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The KþKþ scattering length is calculated in fully-dynamical lattice QCD with domain-wall valence

quarks on the MILC asqtad-improved gauge configurations with rooted-staggered sea quarks. Three-flavor

mixed-action chiral perturbation theory at next-to-leading order, which includes the leading effects of the

finite lattice spacing, is used to extrapolate the results of the lattice calculation to the physical value of

mKþ=fKþ . We find mKþaKþKþ ¼ �0:352� 0:016, where the statistical and systematic errors have been

combined in quadrature.
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I. INTRODUCTION

Strange hadrons may play a crucial role in the properties
and evolution of nuclear material under extreme conditions
[1]. The interior of neutron stars provide one such environ-
ment in which the densities are high enough that it may be
energetically favorable to have strange baryons present in
significant quantities, depending upon their interactions
with nonstrange hadrons. Further, it may be the case that
a kaon condensate forms due to strong interactions be-
tween kaons and nucleons [2]. Unfortunately, the theoreti-
cal analysis of both scenarios is somewhat plagued by the
limited knowledge of the interactions of strange hadrons
with themselves and with nonstrange hadrons.

Heavy-ion collisions, such as those at the BNL relativ-
istic heavy-ion collider, also produce nuclear material in an
extreme condition. Recent observations suggesting the
formation of a low-viscosity fluid are quite exciting as
they provide a first glimpse of matter not seen previously.
The late-time evolution of such a collision requires an
understanding of the interaction between many species of
hadrons, not just those of the initial state, including the
interactions between strange mesons and baryons. While
pion interferometry in heavy-ion collisions is a well-
established tool for studying the collision region (for recent
theoretical progress, see Refs. [3–5]), the STAR collabo-
ration has recently published the first observation of neutral
kaon (K0

s ) interferometry [6]. In the analysis of K0
s -K

0
s

interferometry, the nonresonant contributions to the final
state interactions between the kaons were estimated using

three-flavor (SUð3ÞL � SUð3ÞR) chiral perturbation the-
ory (�-PT), the low-energy effective field theory of QCD.
Given the sometimes poor convergence of SUð3ÞL �
SUð3ÞR �-PT due to the relatively-large kaon mass
compared to the scale of chiral symmetry breaking (�� �
1 GeV), particularly in the baryon sector, it is important to
be able to verify that the nonresonant contributions to KK
scattering are indeed small, as estimated in �-PT.
In this work we present the first lattice QCD calcula-

tion of the KþKþ scattering length. The calculations are
performed on the coarse MILC lattices (with a prelimi-
nary calculation on one ensemble of the fine MILC lat-
tices) and three-flavor mixed-action �-PT (MA�-PT),
which includes the leading-order lattice-spacing effects, is
used to extrapolate to the continuum and to the (isospin-
symmetric) physical value of the meson masses. We find
that at the physical value of mKþ=fKþ

mKþaKþKþ ¼ �0:352� 0:016; (1)

where the statistical and systematic errors have been com-
bined in quadrature.
The �, K, and � are identified as the pseudo-Goldstone

bosons associated with the spontaneous breaking of the
approximate chiral symmetry of quantum chromodynam-
ics (QCD), and therefore the form of their interactions is
highly constrained. In fact, at leading order in �-PT, the
scattering of two of these mesons is uniquely determined
[7]. Corrections to the leading order scattering amplitude
arise in a systematic expansion about the chiral limit [8,9],
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scaling generically as ðm2
�;K;�=�

2
�Þn where n counts the

order in the chiral expansion [10]. For obvious reasons,

SUð3Þ �-PT is expected to converge more slowly than
two-flavor �-PT.

There is a wealth of phenomenological and theoretical
knowledge concerning low-energy �� scattering. The chi-
ral extrapolation formulas for �� scattering are known to
two loops, or next-to-next-to-leading order (NNLO), in
both SUð2Þ [11,12] and SUð3Þ [13] �-PT. Combined
with a Roy equation analysis [14–16], this has allowed
for remarkably-precise determinations of the two s-wave
�� scattering lengths [17–19]. In the case of the K�
systems, the extrapolation formulas for the scattering am-
plitudes are known to one [20–22] and two loops [23] and
have allowed for theoretical predictions of the I ¼ 1=2 and
I ¼ 3=2 scattering lengths. However, the uncertainty in
these theoretical predictions is substantial. There are pro-
posed experiments to study the K� atoms by the DIRAC
collaboration [24] at CERN, J-PARC, and GSI, which will
significantly reduce the uncertainty in these scattering
lengths. To date, there have been no experimental deter-
minations of the I ¼ 1KK scattering length, aI¼1

KK , but
recently it has been calculated at next-to-leading order
(NLO) in �-PT [25].

The methods for studying two-particle interactions in a
finite Euclidean volume are well-known [26–29]. The in-
teraction energy of two hadrons in a finite volume uniquely
determines p cot�ðpÞ, and hence their scattering ampli-
tude, below kinematic thresholds. The scattering parame-
ters, such as the scattering length and effective range, can
then be determined from calculations of p cot�ðpÞ over
a range of energies. These methods paved the way for
pioneering quenched QCD calculations of two-particle
interactions a little over a decade ago [30–34]. Since
then, there have been a number of additional quenched
calculations of the I ¼ 2�� scattering length [35–42]. The
first dynamical calculation of �� interactions (including
the phase shift) was performed by the CP-PACS col-
laboration with two flavors (nf ¼ 2) of improved Wilson

fermions [43] and pion masses in the range 500 & m� &
1100 MeV. Recently, dynamical calculations of the I ¼
2�� scattering length with three flavors of light quarks
(nf ¼ 2þ 1) were performed with pion masses in the

range 300 & m� & 500 MeV. These calculations used a
mixed-action scheme of domain-wall valence fermions on
asqtad-improved staggered sea fermions at a single lattice
spacing of b� 0:125 fm [44,45], and used mixed-action
�-PT (MA�-PT) (which describes the finite-lattice-
spacing effects) calculations of the scattering length [46]
to extrapolate to the physical meson masses. Only recently
has the first calculation of the I ¼ 3=2 K� scattering
length in quenched QCD been performed [47], and a
fully-dynamical nf ¼ 2þ 1 calculation [48] followed

shortly afterward. When combined with �-PT, this latter
calculation allowed for a simultaneous prediction of the

I ¼ 1=2 and I ¼ 3=2K� scattering lengths using the NLO
extrapolation formulas [48].
This paper is organized as follows. Section II contains

the details of our mixed-action lattice QCD calculation.
Discussion of the relevant correlation functions and an
outline of the methodology and fitting procedures can
also be found in this section. The results of the lattice
calculation and the analysis with MA�-PT are presented
in Sec. III. In this section, the various sources of systematic
uncertainty are identified and quantified. In Sec. IV we
conclude.

II. METHODOLOGYAND DETAILS OF THE
LATTICE CALCULATION

The computation in this paper uses the mixed-action
lattice QCD scheme developed by LHPC [49,50]. Domain-
wall fermion propagators were generated from a smeared
source on nf ¼ 2þ 1 asqtad-improved [51,52] coarse con-

figurations generated with rooted-staggered sea quarks
[53]. Hypercubic-smeared [54–57] gauge links were used
in the domain-wall fermion action to improve chiral sym-
metry (further details about the mixed-action scheme can
be found in Refs. [48,58]). The mixed-action calculations
we have performed involved computing the valence-quark
propagators using the domain-wall formulation of lattice
fermions, on each gauge-field configuration of an ensemble
of the MILC lattices that are generated using the staggered
formulation of lattice fermions [59–63] and taking the
fourth root of the fermion determinant, i.e. domain-wall
valence quarks on a rooted-staggered sea. In the continuum
limit the nf ¼ 2 staggered action has an SUð8ÞL �
SUð8ÞR �Uð1ÞV chiral symmetry due to the four-fold taste
degeneracy of each flavor, and each pion has 15 degenerate
additional partners. At finite lattice spacing this symmetry
is broken and the taste multiplets are no longer degenerate,
but have splittings that are Oð�2b2Þ. While there is no
proof, there are arguments to suggest that taking the fourth
root of the fermion determinant recovers the contribution
from a single Dirac fermion.1 The results of this paper
assume that the fourth-root trick recovers the correct con-
tinuum limit of QCD.
The present calculations were performed predominantly

with the coarse MILC lattices with a lattice spacing of b�
0:125 fm, and a spatial extent of L� 2:5 fm. On these
configurations, the strange quark was held fixed near
its physical value while the degenerate light quarks
were varied over a range of masses; see Table I and
Refs. [58,78–81] for details. Further, preliminary calcula-
tions were performed on 506 configurations of one fine
MILC ensemble. On the coarse MILC lattices, Dirichlet

1For a nice introduction to staggered fermions and the fourth-
root trick, see Ref. [64]. For the most recent discussions re-
garding the continuum limit of staggered fermions with the
fourth-root trick, see Refs. [57,65–77].
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boundary conditions were implemented to reduce the origi-
nal time extent of 64 down to 32 and thus save a factor of
2 in computational time.2 While this procedure leads to
minimal degradation of a nucleon signal, it does limit the
number of time slices available for fitting meson proper-
ties. By contrast, on the fine MILC ensemble, antiperiodic
boundary conditions were implemented and all time slices
are available.

When determining the mass of the valence quarks there
is an ambiguity due to the nondegeneracy of the 16 stag-
gered bosons associated with each pion. One could choose
to match to the taste-singlet meson or to any of the mesons
that become degenerate in the continuum limit. Given
that I ¼ 1KK scattering length has been calculated at
NLO in �-PT, PQ�-PT, and MA�-PT (which, by defini-
tion, includes the leading finite lattice-spacing effects)
in Ref. [25],3 the effects of matching can be described,
and removed, by calculations appropriate to the choice of
matching [83] (provided the meson masses remain in the
chiral regime). The choice of tuning to the lightest taste
of staggered meson mass, as opposed to one of the other
tastes, provides for the ‘‘most chiral’’ domain-wall mesons
and therefore reduces the error in extrapolating to the
physical point. The mass splitting between the domain-
wall mesons and the staggered taste-identity mesons,
which characterizes the unitarity violations present in the
calculation, is then given by [84,85]

b2m2
�I
� b2m2

�dwf
’ b2�I ¼ 0:0769ð22Þðl:u:Þ coarse;

¼ 0:0295ð27Þðl:u:Þ fine; (2)

where l.u. denotes lattice units.

A summary of the lattice parameters and resources used
in this work is given in Table I. In order to generate large
statistics on the existing MILC configurations, multiple
propagators from sources displaced both temporally and
spatially on the lattice were computed. The correlators
were blocked so that one average correlator per configu-
ration was used in the subsequent jackknife statistical
analysis.
In order to determine the interaction energy between the

two kaons, both the single-kaon, CKþðtÞ, and two-kaon,
CKþKþðp; tÞ, correlation functions were computed, where t
is the Euclidean time separation between the hadronic
source and sink operators and p denotes the magnitude
of the equal and opposite spatial momentum of each kaon.
The single-kaon correlation function is

CKþðtÞ ¼ X
x

hK�ðt;xÞKþð0; 0Þi; (3)

where the sum over all spatial sites projects onto the zero-
momentum state, p ¼ 0. A correlation function which
projects onto the KþKþ s-wave state in the continuum
limit is

CKþKþðp; tÞ
¼ X

jpj¼p

X
x;y

eip�ðx�yÞhK�ðt;xÞK�ðt; yÞKþð0; 0ÞKþð0; 0Þi:

(4)

In Eqs. (3) and (4), Kþðt;xÞ ¼ �sðt;xÞ�5uðt;xÞ is a
Gaussian-smeared interpolating field for the charged kaon.
In the relatively-large spatial volumes used in the calcu-
lation, the interaction energy between the two kaons is a
small fraction of the total energy, which is dominated by
the kaon masses. To determine this energy, the ratio of
correlation functions,

GKþKþðp; tÞ � CKþKþðp; tÞ
CKþðtÞCKþðtÞ !

X1
n¼0

Ane
��Ent; (5)

was constructed, with the arrow denoting the large-time,
infinite-number-of-gauge-configurations limit (far from
the boundary). Because of the periodic boundary condi-
tions imposed on the propagators computed on the fine

TABLE I. The parameters of the MILC gauge configurations and domain-wall propagators used in this work. The subscript l
denotes light quark (up and down), and s denotes the strange quark. The superscript dwf denotes the bare-quark mass for the domain-
wall fermion propagator calculation. The last column is the number of configurations times the number of sources per configuration.

Ensemble bml bms bmdwf
l bmdwf

s 103 � bmres
a # of propagators

2064f21b676m007m050 0.007 0.050 0.0081 0.081 1.604 468� 16
2064f21b676m010m050 0.010 0.050 0.0138 0.081 1.552 658� 20
2064f21b679m020m050 0.020 0.050 0.0313 0.081 1.239 486� 24
2064f21b681m030m050 0.030 0.050 0.0478 0.081 0.982 564� 8
2896f2b709m0062m031 0.0062 0.031 0.0080 0.0423 �0:25b 506� 1

aComputed by the LHP collaboration.
bEstimated on a small number of configurations.

2On the Tungsten machine at NCSA, running on 32 dual xeon
nodes (64 processors) it takes approximately 80 minutes to
generate one light quark domain-wall propagator (with ls ¼
16) yielding m� � 290 MeV.

3The PQ�-PT and MA�-PT expressions for the I ¼ 1KK
scattering length are identical in form at NLO. This is not unique
to this quantity and can be understood on more general grounds,
as mixed-action theories with chirally-symmetric valence fermi-
ons exhibit many universal features [82].
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lattices, the Kþ correlation function becomes a single cosh
function far from the source, while the KþKþ correlation
function becomes the sum of two cosh’s, one depending
uponmKþ and the other depending upon EKþKþ , leading to
a nontrivial form forGKþKþðp; tÞ. As an alternative method
to calculating the interaction energy (and a check of the
systematics), a jackknife analysis of the difference between
the energies extracted from the long-time behavior of the
double- and single-kaon correlation functions individually
was performed, finding results in agreement with those
determined from Eq. (5). The interaction energy is related
to the two-particle energy eigenvalues and twice the
kaon mass,

�En � EKK
n � 2mK ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
n þm2

K

q
� 2mK: (6)

In the absence of interactions, the energy levels occur at
values of the momenta p ¼ 2�j=L where j is an integer
triplet, corresponding to the allowed single-particle mo-
mentummodes in a cubic volume. In the interacting theory,
the two-particle eigenmomenta, pn, are shifted from these
values and can be determined from Eq. (6) and the calcu-
lated interaction energy. The Lüscher formula [26–29] can
then be used to determine the infinite-volume scattering
parameters from the real part of the inverse scattering
amplitude by solving the equation

p cot�ðpÞ ¼ 1

�L
S

�
pL

2�

�
; (7)

which is valid below the inelastic threshold. The regulated
three-dimensional sum is [86]

S ð�Þ � Xjjj<�

j

1

jjj2 � �2
� 4��; (8)

which runs over all triplets of integers j such that jjj<�
and the limit� ! 1 is implicit. The scattering parameters
are then related to p cot�ðpÞ through the effective-range
expansion

p cot�ðpÞ ¼ 1

a
þ 1

2
rp2 þOðp4Þ; (9)

where a is the scattering length and r is the effective range.
For naturally-sized scattering lengths and small interaction
momenta, p cot�ðpÞ is predominantly given by the inverse
scattering length.

III. ANALYSIS AND THE CHIRAL AND
CONTINUUM EXTRAPOLATIONS

In order to extract quantities of interest from the cal-
culated correlation function, the argument of a single
exponential function must be determined, along with its
uncertainty. This can be accomplished in several ways, and
we have chosen to analyze effective mass and scattering
length plots. For instance, the effective energy splitting of

two kaons in the lattice volume is constructed from the
two-kaon correlation function via

�EKþKþðtÞ ¼ log

�
GKþKþð0; tÞ

GKþKþð0; tþ 1Þ
�
: (10)

The uncertainty associated with �EKþKþðtÞ on each
time slice is determined by the jacknife procedure. To
construct the effective scattering length, aKþKþðtÞ, the
energy �EðtÞ is inserted into Eq. (7) to yield a scattering
length at each time slice and its uncertainty. To remove any
scale-setting ambiguities, the scattering length is multi-
plied by the ‘‘effective’’ kaon mass, mKðtÞ. The effective
scattering length plots associated with each lattice en-
semble are shown in Fig. 2. There is no unique method
with which to extract the quantity of interest from the
effective mass or scattering length plots, which receive
contributions from an infinite number of exponentials. For
lattices with an infinite time extent the correlation func-
tions will be dominated by a single exponential function
dictated by the lowest energy state, and hence the effective
mass scattering length plot will tend to a constant. In the
asymptotically large-time region, a fit is performed to ex-
tract the quantity of interest. For any real lattice calcula-
tion, the time extent is not infinitely large, and so a fitting
region must be decided upon that allows for the optimal
determination of the quantity of interest from the calcula-
tion. On the coarse lattices with the Dirichlet boundary,
there are exponentially decaying contributions from the
source, and exponentially growing contributions from
the boundary, and the ‘‘signal region’’ is in the middle.
The actual fitting region is dictated by a region over which
the effective mass or scattering length plots are time inde-
pendent within their uncertainties. Clearly, determining the
fitting interval is somewhat subjective as deviations from
constant behavior are implicitly assumed to result from
large energy gaps in the spectrum in the finite volume. On
the coarse lattices, single exponential behavior of the kaon
mass correlation function is seen to set in beyond time slice
t ¼ 6, and remain until t� 16, as seen in Fig. 1. Once a
fitting range has been chosen, a correlated �2=dof fit is
performed to extract the quantity of interest, with its sta-
tistical uncertainty determined by the range for which
�2 ! �2 þ 1, in the usual way. However, there is a system-
atic error associated with each quantity due to the fact that
the fitting range is not uniquely defined. We estimate the
fitting systematic uncertainty by the range of values ob-
tained by varying the fitting intervals at either end, and by
removing one or more time slices at random and refitting.
In the third panel of Fig. 1, corresponding to the kaon mass
for m� � 490 MeV, it is clear that fitting to a constant
kaon mass over the interval between t ¼ 9 and t ¼ 15
yields an unappealingly large �2=dof due to the small
statistical uncertainties at each time slice. The absolute
variation is at the �1% level. Clearly one could choose
another fitting interval and obtain a different kaon mass at
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the�1% level, and it is clear that the total uncertainty will
be dominated by the systematic fitting uncertainty. There-
fore, the fitting intervals, central values, and statistical er-
rors should be viewed as representative and it is the total
error that imparts the information that is extracted from the
data. The statistical error and central values by themselves
provide only an incomplete discussion of the calculation.
One could use a fitting interval from t ¼ 6 to t ¼ 9 and
obtain a value that, with the systematic error that we have
determined, would be an equally valid result to present.

The statistical errors are determined from a jackknife
analysis, while the quoted systematic errors are estimated
from both the range of fits as well as the two methods of

determining the interaction energy described in Sec. II.
In Table II the calculated values of the meson masses,
decay constants, two-particle energy shifts, and scattering
lengths are presented. Effective kaon mass plots and effec-
tive scattering length plots are shown in Figs. 1 and 2,
respectively.

A. Mixed-action �-PT at one loop

The lattice QCD calculations performed in this work are
isospin symmetric, mu ¼ md, and do not include electro-
magnetism. Therefore isospin is a good quantum number.
Having computed the KþKþ scattering length at a number
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FIG. 2 (color online). The effective KþKþ scattering length
times the effective mKþ as a function of time slice. The solid
black lines and shaded regions are fits with 1-� statistical uncer-
tainties (Table II). The dashed lines correspond to the statistical
and systematic (Table II) uncertainties added in quadrature.
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FIG. 1 (color online). The effective mKþðtÞ plots. The solid
black lines and shaded regions are fits with 1-� statistical uncer-
tainties (Table II). The dashed lines correspond to the statistical
and systematic (Table II) uncertainties added in quadrature.
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of unphysical pion masses and at a finite-lattice-spacing,
isospin-symmetric MA�-PT is used to extrapolate to the
physical (isospin-symmetric) meson masses and to the
continuum.

In Ref. [25], the expression for the I ¼ 1KK scattering
length was determined to NLO in �-PT, including correc-
tions due to mixed-action lattice artifacts. As with the
I ¼ 2�� scattering length [46], it was demonstrated that
when the mixed-action extrapolation formula is expressed
in terms of the lattice-physical parameters computed on
the lattice,4 m�, mK, and fK, there are no lattice-spacing-
dependent counterterms at Oðb2Þ, Oðb2m2

KÞ, or Oðb4Þ.
There are finite-lattice-spacing-dependent corrections, pro-
portional to b2�I, and therefore entirely determined to this
order inMA�-PT. Again, as with the I ¼ 2�� system, the
NLO mixed action (MA) formula for mKa

I¼1
KK does not

depend upon the mixed valence-sea meson masses, and
therefore does not require knowledge of the mixed-meson
masses [87]. This allows for a precise determination of the
predicted MA corrections to the scattering length. At NLO
in MA�-PT, the scattering length takes the form

mKa
I¼1
KK ðb � 0Þ

¼ � m2
K

8�f2K

�
1þ m2

K

ð4�fKÞ2
�
C� ln

�
m2

�

�2

�

þ CK ln

�
m2

K

�2

�
þ CX ln

�
~m2
X

�2

�
þ Css ln

�
m2

ss

�2

�

þ C0 � 32ð4�Þ2LI¼1
KK ð�Þ

��
; (11)

where the various coefficients, Ci, along with ~m2
X and m2

ss,
can be found in Appendix E of Ref. [25]. To account for the
predicted MA corrections, one can either use Eq. (11) to
directly fit the results of the lattice calculation (Table II) or
one can determine the quantity

�MAðmKa
I¼1
KK Þ ¼ mKa

I¼1
KK jMA �mKa

I¼1
KK j�PT; (12)

collected in Tables III and IV, subtract this from the results
of the lattice calculation and use the NLO �-PT expression
for the scattering length,

mKa
I¼1
KK ¼ � m2

K

8�f2K

�
1þ m2

K

ð4�fKÞ2
�
2 ln

�
m2

K

�2

�

� 2m2
�

3ðm2
� �m2

�Þ
ln

�
m2

�

�2

�
þ 2ð20m2

K � 11m2
�Þ

27ðm2
� �m2

�Þ

� ln

�
m2

�

�2

�
� 14

9
� 32ð4�Þ2LI¼1

KK ð�Þ
��
: (13)

As there is only one counterterm at NLO, it can be
determined on each ensemble. In order to carry out
this analysis, further sources of systematic errors are
identified; higher-order effects in the chiral expansion,
�NNLOðmKa

I¼1
KK Þ; exponentially-suppressed finite-volume

effects, �FVðmKa
I¼1
KK Þ; residual chiral symmetry breaking

effects from the domain-wall action, �mres
ðmKa

I¼1
KK Þ; and

the error in truncating the effective-range expansion with
the inverse scattering length, �rangeðmKa

I¼1
KK Þ. These vari-

ous sources of systematic uncertainty, as well as the pre-
dicted mixed-action corrections, the adjusted scattering
lengths, and the determined values of LI¼1

KK ð�Þ are given
in Tables III and IV. In the following sections, each source
of systematic uncertainty is addressed in turn.

1. NNLO �-PT corrections

The NNLO extrapolation formula for mKa
I¼1
KK does not

exist, and therefore estimates of contributions from higher
order in the chiral expansion are limited to power-counting
arguments. A conservative estimate is provided by

�NNLOðmKa
I¼1
KK Þ ¼ � 2�m6

K

ð4�fKÞ6
�
ln

�
m2

K

f2K

��
2
; (14)

and the resulting uncertainties are given in Tables III and
IV.

TABLE II. Masses, energies, and scattering lengths determined from the lattice calculation. The first uncertainty assigned to each
quantity is statistical, determined with the jackknife procedure, and the second uncertainty is an estimated fitting systematic.

Quantity ml ¼ 0:007 ml ¼ 0:010 ml ¼ 0:020 ml ¼ 0:030 ml ¼ 0:0062

bm� 0.1846(4)(2) 0.2226(4)(3) 0.3104(3)(15) 0.3747(4)(8) 0.1453(5)(13)

Fit Range 8–14 9–13 9–15 6–13 17–39

bmK 0.3680(4)(4) 0.3776(3)(4) 0.4046(3)(13) 0.4300(4)(3) 0.2458(5)(13)

Fit Range 7–11 9–15 9–15 9–13 20–34

m�=fK 1.712(4)(3) 2.069(3)(5) 2.835(3)(11) 3.335(4)(9) 1.978(15)(12)

mK=fK 3.412(5)(4) 3.509(3)(6) 3.695(3)(10) 3.827(4)(9) 3.344(19)(21)

�EKK(l.u.) 0.006 19(30)(32) 0.006 63(15)(35) 0.006 06(14)(22) 0.006 13(19)(10) 0.004 37(36)(105)

Fit Range 12–17 10–16 11–17 12–17 18–34

mKþaKþKþ �0:448ð19Þð20Þ �0:497ð10Þð22Þ �0:523ð10Þð23Þ �0:590ð15Þð21Þ �0:391ð28Þð82Þ
ðb � 0Þ

4Quantities calculated directly from the correlation functions
are denoted as lattice-physical parameters. These are not ex-
trapolated to the continuum, to infinite volume nor to the
physical quark mass point.
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2. Finite-volume effects in mixed-action �-PT

Lüscher’s relation between the two-particle energy lev-
els in a finite volume and their infinite-volume scattering
parameters receives exponential corrections which depend
upon the lattice size and the lightest particle in the spec-
trum, and generically scale as e�m�L. In Ref. [88], the
exponential volume corrections were determined for the
I ¼ 2�� system. Using these methods, one can also de-
termine the exponential volume corrections for the mixed-
action KþKþ system. These exponentially-suppressed
volume corrections are formally subleading compared to
the effective-range corrections which have not been in-
cluded, and provide an estimate of the finite-volume cor-
rections. These terms are denoted as

�FVðmKa
I¼1
KK Þ ¼ �ðmKa

I¼1
KK jFV �mKa

I¼1
KK j1VÞ (15)

and are collected in Tables III and IV.

3. Residual chiral symmetry breaking

The NLO mixed-action formula, Eq. (11), as well as the
corrections of Tables III and IV, were derived assuming
valence fermions with perfect chiral symmetry. However,
domain-wall fermions are necessarily implemented with a
finite fifth dimension which induces residual chiral sym-
metry breaking. The leading contributions from this resid-
ual chiral symmetry breaking can be parametrized with a
residual quark mass [61,62],

mdwf
l ! mdwf

l þmres; mdwf
s ! mdwf

s þmres: (16)

However, by expressing the MA�-PT formula in terms of
the lattice-physical meson masses, the dominant contri-
bution from these mres terms are automatically included.
This leaves corrections at NLO (assuming mres �mq in

the expansion), some of which have undetermined coeffi-
cients. Naive dimensional analysis [89] can be used to
estimate the size of these terms,

�mres
ðmKa

I¼1
KK Þ ¼ � 8�m4

K

ð4�fKÞ4
mres

ml

; (17)

which are shown in Tables III and IV.

4. Range corrections

When the spatial dimensions of the lattice are large
compared to the range of the interaction, and the scattering
length is of natural size, as is the case for KþKþ scattering
at the quark masses used in this work, the effective range
first enters at OðL�6Þ in the expansion of the two-hadron
energy in powers of 1=L. Therefore, neglecting the
effective-range parameter introduces a �0:2% uncertainty
in the extracted values of mKþaKþKþ , assuming r�
1=ð2m�Þ for m� � mK. To be conservative, a 1% system-
atic uncertainty due to the neglect of the effective range is
assigned to the scattering length determined on each
ensemble.

TABLE III. The continuum limit of the scattering length at the physical point on the coarse MILC lattices, the extracted counterterm
that enters at NLO in �-PT, and the various systematic uncertainties that have been identified beyond those associated with fitting. The
correction factors, �i, are defined in the text. The first uncertainty associated with each scattering length is statistical, the second is the
systematic uncertainty from Table II, and the third is from the systematic uncertainties presented in this table (combined in
quadrature). The first uncertainty associated with each LI¼1

KK ð� ¼ fKÞ is statistical, while the second is systematic (all systematics
combined in quadrature).

Quantity ml ¼ 0:007 ml ¼ 0:010 ml ¼ 0:020 ml ¼ 0:030

�MAðmKa
I¼1
KK Þ �0:0067ð14Þ �0:0062ð16Þ �0:0052ð19Þ �0:0048ð21Þ

�NNLOðmKa
I¼1
KK Þ �0:016 �0:019 �0:028 �0:037

�FVðmKa
I¼1
KK Þ �0:001 �0:001 �0:000 �0:000

�mres
ðmKa

I¼1
KK Þ �0:007 �0:006 �0:005 �0:004

�rangeðmKa
I¼1
KK Þ �0:008 �0:008 �0:008 �0:007

mKþaKþKþ �0:441ð19Þð20Þð19Þ �0:491ð10Þð22Þð22Þ �0:518ð10Þð23Þð30Þ �0:585ð15Þð21Þð38Þ
ðb ! 0Þ
32ð4�Þ2LI¼1

KK ðfKÞ 7.3(5)(8) 6.8(3)(8) 7.7(2)(8) 7.4(3)(8)

TABLE IV. The continuum limit of the scattering length at the
physical point on the fine MILC lattices, the extracted counter-
term that enters at NLO in �-PT, and the various systematic
uncertainties that have been identified beyond those associated
with fitting. The correction factors and uncertainties are dis-
cussed in the caption of Table III.

Quantity ml ¼ 0:0062

�MAðmKa
I¼1
KK Þ �0:0048ð15Þ

�NNLOðmKa
I¼1
KK Þ �0:013

�FVðmKa
I¼1
KK Þ �0:001

�mres
ðmKa

I¼1
KK Þ �0:004

�rangeðmKa
I¼1
KK Þ �0:004

mKþaKþKþ �0:387ð28Þð82Þð14Þ
ðb ! 0Þ
32ð4�Þ2LI¼1

KK ðfKÞ 8.4(9)(2.6)
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B. Extrapolation to the physical point

Calculations on the four coarse lattice ensembles yield
pion and kaon masses of approximately ðm�;mKÞ �
ð290; 580Þ, (350, 595), (490, 640) and (590 ,675) MeV.
The chiral expansion will converge better for smaller me-
son masses, and one method to examine the convergence of
the chiral expansion is to selectively ‘‘prune’’ the heaviest
data sets [44,45,48]. This is done by first determining
LI¼1
KK ð� ¼ fKÞ by fitting to all four data points (fit A),

then removing the heaviest point and fitting (fit B), and
finally removing the heaviest two points and fitting (fit C).
The results of these fits are collected in Table V. The
extracted values of LI¼1

KK from each of the fits are consis-
tent with each other within the uncertainties. In analogy
with the comparison convention employed for �þ�þ,
the lattice data is extrapolated to the physical values
of m�þ=fKþ ¼ 0:8731� 0:0096, mKþ=fKþ ¼ 3:088�
0:018, and m�=fKþ ¼ 3:425� 0:0019 assuming isospin

symmetry, and the absence of electromagnetism. Taking
the range of values of LI¼1

KK spanned by these fits, we find

mKþaKþKþ ¼ �0:352� 0:016;

32ð4�Þ2LI¼1
KK ð� ¼ fKÞ ¼ 7:1� 0:7;

(18)

where the statistical and systematic errors have been com-
bined in quadrature. The results are shown in Fig. 3. It is
somewhat surprising that the calculated scattering lengths
are consistent, within uncertainties, with tree-level �-PT.
This was also found to be the case for �þ�þ scattering
even at large pion masses.

C. Comparing KþKþ scattering with �þ�þ scattering

A comparison between the lattice calculations of �þ�þ
[45] and KþKþ scattering lengths allows for a study of
flavor-SUð3Þ breaking in the scattering amplitude due to
terms that are beyond NLO in �-PT. The linear com-
bination of Gasser-Leutwyler coefficients contributing
to the I ¼ 2�� scattering length at NLO is the same as
the combination contributing to the I ¼ 1KK scattering
length [25]

LI¼1
KK ð�Þ ¼ LI¼2

�� ð�Þ: (19)

TABLE V. The results of fitting three-flavor MA�-PT at NLO to the computed scattering
lengths, as described in the text. The values of mKþaKþKþ are those extrapolated to the physical
(isospin-symmetric) meson masses and to the continuum. The first uncertainty is statistical and
the second is systematic (as described in the text).

FIT 32ð4�Þ2LI¼1
KK ðfKÞ mKþaKþKþ (extrapolated) �2=dof

A 7.3(1)(4) �0:347� 0:003� 0:009 0.22

B 7.3(2)(5) �0:347� 0:004� 0:011 0.32

C 6.9(2)(6) �0:355� 0:005� 0:013 0.14

3 3.5 4

m
K+ / fK+

-0.6

-0.5

-0.4

-0.3

m
K

+
 a

K
+

K
+

χ-PT  (Tree Level)

MILC coarse (b  /= 0)

MILC fine  (b  /= 0)

physical point

extrapolated with  MAχ-PT

FIG. 3 (color online). mKþaKþKþ versus mKþ=fKþ . The
points with error bars are the results of this lattice calculation
(not extrapolated to the continuum) on both the coarse and fine
MILC lattices. The solid curve corresponds to the tree-level
prediction of �-PT, and the point denoted by a star and its
associated uncertainty is the value extrapolated to the physi-
cal meson masses and to the continuum. The smaller uncer-
tainty associated with each point is statistical, while the larger
uncertainty is the statistical and fitting systematic combined in
quadrature.

2 2.5 3 3.5

mπ / fπ

4
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7
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9
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32(4π)
2
 Lππ

I=2
(fπ)

32(4π)
2
 LKK

I=1
(fπ)

FIG. 4 (color online). 32ð4�Þ2LI¼1
KK ðf�Þ (circles) and

32ð4�Þ2LI¼2
�� ðf�Þ (squares) versus m�=f�. The sets have been

slightly displaced horizontally for convenience of viewing. The
smaller uncertainty associated with each point is statistical,
while the larger uncertainty is the statistical and fitting system-
atic combined in quadrature.
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To compare extractions of these counterterms, the scales at
which they are evaluated must be the same, and the scale-
dependence of LI¼1

KK ð�Þ is

32ð4�Þ2LI¼1
KK ð�Þ ¼ 32ð4�Þ2LI¼1

KK ð�0Þ� 28

9
ln

�
�2

�2
0

�
: (20)

The counterterms extracted from the mixed-action lattice
calculations are shown in Fig. 4 as a function of m�=f�. It
is clear that while there appears to be a difference between
LI¼1
KK ðf�Þ and LI¼2

�� ðf�Þ, more precise calculations of both
scattering lengths, particularly at the lightest pion masses,
are required for further exploration of higher-order terms in
the chiral expansion.

IV. DISCUSSION

We have presented results of a lattice QCD calculation
of the KþKþ scattering length performed with domain-
wall valence quarks on asqtad-improved MILC con-
figurations with 2þ 1 dynamical staggered quarks. The
calculations were performed on the coarse MILC lattices
with a lattice spacing of b� 0:125 fm (with a preliminary
calculation on one ensemble of the fine MILC lattices with
b� 0:09 fm) and at a single lattice spatial size of L�
2:5 fm. One-loop MA�-PT with three flavors of light
quarks was used to perform the chiral and continuum
extrapolations. Our prediction for the physical value of
the KþKþ scattering length is mKþaKþKþ ¼ �0:352�
0:016, and we emphasize once again that this result
rests on the assumption that the fourth-root trick recov-
ers the correct continuum limit of QCD. Deviations from
Weinberg’s tree-level prediction are found to be surpris-
ingly small, consistent with the lattice calculations of the
�þ�þ scattering length at heavier pion masses.

The lowest quark mass at which we have computed the
KþKþ scattering length corresponds to m� � 290 MeV.
This is determined by the lattices that have been generated
by the MILC collaboration, which ultimately is dictated by
the amount of computer power available to the USQCD
lattice effort. In the near future, lattices will become avail-
able at quark masses closer to the physical values, and if
the computer power allocated to us increases enough, we

will compute the KþKþ scattering length at these lighter
pion masses. Of course, as one goes to lighter quark mass at
fixed lattice spacing, the extent of the fifth dimension of the
domain-wall propagator will need to be increased to main-
tain a suitably small residual mass, further increasing the
required computer time, beyond the naive increase with
quark mass. As an example, we estimate that it will require
6 times the amount of computer power to compute with
m� � 250 MeV (ls ¼ 48) than withm� � 290 MeV (ls ¼
16) for comparable statistics on the coarse lattices, an
amount that currently exceeds our allocation from
USQCD by approximately a factor of 2.
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[74] S. Dürr and C. Hoelbling, Phys. Rev. D 74, 014513 (2006).
[75] A. Hasenfratz and R. Hoffmann, Phys. Rev. D 74, 014511

(2006).
[76] Y. Shamir, Phys. Rev. D 75, 054503 (2007).
[77] S. R. Sharpe, Proc. Sci., LAT2006 (2006) 022 [arXiv:

hep-lat/0610094].
[78] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage,

Phys. Rev. Lett. 97, 012001 (2006).
[79] S. R. Beane, K. Orginos, and M. J. Savage, Phys. Lett. B

654, 20 (2007).
[80] S. R. Beane, K. Orginos, and M. J. Savage, Nucl. Phys.

B768, 38 (2007).
[81] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage,

Phys. Rev. D 75, 094501 (2007).

SILAS R. BEANE et al. PHYSICAL REVIEW D 77, 094507 (2008)

094507-10



[82] J.W. Chen, D. O’Connell, and A. Walker-Loud, arXiv:
0706.0035.

[83] O. Bar, C. Bernard, G. Rupak, and N. Shoresh, Phys. Rev.
D 72, 054502 (2005).

[84] C. Aubin et al. (MILC Collaboration), Phys. Rev. D 70,
114501 (2004).

[85] C. Bernard et al. (MILC Collaboration), Proc. Sci.,
LAT2006 (2006) 163 [arXiv:hep-lat/0609053].

[86] S. R. Beane, P. F. Bedaque, A. Parreño, and M. J. Savage,
Phys. Lett. B 585, 106 (2004).

[87] K. Orginos and A. Walker-Loud, arXiv:0705.0572.
[88] P. F. Bedaque, I. Sato, and A. Walker-Loud, Phys. Rev. D

73, 074501 (2006).
[89] A. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).
[90] R. G. Edwards and B. Joo (SciDAC Collaboration), Nucl.

Phys. B, Proc. Suppl. 140, 832 (2005).

KþKþ SCATTERING LENGTH FROM LATTICE QCD PHYSICAL REVIEW D 77, 094507 (2008)

094507-11


