03stat � 0:11sys for nf ¼ 0 (4)

ĝ1 ¼ 0:51� 0:10stat for nf ¼ 2 (5)

which have about 5% and 15% statistical errors for
quenched and unquenched cases, respectively [3,4]. An
alternative method which extracts ĝ1 from the B quark
potential was proposed in Ref. [5], but such accuracies
would not be sufficient to test new physics. Therefore
significant improvements for statistical precision in
HQET are needed. Fortunately the two techniques to re-
duce the statistical error were developed recently, which
are the new HQET action [6,7] with hypercubic (HYP)
smearing [8] and the all-to-all propagators [9] with the
low-mode averaging [10,11]. Negishi et al. [12] tested
applicability of these methods on a quenched lattice, and
found that the statistical accuracy is drastically improved
as

ĝ1 ¼ 0:517ð16Þstat for nf ¼ 0; (6)

namely at the 2% level, even with a modest number of
configurations.

Our final goal is to extend the above strategy to un-
quenched simulations and give a precise value of the B�B�
coupling ĝb with 2þ 1 flavors in the continuum limit. In
this paper, we study the static B�B� coupling in nf ¼ 2

unquenched QCD combining two techniques of the HYP
smeared link and the all-to-all propagators. Our purpose is
twofold. The primary purpose is to perform the first high
precision study of ĝ1 in nf ¼ 2 unquenched QCD, which

serves a reference point for future studies with better
control over the systematic errors. The secondary goal is
to understand in what conditions the above methods apply
efficiently. We observe the dependence of the statistical
errors on the time and the numbers of low-lying eigen-
modes, as well as their behavior against variation of the
quark mass and the lattice spacing. This will help us to
understand in which region of parameters the method can
give good control over the statistical errors, which will also
be useful to precision calculations of other physics parame-
ters for heavy-light systems.

This paper is organized as follows. In Sec. II, we de-
scribe the method to obtain B�B� coupling from the B
meson matrix element. Section III explains our simulation
details. In this section we first arrive at our final result for
the B�B� coupling with our best parameter setting. Then in
Sec. IV, the efficiency of the low-mode averaging is exam-
ined in detail. The conclusion is given in Sec. V.

II. LATTICE OBSERVABLES

The Lagrangian of heavymeson effective theory is given
as

L ¼ �Tr½ �Hiv �DH� þ ĝbTr½ �HHA����5� þOð1=MÞ;
(7)

where the low energy constant ĝb is the B
�B� coupling, v

is the four-velocity of the heavy-light meson B or B�, and
H, D�, and A� are described by the B, B�, and � fields as

H ¼ 1
2ð1þ ��v�ÞðiB�5 þ B�

���Þ; � ¼ expði�=fÞ;
(8)

D� ¼ @� þ 1
2ð�y@��þ �@��

yÞ;
A� ¼ i

2
ð�y@��� �@��

yÞ:
(9)

The B�B� coupling can be obtained from the form factor
at zero recoil which corresponds to the matrix element

hB�ðpB� ; �ÞjAijBðpBÞij ~pB�¼ ~pB¼0

¼ ðmB þmB� ÞA1ðq2 ¼ 0Þ�ð�Þi ; (10)

where A1ðq2 ¼ 0Þ is the matrix element of the transition
from B to B� at zero recoil with axial current Ai � � �5�i 
and � stands for polarization [2]. In the static limit,

ĝ1 ¼ A1ðq2 ¼ 0Þ (11)

holds. The matrix element hB�jA�jBi at the zero recoil can
be obtained from the ratio of 3-point and 2-point functions,
RðtÞ:

hB�ð0ÞjAijBð0Þi
2mB

¼ lim
t;tA!1Rðt; tAÞ; (12)

where

Rðt; tAÞ ¼
hOi

B� ðtþ tAÞAiðtAÞOBð0Þi
hOBðtþ tAÞOBð0Þi � C3ðtþ tAÞ

C2ðtþ tAÞ (13)

where OB and OB� are some operator having quantum
numbers of the B and B� mesons, respectively. We apply
the smearing technique to enhance the ground state con-
tributions to the correlators as

O Bðt; ~xÞ ¼
X
~r

	ð ~rÞ �qðt; ~xþ ~rÞ�5hðt; ~xÞ; (14)

O i
B� ðt; ~xÞ ¼

X
~r

	ð ~rÞ �qðt; ~xþ ~rÞ�ihðt; ~xÞ; (15)

where 	ð ~xÞ is the smearing function.
The lattice HQET action in the static limit is defined as

S ¼ X
x

�hðxÞ 1þ �0

2
½hðxÞ �Uy

4 ðx� 4̂Þhðx� 4̂Þ�; (16)

where hðxÞ is the heavy quark field. The static quark
propagator is obtained by solving the time evolution equa-
tion. As is well known, the HQET propagator is very noisy,
and it becomes increasingly serious as the continuum limit
is approached. In order to reduce the noise, the Alpha
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collaboration [6,7] studied the HQET action in which the
link variables U�ðxÞ are replaced by the smeared links

W�ðxÞ in order to suppress the power divergence. They

found that the noise of the static heavy-light meson is
significantly suppressed with so-called HYP smearing [8].

The statistical error is further suppressed by applying the
all-to-all propagator technique developed by the TrinLat
collaboration [9]. Defining the Hermitian lattice Dirac
operator Q � �5D, where D is the lattice Dirac operator,
the quark propagator Sqðx; yÞ is expressed by the inverse of
the Hermitian Dirac operator �Q ¼ Q�1 as

Sqðx; yÞ ¼ �Qðx; yÞ�5: (17)

We divide the light quark propagator into two parts: the
low-mode part and the high-mode part. The low-mode part
can be obtained using low eigenmodes of Hermitian Dirac
operator Q. The high-mode part can be obtained by the
standard random noise methods with time, color, and spin
dilutions. With the projection operators into the low and
high-mode parts,

P0 ¼
XNev

i¼1

vðiÞðxÞ � vðiÞyðyÞ; P1 ¼ 1� P0; (18)

respectively, the propagator can be decomposed into two
parts as

�Q ¼ �Q0 þ �QP1; (19)

�Q 0ðx; yÞ ¼
XNev

i¼1

1

�i
vðiÞðxÞ � vðiÞyðyÞ; (20)

ð �QP1Þðx; yÞ ¼ 1

Nr

XNr
r

X
j

 ðjÞ
½r�ðxÞ � 
ðjÞy

½r� ðyÞ; (21)

where Nr is the number of random noise and j is the index
for dilution to label the set of time, spin, and color sources,
j ¼ ðt0; �0; a0Þ. The low-mode partQ0 is constructed from

the eigenvectors vðiÞ with their eigenvalues �i, which are to
be obtained at a preceding stage. As the random noise
vector for the high-mode part, we adopt the complex Z2

noise. The random noise vector with dilution is given as


ðjÞ
½r�ð ~x; tÞa� ¼ 
½r�ð ~xÞa��t;t0�a;a0��;�0

: (22)

 is given as

 ½r�ðxÞ ¼
X
y

ð �QP1Þðx; yÞ
½r�ðyÞ; (23)

which is obtained by solving a linear equation Q ½r� ¼
P1
½r�. Further details of the computation methods are

given in Ref. [12].
Combining these propagators, we can obtain the 2-point

functions for the heavy-light meson which are averaged all
over the spacetime. Similarly, the 3-point functions can be
divided into four parts: low-low, low-high, high-low, and
high-high parts.

III. RESULTS

A. Simulation setup

Numerical simulations are carried out on 123 � 24 lat-
tices at � ¼ 1:80 and 163 � 32 lattices at � ¼ 1:95 with
two flavors of OðaÞ-improved Wilson quarks and Iwasaki
gauge action. We make use of about 100 to 150 gauge
configurations provided by the CP-PACS collaboration
[13] through JLDG (Japan Lattice DataGrid). We use the
OðaÞ-improved Wilson fermion for the light valence quark
with the masses set equal to the sea quark masses as shown
in Table I. We use the static quark action with the HYP
smeared links with the smearing parameter values
ð�1; �2; �3Þ ¼ ð0:75; 0:6; 0:3Þ (HYP1) [6,7]. The B and
B� meson operators are smeared with a function 	ðrÞ ¼
expð�0:9r̂Þ, where r̂ is the distance between the heavy
quark and the light quark in lattice units. The configura-
tions are fixed to the Coulomb gauge.
We obtain the low-lying eigenmodes of the Hermitian

Dirac operator using the implicitly restarted Lanczos algo-
rithm. The low-mode parts of the correlation functions are
computed with Nev ¼ 200 low-lying eigenmodes, except
for the case of 
 ¼ 0:1375 at � ¼ 1:95 which is obtained
with Nev ¼ 0. The reason of this choice will be explained
in Sec. IV. The high-mode parts of the correlation functions

TABLE I. The simulation parameters. The values of the lattice spacing and the pion mass are
from Ref. [13].

� Lattice size csw a�1 [GeV] 
 m� [GeV] Nev Nconf

1.80 123 � 24 1.60 0.9177(92) 0.1409 1.06 200 100

0.1430 0.90 200 100

0.1445 0.75 200 100

0.1464 0.49 200 100

1.95 163 � 32 1.53 1.269(14) 0.1375 1.13 0 120

0.1390 0.92 200 150

0.1400 0.76 200 150

0.1410 0.54 200 150
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are computed with complex Z2 random noise vector with
Nr ¼ 1. The number of time dilution for each configura-
tion are set to Nt0 ¼ 24 at � ¼ 1:80 and Nt0 ¼ 32 at � ¼
1:95, respectively. This setup is based on the experience
from the work by Negishi et al. [12].

B. Correlation function and effective mass

Figures 1 and 2 show the effective mass plots for the 2-
point and 3-point functions. We find that the 2-point func-
tions exhibit a nice plateaux at t 	 4 for � ¼ 1:80 and at
t 	 5 for � ¼ 1:95. From this result we take tA ¼ 5 for
� ¼ 1:8 and tA ¼ 6 for � ¼ 1:95 as a reasonable choice
for the time separation between the current Ai and the B
meson source. We also find that the effective masses of the
3-point functions give consistent values with those of the 2-
point functions. We fit the 2-point and 3-point functions to
exponential functions with a single exponent as

C2ðtÞ ¼ Z2 expð�EstattÞ; C3ðtÞ ¼ Z3 expð�EstattÞ;
(24)

where Z2 and Z3 are constant parameters and Estat corre-
sponds to the energy of the heavy-light meson. The fit
ranges are chosen appropriately by observing the effective
mass plots as listed in Table II. The bare B�B� coupling
can be obtained by the ratio of the fit parameters as ĝbare1 ¼
Z3=Z2. Alternatively, the B

�B� coupling is also extracted
from the ratio of the 3-point and 2-point functions,
C3ðtÞ=C2ðtÞ, as shown in Fig. 3. We find that the fit of the
ratio C3ðtÞ=C2ðtÞ to a constant value gives a consistent
value with the value of Z3=Z2. Since the statistical accu-
racy is better, we employ Z3=Z2 to determine ĝ1 in the
following analyses. The results are summarized in Table II.

C. Physical value of the B�B� coupling and chiral
extrapolation

The physical value of the B�B� coupling is obtained by
multiplying the bare value by the renormalization constant.
We use the one-loop result of the renormalization factor for
the axial vector current

FIG. 1 (color online). The effective mass plot of the 2-point and 3-point functions at � ¼ 1:80. Top left, top right, bottom left,
bottom right panels correspond to 
 ¼ 0:1409, 0.1430, 0.1445, 0.1464, respectively. We also show Estat obtained from the
simultaneous fit as in Eq. (25) by the solid lines which correspond to the fit ranges for the 2-point functions.
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Ai ¼ 2
u0ZA

�
1þ bA

m

u0

�
ðAlat

i þ cAariPÞ;

u0 ¼
�
1� 0:8412

�

�
1=4
; bA ¼ 1þ 0:0378g2

MS
ð�Þ;
(25)

where the gauge coupling g2
MS

ð�Þ ¼ 3:155, 2.816 and

ZA ¼ 0:932, 0.939 for � ¼ 1:80 and 1.95, respectively,
as given in Ref. [13]. There is also an OðaÞ-improvement
term in Eq. (26) with coefficient cA. However, since we
sum over the space position to extract the zero momentum
state, the OðaÞ-improvement term does not contribute to

TABLE II. The numerical results of the heavy-light meson energy aE, the ratio of the 3-point

and 2-point functions Z3=Z2, and ĝ1. ðt2ptmin; t
2pt
maxÞ and ðt3ptmin; t

3pt
maxÞ are the fit ranges for the 2-

point and 3-point correlators, respectively. For the values of ĝ1, only the statistical errors are
quoted.

� 
 ðt2ptmin; t
2pt
maxÞ ðt3ptmin; t

3pt
maxÞ aEstat Z3=Z2 ĝ1

1.80 0.1409 (5,10) (8,10) 0.9412(19) 2.252(21) 0.612(5)

0.1430 (5,10) (8,10) 0.8839(21) 2.294(23) 0.598(5)

0.1445 (5,10) (8,10) 0.8343(16) 2.342(13) 0.591(4)

0.1464 (5,10) (8,10) 0.7488(17) 2.381(27) 0.578(5)

1.95 0.1375 (8,14) (11,14) 0.7669(27) 2.435(8) 0.627(3)

0.1390 (8,14) (11,14) 0.7093(18) 2.471(16) 0.615(5)

0.1400 (8,14) (11,14) 0.6638(15) 2.461(14) 0.599(4)

0.1410 (8,14) (11,14) 0.6098(14) 2.400(13) 0.571(4)

FIG. 2 (color online). The effective mass plot of the 2-point and 3-point functions at � ¼ 1:95. Top left, top right, bottom left,
bottom right panels correspond to 
 ¼ 0:1375, 0.1390, 0.1400, 0.1410, respectively. We also show Estat obtained from the
simultaneous fit as in Eq. (25) by the solid lines which correspond to the fit ranges for the 2-point functions.
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the matrix element. We arrive at the results of ĝ1 for our 

values in Table II.

We take the chiral extrapolation of the B�B� coupling
employing the following fit functions:

ðaÞ ĝðaÞ1 ðm2
�Þ ¼ ĝ1ð0Þ þ A1m

2
�;

ðbÞ ĝðbÞ1 ðm2
�Þ ¼ ĝ1ð0Þ þ A1m

2
� þ A2ðm2

�Þ2;

ðcÞ ĝðcÞ1 ðm2
�Þ ¼ ĝ1ð0Þ

�
1� ĝ1ð0Þ2 1

8�2

m2
�

f2�
logðm2

�Þ
�

þ A1m
2
� þ A2ðm2

�Þ2;
corresponding, respectively, to (a) the linear extrapolation,
(b) the quadratic extrapolation, and (c) the quadratic plus
chiral log extrapolation where the log coefficient is deter-
mined from ChPT [14–16]. We use three lightest data
points for the fit (a), while all the four points for (b) and
(c). We obtain physical values of the B�B� coupling in the
chiral limit as ĝ1 ¼ 0:57ð1Þ, 0.57(2), 0.52(1) at � ¼ 1:80
and ĝ1 ¼ 0:548ð6Þ, 0.529(10), 0.480(8) at � ¼ 1:95 from
the fit (a), (b), (c), respectively. Figure 4 shows these chiral
extrapolations. We take the average of the results from the

linear fit and the quadratic plus chiral log fit as our best
value and take half the difference as the systematic error
from the chiral extrapolation:

ĝ1ðm� ¼ 0Þ ¼ 0:543ð5Þstatð26Þchiral at � ¼ 1:80; (26)

¼ 0:516ð5Þstatð33Þchiral at � ¼ 1:95: (27)

Since we have only two lattice spacings, naive contin-
uum extrapolation would not give a reliable result.
However, the results at these two lattice spacings are con-
sistent within quoted errors.1 Therefore, we take the result
at � ¼ 1:95 as our best estimate for the physical value of
ĝ1, and estimate the discretization error of Oðða�Þ2Þ by
order counting with �
 0:3 GeV. Including the perturba-
tive error of Oð�2Þ also by order counting, our results for

FIG. 3 (color online). The ratio of the 3-point and 2-point functions versus t at � ¼ 1:95. Correspondence of the panels and the
values of 
 is the same as in Fig. 2.

1We do not observe a large scaling violation for ĝ1 as opposed
to the case of f� by the CP-PACS collaboration. A possible
explanation is that the large scaling violation for f� might come
from the perturbative error of OðaÞ-improvement coefficient cA,
whereas ĝ1 does not receive such a systematic error as explained
in the text.
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ĝ1 is

ĝ
nf¼2
1 ¼ 0:516ð5Þstatð33Þchiralð28Þpertð28Þdisc: (28)

In our study, each chiral extrapolation error, perturbative
error, and discretization error reaches about 6% level. The
perturbative error can be removed by employing the non-
perturbative renormalization such as the RI-MOM scheme,
which is successfully applied to the light-light axial vector
current. The discretization error could be reduced by com-
puting on finer lattices. For example, an order counting
estimate suggests that the discretization error would be
reduced to about 2% on the configurations of CP-PACS
at � ¼ 2:10. In contrast, it is not straightforward to control
the chiral extrapolation error. It is definitely necessary to
use recent unquenched configurations with smallest pion
mass m� 
 0:3 GeV. A more predominant approach is to
employ a fermion formulation possessing the chiral sym-
metry, such as the overlap fermions, which makes the
extrapolation theoretically more transparent.

IV. APPLICABILITY OF THE LOW-MODE
AVERAGING

In this section, we examine under what condition the all-
to-all propagator technique, in particular, the low-mode
averaging, is efficient to reduce the statistical error. This
would give us a guide to extend our computation to un-
quenched simulations with smaller quark masses and finer
lattices. We mainly investigate the case of � ¼ 1:80 in the
following.

A. Observation of the noise to signal ratio

Figure 5 shows the distribution of about 250 lowest
eigenmodes for each 
. Since the contribution of each

mode vðiÞ to the correlator is multiplied by 1=�i, one
naively expects that with a fixed number of modes the
low-mode averaging should be particularly effective for

the smallest quark mass. This is indeed true for the 2-point
and 3-point heavy-light meson correlators. In Fig. 6, we
can see that the time where the low-mode and the high-
mode contributions to the 2-point correlators cross is lower
(t ¼ 4) at small quark mass than (t ¼ 5) at the higher quark
mass value.
In Fig. 7 we show the comparison of the noise to signal

ratio of the 2-point functions with a different number of
low eigenmodes, Nev ¼ 0, 50, 100, 200 for 
 ¼ 0:1464
and 
 ¼ 0:1430 at � ¼ 1:80. For the smallest quark mass,
the statistical error of the 2-point function is 1.5–2 times
improved asNev is changed from 0 to 200. While this is not
a drastic improvement, comparing the costs to determine
the low-lying eigenmodes and to solve the quark propaga-
tor (the latter is 8–10 times larger than the former), there is
still an advantage to adopt the low-mode averaging.
Projecting out the low-lying modes also improves the

FIG. 4 (color online). The chiral extrapolation of the physical B�B� coupling at � ¼ 1:80 (left panel) and � ¼ 1:95 (right panel).

FIG. 5 (color online). The low-lying eigenmode distribution
density �ð�Þ for various 
 at � ¼ 1:80 with 40 configurations.
We defined �ð�Þ�� by the number of eigenvalues between �
and �þ��, where we divided the region from � ¼ 0:001 to
� ¼ 0:1 into 100 bins.
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cost of solving the quark propagator. These effects are
amplified going to smaller quark mass region.

In the region of larger light quark mass, however, the
situation is different. The right panel of Fig. 7 shows the
noise to signal ratio of the 2-point function for 
 ¼ 0:1430.
The noise to signal ratio for t < 7 achieves about a factor
1.3 improvement in the statistical error as we change Nev

from 0 to 200. For t > 7, on the contrary, the noise to signal
ratio with Nev � 0 starts to grow more rapidly than that
with Nev ¼ 0 which keeps growing steadily. As a result,
the low-mode averaging deteriorates the statistical accu-
racy at this and larger light quark masses.

B. High-mode and low-mode contributions to the noise

To investigate the origin of this behavior, we examine
the high-mode and low-mode contributions to the error of
correlator separately. We have imposed the relative preci-

sion of the low eigenmodes as

hvðiÞjðQ� �ðiÞÞ2jvðiÞi=hvðiÞjvðiÞi< 10�22: (29)

Since this precision is much smaller than the typical ex-
ponential falloff factor in the 2-point and 3-point functions,
we expect that the phenomenon of the large statistical error
observed for heavier quark masses is not tied to this
precision.
In general, by projecting out larger number of low

modes, the high-mode part decreases. Therefore one might
naively expect that the error also decreases. This is indeed
the case for 
 ¼ 0:1464. However for 
 ¼ 0:1430 such a
naive expectation does not hold. Figure 8 shows the time
dependence of the error for the high-mode part of the 2-
point correlator with various values of Nev at 
 ¼ 0:1464
and 
 ¼ 0:1430. As is displayed in the right panel of
Fig. 8, although the error of the high-mode contribution

FIG. 6 (color online). The low- and high-mode contributions to the 2-point correlators versus t at � ¼ 1:80. The left and right
panels show the results at 
 ¼ 0:1464 and 0.1430, respectively.

FIG. 7 (color online). The time dependence of the noise to signal ratio for 
 ¼ 0:1464 (left panel) and 
 ¼ 0:1430 (right panel) at
� ¼ 1:80 with 40 configurations.
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to the correlator at 
 ¼ 0:1430 does decrease at t < 7 with
larger Nev, the errors of the high-mode part at t > 7 with
Nev ¼ 50, 100, 200 exceed that with Nev ¼ 0. This clearly
indicates that for t > 7 both the high and low-mode parts of
the correlator individually have large errors, but when they
are combined the error of the total correlator becomes
small. In this situation if the low-mode part is improved
by the low-mode averaging, which reduces the error by
certain factor, the error of the high-mode part of the same
size remains unreduced and dominates the error of the
correlator.

To see it more clearly, let us decompose the 2-point
correlator computed by the noisy estimator (corresponding
to Nev ¼ 0) into the high- and low-mode parts. The total
correlators are computed only with the noisy estimator

[denoted as ‘‘total(noise)’’]. The high- and low-mode parts
[‘‘high(noise)’’ and ‘‘low(noise)’’] are separately com-
puted using the exactly same random source as for the
total correlators but projected into the high- and low-mode
spaces with the projection operators P1 and P0, respec-
tively. Figure 9 displays the statistical errors from the low-
and high-mode parts normalized with the total correlator,
in the case of Nev ¼ 50 at 
 ¼ 0:1430. For comparison we
also show the error of the low-mode part determined with
low-mode averaging [‘‘low(eigen)’’]. This figure confirms
that the fluctuations of the low- and high-mode parts are
almost the same size and compensate in the total correlator
so as to give much smaller error. The errors of the low-
mode parts, EnoiseðtÞ and EeigenðtÞ, exponentially grow with

similar rates, while different from that of the total
correlator.
Such a behavior continues as we decrease Nev even

down to a few Nev. The right panel of Fig. 10 shows the
case of Nev ¼ 1, 4, 16, 50, 200 for 
 ¼ 0:1430, where the
fluctuations of the low-mode part, EnoiseðtÞ, grows similar
rates, while absolute values are shifted downward. The left
panel of Fig. 10 shows the case for 
 ¼ 0:1464. We
observe that the low-mode part [low(noise)] does not ex-
ceed the signal by large amount, which explains the be-
havior observed in Fig. 7.
The reason why projecting into the low- or high-mode

part provides a drastic enhancement of the error is still
unknown. Although the phenomena themselves are quite
interesting and deserves for further studies, in this paper we
restrict ourselves within their implication to applicability
of the all-to-all propagator technique to the static heavy-
light system.

C. When is the low-mode averaging efficient?

We have seen that the low-mode averaging is efficient
only if the error of the noisy estimator (not the correlator

FIG. 8 (color online). The time dependence of the noise from the high-mode part for 
 ¼ 0:1464 (left panel) and 
 ¼ 0:1430 (right
panel) at � ¼ 1:80 with 40 configurations.

FIG. 9 (color online). The noise to signal ratio of the low- and
high-mode parts for the 2-point correlators for 
 ¼ 0:1430 at
� ¼ 1:80 with 40 configurations. The signal part is always taken
to be the total correlator using only the noisy estimator. The
projection is made with 50 eigenmodes.
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itself) is dominated by the low-mode part. Once the errors
from the high- and low-mode parts of the correlator start to
exceed the error of the total correlator, the low-mode
averaging is no longer effective but it makes the situation
even much worse. Our result implies that at � ¼ 1:80 and

 < 0:1430, the rapid growth of the error at t 	 7 in Fig. 7
signals the breakdown of the above condition. For 
 �
0:1430, the noisy estimator without the low-mode averag-
ing works better. Thus the low-mode averaging is only
efficient in the small quark mass region. However, since
we have already taken the data and they provided satisfac-
tory statistical accuracy of 2% level, we adopted the result
with the low-mode averaging propagator at � ¼ 1:80. As
for � ¼ 1:95, the low-mode averaging has not provided
sufficient statistical accuracy for 
 ¼ 0:1375. Thus we

adopted the noisy estimator without the low-mode averag-
ing at this 
 as was already noted in the previous section.
The results at � ¼ 1:95 are displayed in Fig. 11. The

figure shows the noise to signal ratio of the 2-point corre-
lators at each 
 against t in physical units. For 
 ¼ 0:1375
both the results with Nev ¼ 0 and 200 are shown, and the
former indeed exhibits smaller statistical error. For all the
values of 
 with Nev ¼ 200, the slopes of the exponential
growth rate of the noise to signal ratio change around t

16, and beyond that t the slopes become steeper as the
quark mass increases. This behavior is clearly explained
with the breakdownmechanism of the low-mode averaging
mentioned above.
We can also extract a hint on the lattice spacing depen-

dence of the statistical accuracy by comparing � ¼ 1:80
and � ¼ 1:95. Comparison of Figs. 7 and 11 implies that
the noise to signal ratio is similar or even smaller for finer
lattices. This is partly explained by the fact that finer
lattices receive a larger effect from an all-to-all propagator
since they have more lattice points (if the volume is kept
unchanged). As observed in Figs. 1 and 7, the statistical
errors at � ¼ 1:80 rapidly increase beyond
t
 8, which corresponds to t
 1:6 fm in physical units.
Thus the low-mode averaging breaks down almost at the
same physical distances at these two lattice spacings. This
implies that also on finer lattices of a
 0:1 fm, one can
extract precise values of B�B� coupling from the region
t < 1:6 fm by applying the same methods as this work,
while careful tuning of the smearing function would be
indispensable.

V. CONCLUSION

In this paper, we computed the B�B� coupling on un-
quenched lattices using the HYP smearing and the all-to-
all propagators. Using the low-mode averaging with 200

FIG. 10 (color online). The noise to signal ratio of the low- and high-mode parts for the 2-point correlators at � ¼ 1:80 with 40
configurations. The signal part is always taken to be the total correlator using only the noisy estimator. The left and right panels show
the dependence of the error of low(noise) on Nev for 
 ¼ 0:1464 and 
 ¼ 0:1430, respectively.

FIG. 11 (color online). The time dependence of the noise to
signal ratio of the 2-point correlators at � ¼ 1:95. The results
are determined with Nev ¼ 200, while for 
 ¼ 0:1375 the
Nev ¼ 0 result is also displayed.
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eigenmodes, the statistical errors are kept sufficiently small
for smaller quark masses. On the other hand, as was
investigated in Sec. IV in detail, the low-mode averaging
is not efficient for the larger light quark mass region, where
the simple noisy estimator provides better precision. In
either case, the statistical error is controlled below the
2% level in the chiral limit. We obtained consistent results
at two lattice spacings. Our best estimate of the B�B�
coupling in the static limit is represented in Eq. (29).
Figure 12 compares our results with other recent works
on the B�B� coupling [2,4,12]. The improvement in sta-
tistical precision is drastic, which proves the power of the
improvement techniques employed in this paper. We also
observe different slope for the light quark mass depen-
dence of ĝ1 compared with the results by Becirevic et al.

[4]. More systematic studies on the light quark mass de-
pendence are necessary.
For future prospects, better control over the systematic

error from the chiral extrapolation is indispensable. For
this purpose, the configurations with dynamical overlap
fermions by JLQCD collaboration would be a good choice
[17–19]. In order to obtain ĝb at the physical bottom quark
mass, one needs to understand the heavy quark mass
dependence of ĝ. Simulations with the charm quark mass
region and interpolation with the static limit are desired.
The methods adopted in this work are in principle also
applicable to other weak matrix elements of the B mesons,
such as fB, BB, and the form factors, and are expected to
provide high precision results required in precision flavor
physics.

ACKNOWLEDGMENTS

We would like to thank S. Aoki, M. Della Morte, N.
Ishizuka, C. Sachrajda, and T. Umeda for fruitful discus-
sions. We are also grateful to S. Fajfer and J. Kamenik for
useful comments. We acknowledge JLDG for providing us
with unquenched configurations from the CP-PACS col-
laboration. The numerical calculations were carried out on
the vector supercomputer NEC SX-8 at Yukawa Institute
for Theoretical Physics, Kyoto University, Research Center
for Nuclear Physics, Osaka University, and also Blue Gene/
L at High Energy Accelerator Organization (KEK). The
simulation also owes to a gigabit network SINET3 sup-
ported by National Institute of Informatics, for efficient
data transfer supported by JLDG. This work is supported in
part by the Grant-in-Aid of the Ministry of Education
(No. 19540286and No. 19740160).

[1] C. G. Boyd and B. Grinstein, Nucl. Phys. B442, 205
(1995).

[2] G.M. de Divitiis, L. Del Debbio, M. Di Pierro, J.M.
Flynn, C. Michael, and J. Peisa (UKQCD
Collaboration), J. High Energy Phys. 10 (1998) 010.

[3] A. Abada, D. Becirevic, Ph. Boucaud, G. Herdoiza, J. P.
Leroy, A. Le Yaouanc, and O. Pene, J. High Energy Phys.
02 (2004) 016.

[4] D. Becirevic, B. Blossier, Ph. Boucaud, J. P. Leroy,
A. LeYaouanc, and O. Pene, Proc. Sci., LAT2005 (2006)
212.

[5] W. Detmold, K. Orginos, and M. J. Savage, Phys. Rev. D
76, 114503 (2007).

[6] M. Della Morte, S. Durr, J. Heitger, H. Molke, J. Rolf, A.
Shindler, and R. Sommer (ALPHA Collaboration), Phys.
Lett. B 581, 93 (2004); 612, 313(E) (2005).

[7] M. Della Morte, A. Shindler, and R. Sommer, J. High
Energy Phys. 08 (2005) 051.

[8] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001).

[9] J. Foley, K. Jimmy Juge, A. O’Cais, M. Peardon, S.M.
Ryan, and J. I. Skullerud, Comput. Phys. Commun. 172,
145 (2005).

[10] T.A. DeGrand and U.M. Heller (MILC Collaboration),
Phys. Rev. D 65, 114501 (2002).

[11] L. Giusti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig,
J. High Energy Phys. 04 (2004) 013.

[12] S. Negishi, H. Matsufuru, and T. Onogi, Prog. Theor.
Phys. 117, 275 (2007).

[13] A. Ali Khan et al. (CP-PACS Collaboration), Phys. Rev. D
65, 054505 (2002); 67, 059901(E) (2003).

[14] H. Y. L. Cheng, C. Y. L. Cheung, G. L. L. Lin, Y. C. Lin

FIG. 12 (color online). Comparison of ĝ1 with other calcu-
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