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We study the complete set of flavor-changing hyperon axial-current matrix elements at small

momentum transfer. Using partially quenched heavy baryon chiral perturbation theory, we derive the

chiral and momentum behavior of the axial and induced pseudoscalar form factors. The meson pole

contributions to the latter posses a striking signal for chiral physics. We argue that the study of hyperon

axial matrix elements enables a systematic lattice investigation of the efficacy of three-flavor chiral

expansions in the baryon sector. This can be achieved by considering chiral corrections to SUð3Þ
symmetry predictions, and their partially quenched generalizations. In particular, despite the presence

of eight unknown low-energy constants, we are able to make next-to-leading order symmetry breaking

predictions for two linear combinations of axial charges.
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I. INTRODUCTION

For the last decade, lattice gauge theory techniques have
made dramatic progress in increasing our understanding of
the nonperturbative regime of QCD [1]. Despite consider-
able advances, there are still sources of systematic error in
lattice data, for example, the finite extent of the lattice and
the unphysically large quark masses. Fortunately low-
energy hadron properties are dominated by virtual pion
interactions, and the systematic treatment of such interac-
tions using chiral perturbation theory (�PT) allows one to
parametrize the lattice volume and quark mass dependence
of certain observables. There has been considerable activ-
ity to understand theoretically the quark mass and lattice
volume dependence of hadronic observables. Further ex-
tensions of chiral perturbation theory have been developed
to account for quenching and partially quenching [2–5],
and discretization errors [6,7]. An example is the nucleon
axial charge, gA. Recent lattice studies have made impres-
sive strides toward determining gA [8,9]. In tandem, recent
�PT analyses of the chiral [10–12], continuum [13,14],
and volume extrapolations [15–17] are poised to connect
the data to the physical point. We are beginning to enter a
stage in which the combination of lattice QCD data and
�PT will enable the study the hadronic properties from the
first principles.

A serious issue, however, confronts this program when
extended to hyperon observables. Various SUð3Þ predic-
tions for hyperon properties compare poorly to experiment
in contrast to the many successful SUð2Þ predictions for the
nucleon. While �PT can be used to systematically incor-
porate effects from the strange quark mass, the systematic

expansion in the baryon sector has terms that scale (in the
worst case) as �m�=M, where m� is the mass of the

�-meson and M is the average hyperon mass. A well-
known conflict between �PT analyses and experimental
data exist for hyperon decays. For example, the nonlep-
tonic weak decays, � ! p�� and �þ ! n�þ, have been
extensively investigated experimentally. In particular the s-
and p-wave contributions to these weak decays are deter-
mined to high precision. Although efforts in the framework
of �PT have been devoted to understanding these non-
leptonic decays theoretically [18–27], long-standing dis-
agreement between these theoretical analyses and
experimental data remain [28–30].
One is thus led to question the efficacy of three-flavor

�PT in the baryon sector. Without this systematic model-
independent expansion, lattice QCD data for hyperon prop-
erties cannot be reliably extrapolated to the physical values
of the quark masses. Additionally volume and continuum
extrapolations using three-flavor �PT cannot be trusted.
Indeed the first lattice calculation of hyperon axial charges,
g�� and g�� [31,32], shows little evidence for the one-
loop predictions from (partially quenched) �PT [33]. The
lattice, however, can provide a diagnostic tool to investi-
gate the condition of three-flavor�PT. A complete study of
baryon axial charges is the natural starting point. These
couplings enter in the loop graphs that determine the long-
range chiral corrections to all baryon observables. Input of
these measured parameters into �PT expressions allows
one to numerically assess the behavior of the long-range
contributions in the chiral expansion. This information can
then be used to address the convergence of the chiral
expansion. Perhaps the expansion is converging to the
wrong answer, or perhaps the expansion is not converging
at all. If it is the latter case, one can use the lattice to
investigate the cause. Perhaps certain observables are cor-
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rupted by large values of local contributions that can be
isolated and determined from lattice data, or perhaps
nearby resonances are leading to large enhancements.

In this work, we provide a follow-up to [33] by deter-
mining the full set of hyperon matrix elements of flavor-
changing axial currents. We work to next-to-leading order
in partially quenched heavy baryon chiral perturbation
theory to address both the chiral behavior and
momentum-transfer dependence of the axial form factors.
Because of meson pole contributions, the pseudoscalar
form factor provides an observable well suited for the
investigation of chiral physics in three-flavor theories.
Despite the accumulation of a large number (eight) of
undetermined low-energy constants, we utilize the full
set of axial charges to make nontrivial next-to-leading
order predictions.

Our paper is organized as follows. First in Sec. II, as-
pects of PQ�PT relevant to our calculations are reviewed.
In Sec. III, we map the PQQCD axial-vector current onto
operators in PQ�PT up to next-to-leading order. The hy-
peron axial-current matrix elements are determined for
j�Ij ¼ 1 transitions (Sec. III B), and j�Sj ¼ 1 transitions
(Sec. III C). Various wave function renormalization factors
are collected in the appendix. Nontrivial next-to-leading
order predictions for axial charges, and a discussion of
SUð3Þ breaking corrections are presented in Sec. IV, which
concludes our paper.

II. PARTIALLY QUENCHED CHIRAL
LAGRANGIAN

Before we detail the calculation of the axial-current
matrix elements, we briefly review partially quenched
chiral perturbation theory. We recall the partially quenched
chiral Lagrangian in the meson sector first and emphasize
the relation between lattice measured meson masses and
the parameters of the Lagrangian. The baryon Lagrangian
is then described in detail.

A. Mesons

The lattice action we consider here is comprised of
valence and sea quarks, each of which comes in three
flavors. In the continuum limit, this action can be described
by the partially quenched QCD (PQQCD) Lagrange den-
sity, which is given by

L ¼ �Qi 6DQ� �QmQQ; (1)

where the quark fields appear in the vector Q, which has
entries

Q ¼ ðu; d; s; j; l; r; ~u; ~d; ~sÞT; (2)

and transforms in the fundamental representation of the
graded group SUð6j3Þ. The quark components of the field
Q satisfy the following graded equal-time commutation
relation

Q�
i ðxÞQ�y

k ðyÞ � ð�Þ�i�kQ�y
k ðyÞQ�

i ðxÞ
¼ ����ik�

3ðx� yÞ; (3)

where ð�;�Þ and ði; kÞ are spin and flavor indices, respec-
tively. The �k’s appearing above are given by �k ¼ þ1 for
k ¼ 1–6 and �k ¼ 0 for k ¼ 7–9. The �k maintain the
graded structure of the Lie algebra. Further, the graded
equal-time commutation relations for two Q’s or two Qy’s
vanish. The partially quenched generalization of the mass
matrix mQ is given by

mQ ¼ diagðmu;md;ms; mj; ml;ms; mu;md;msÞ: (4)

In this work, we enforce the isospin limit in both the
valence and sea sectors so that we have

mQ ¼ diagð �m; �m;ms;mj; mj; ms; �m; �m;msÞ: (5)

Notice that with Eq. (4) [and similarly Eq. (5)], there is an
exact cancellation between valence and ghost quark con-
tributions to the determinant in the path integral for the
QCD partition function. This cancellation leaves only the
contribution from the sea sector. When mQ ¼ 0, the

Lagrangian Eq. (1) has a graded Uð6j3ÞL �Uð6j3ÞR sym-
metry which will reduce to SUð6j3ÞL � SUð6j3ÞR �Uð1ÞV
by the axial anomaly [5]. We assume that the chiral sym-
metry is spontaneously broken: SUð6j3ÞL � SUð6j3ÞR !
SUð6j3ÞV , hence an identification between PQQCD and
QCD can be made. The low-energy effective theory of
PQQCD is written in terms of the pseudo-Goldstone me-
sons emerging from spontaneous chiral symmetry break-
ing. At leading order in an expansion in momentum and
quark mass,1 the PQ�PT Lagrangian for the mesons is
given by

L ¼ f2

8
strð@��y@��Þ þ �strðmq�

y þmy
q�Þ �m2

0�
2
0;

(6)

where f ¼ 132 MeV, the str( ) denotes a graded flavor
trace, and the meson fields are incorporated in � through

� ¼ exp

�
2i�

f

�
¼ 	2; � ¼ M �y

� ~M

� �
: (7)

The matrices M, ~M in Eq. (7) contain bosonic mesons,
while � and �y are matrices consisting of fermionic me-

sons. Here�0 ¼ strð�Þ= ffiffiffi
6

p
is the flavor singlet field and is

included as a device to obtain the flavor neutral propaga-
tors in PQ�PT. Expanding the Lagrangian in Eq. (6), one
can determine the meson masses which enter into the
calculations of baryon observables. In particular, the
masses of mesons at leading order with quark content
Qi

�Q0
j are

1Here we adopt the standard power counting: @2 �mq � "2,
where " is a small parameter.
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m2
QiQ

0
j
¼ 4�

f2
ððmQÞii þ ðmQ0 ÞjjÞ: (8)

The flavor singlet field additionally acquires a mass m2
0.

Because of the strong Uð1ÞA anomaly, this mass can be
taken on the order of the chiral symmetry breaking scale,
m0 ��� � 4�f. The flavor singlet field can thus be inte-

grated out. However, the propagator of the flavor neutral
fields deviate from a simple pole form [5]. For a, b ¼ u, d,
s, the �a�b propagator at leading order is given by [5]

G �a�b
¼ i�ab

q2�m2
aaþ i


� i

3

� ðq2�m2
jjþ i
Þðq2�m2

rrþ i
Þ
ðq2�m2

aaþ i
Þðq2�m2
bbþ i
Þðq2�m2

Xþ i
Þ ;
(9)

where the masses of valence-valence mesonsm2
aa,m

2
bb and

the masses of the sea-sea mesons m2
jj, m

2
rr are given by

Eq. (8). In Eq. (9), the mass mX is defined as m2
X ¼ 1

3 �
ðm2

jj þ 2m2
rrÞ. The flavor neutral propagator Eq. (9) can be

conveniently written in the form

G �a�b
¼ �abPa þH aaðPa; Pb; PXÞ; (10)

with

Pa ¼ i

q2 �m2
aa þ i


;

Pb ¼ i

q2 �m2
bb þ i


;

PX ¼ i

q2 �m2
X þ i


;

H abðA; B; CÞ ¼ � 1

3

�ðm2
jj �m2

aaÞðm2
rr �m2

aaÞ
ðm2

aa �m2
bbÞðm2

aa �m2
XÞ

A

� ðm2
jj �m2

bbÞðm2
rr �m2

bbÞ
ðm2

aa �m2
bbÞðm2

bb �m2
XÞ

B

þ ðm2
X �m2

jjÞðm2
X �m2

rrÞ
ðm2

X �m2
aaÞðm2

X �m2
bbÞ

C

�
: (11)

The above form is convenient for contributions from flavor
neutral mixing. When there is no mixing, i.e. a ¼ b and
A ¼ B, the hairpin propagator has a double pole and the
limit of Eq. (11) must be taken and produces

H aaðA; A; CÞ ¼ � 1

3

�
@

@m2
aa

ðm2
jj �m2

aaÞðm2
rr �m2

aaÞ
ðm2

aa �m2
XÞ

A

þ ðm2
jj �m2

XÞðm2
rr �m2

XÞ
ðm2

X �m2
aaÞ2

C

�
: (12)

In partially quenched simulations, one numerically de-
termines the values of the valence pion m�;val and valence

kaon mK;val masses, as well as the sea pion m�;sea and sea

kaon mK;sea masses. When one uses PQ�PT to calculate

the meson mass dependence of observables, they are ex-
pressed in terms of meson masses via the tree-level relation
in Eq. (8). To use the lattice determined meson masses in
the valence and sea sectors, it is straightforward algebra to
convert the loop meson masses appearing in PQ�PT to
those measured directly on the lattice. Explicitly we have

m2
uu ¼ m2

�u
¼ m2

�;val;

m2
us ¼ m2

K;val;

m2
ss ¼ m2

�s
¼ 2m2

K;val �m2
�;val;

m2
uj ¼ 1

2ðm2
�;val þm2

�;seaÞ;
m2

ur ¼ 1
2ðm2

�;val �m2
�;seaÞ þm2

K;sea;

m2
sj ¼ 1

2ðm2
�;sea �m2

�;valÞ þm2
K;val;

m2
sr ¼ �1

2ðm2
�;val þm2

�;seaÞ þm2
K;val þm2

K;sea;

m2
jj ¼ m2

�;sea;

m2
rr ¼ 2m2

K;sea �m2
�;sea;

m2
X ¼ 4

3m
2
K;sea � 1

3m
2
�;sea:

(13)

These relations must be modified if the source of partial
quenching is due to mixed lattice actions, see [34–36].

B. Baryon

In this section, we discuss the baryon sector of PQ�PT
in the framework of [37–39]. Building blocks for the
baryon Lagrangian are the supermultiplets Bijk and T �

ijk.

The 240-dimensional supermultiplet of spin- 12 baryons

Bijk satisfies the following relations under the interchange

of the flavor indices [37]:

B ijk ¼ ð�Þ1þ�j�kBikj;

Bijk þ ð�Þ1þ�i�jBjik þ ð�Þ1þ�i�jþ�j�kþ�k�iBkji ¼ 0;

(14)

and the familiar octet baryons are embeded inBijk through

[38,39]

B ijk ¼ 1ffiffiffi
6

p ð
ijlBl
k þ 
iklB

l
jÞ; (15)

where B is the octet baryon matrix

B ¼
1ffiffi
6

p �þ 1ffiffi
2

p �0 �þ p

�� 1ffiffi
6

p �� 1ffiffi
2

p �0 n

�� �0 � 2ffiffi
6

p �

0
BB@

1
CCA: (16)

The spin- 32 resonances are contained in the

138-dimensional supermultiplet T ijk, which satisfies

T ijk ¼ ð�Þ1þ�i�jT jik ¼ ð�Þ1þ�j�kT ikj; (17)

under the interchange of flavor indices [37]. Furthermore,
one embeds the decuplet baryons in T ijk by
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T ijk ¼ Tijk; (18)

where T is a totally symmetric tensor containing the dec-
uplet resonances

T111 ¼ �þþ; T112 ¼ 1ffiffiffi
3

p �þ; T122 ¼ 1ffiffiffi
3

p �0;

T222 ¼ ��; T113 ¼ 1ffiffiffi
3

p ��;þ; T123 ¼ 1ffiffiffi
6

p ��;0;

T223 ¼ 1ffiffiffi
3

p ��;�; T133 ¼ 1ffiffiffi
3

p ��;0;

T233 ¼ 1ffiffiffi
3

p ��;�; T333 ¼ ��:

(19)

The free Lagrangian for the 240-dimensional supermulti-
plet Bijk and the 138-dimensional supermultiplet T ijk

fields in SUð6j3Þ PQ�PT is given by [39]

L ¼ ið �Bv �DBÞ þ 2�Mð �BBMþÞ þ 2�Mð �BMþBÞ
þ 2�Mð �BBÞstrðMþÞ � ið �T �

v �DT �Þ
þ �ð �T �T �Þ þ 2�Mð �T �MþT �Þ
� 2 ��Mð �T �T �ÞstrðMþÞ; (20)

where the mass operator Mþ is defined by

Mþ ¼ 1
2ð	ymQ	

y þ 	mQ	Þ: (21)

The parameter� is the mass splitting between the octet and
decuplet baryons in the chiral limit. Phenomenologically
we know ��m, where  is a SUð3Þ meson, hence the

decuplet baryons must be included as dynamical fields in
Eq. (20). The parenthesis notation for flavor contractions
used in Eq. (20) is that of [39]. The partially quenched
Lagrangian describing the interactions of theBijk andT

�
ijk

with the pseudo-Goldstone mesons is given by [39]

L ¼ 2�ð �BS�BA�Þ þ 2�ð �BS�A�BÞ

þ 2H ð �T �
S�A�T �Þ þ

ffiffiffi
3

2

s
C½ð �T �

A�BÞ

þ ð �BA�T �Þ�: (22)

The axial-vector and vector meson fields A� and V� are

defined by A� ¼ i
2 ð	@�	y � 	y@�	Þ and V� ¼ 1

2 �
ð	@�	y þ 	y@�	Þ. The latter appears in Eq. (20) for the

covariant derivatives of Bijk and T ijk that both have the

form

ðD�BÞijk ¼ @�Bijk þ ðV�ÞliBljk þ ð�Þ�ið�jþ�mÞ

� ðV�Þmj Bimk þ ð�Þð�iþ�jÞð�kþ�nÞðV�ÞnkBijn:

(23)

The vector S� is the covariant spin operator [18,19]. The

parameters that appear in the PQ�PT Lagrangian can be
related to those in �PT by matching. To be more specific,

one restricts to the qseaqseaqsea sector and compares the
PQ�PT Lagrangian obtained with that of �PT. With this
matching procedure, one finds that � ¼ 2

3Dþ 2F, � ¼
� 5

3Dþ F, and the other parameters C and H appearing

above have the same numerical values as in �PT [39].

III. THE AXIAL-VECTOR CURRENT

A. The axial-vector current in PQ�PT

The baryon matrix elements of the axial-vector current,
ja�;5 ¼ �q�a���5q, have been studied extensively both on

the lattice [8,9] and �PT [10–12,15,16,18,19,33,40–46]. In
PQQCD, the axial current is defined by Ja�;5 ¼
�Q ��a���5Q. In general, one must worry that the choice

of supermatrices ��a is not unique even after the require-
ment strð ��aÞ ¼ 0 has been enforced. To be relevant for any
practical lattice calculation, the choice of PQQCDmatrices
should maintain the cancellation of valence and ghost
quark loops with an operator insertion [33,47]. This is
because otherwise the PQQCD theory corresponds to a
lattice theory where twice the number of disconnected
contractions must be calculated. However, since we are
only interested in flavor-changing operators, the self con-
tractions of these operators automatically vanish. Thus we
can decouple the ghost and sea quark sectors from the
flavor-changing axial current by choosing the upper 3�
3 block of �� to be the Gell-Mann matrices. This choice
merely corresponds to an axial transition operator that only
acts in the valence sector and is precisely what is imple-
mented on the lattice.2

Having fixed the �� supermatrices, we map the PQQCD
axial-current operator into the heavy baryon PQ�PT. At
leading order, the PQ�PT axial current is given by [10]

Ja�;5 ¼ 2�ð �BS�B ��a
	þÞ þ 2�ð �BS� ��a

	þBÞ

þ 2H ð �T �
S� ��a

	þT �Þ þ
ffiffiffi
3

2

s
C½ð �T �

��a
	þBÞ

þ ð �B ��a
	þT �Þ�; (24)

with �, �, H , and C the same low-energy constants
appearing in Eq. (22) and ��a

	þ ¼ 1
2 ð	 ��a	y þ 	y ��a	Þ.

Since we work to next-to-leading order (NLO) in the chiral
expansion and NLO in the momentum expansion, we
further require the contributions to the matrix elements
from NLO axial current. At NLO, there are two contribu-
tions to the axial matrix elements: one is from the NLO
axial current in the baryon sector and the other is obtained
from the local counterterms involving one insertion of the

2Isospin symmetry allows one to relate isospin transition
matrix elements to differences of flavor conserving matrix
elements. These difference have often been calculated on the
lattice. For strangeness transitions, SUð3Þ is badly broken dis-
allowing the analogous procedure.
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quark mass matrix mQ. The former is given by

Ja�;5 ¼
1

�2
�

f2n�½@�@�ð �BS�B ��a
	þÞ � @2ð �BS�B ��a

	þÞ� þ 2n�½@�@�ð �BS� ��a
	þBÞ � @2ð �BS� ��a

	þBÞ�g; (25)

while the latter reads [10]

J
a;mQ

�;5 ¼ 16
�

f2
½b1 �Bkjif ��a

	þ;Mþgni S�Bnjk þ b2ð�Þð�iþ�jÞð�kþ�nÞ �Bkjif ��a
	þ;MþgnkS�Bijn

þ b3ð�Þ�lð�jþ�nÞ �Bkjið ��a
	þÞliðMþÞnj S�Blnk þ b4ð�Þ�l�jþ1 �Bkjiðð ��a

	þÞliðMþÞnj
þ ðMþÞlið ��aÞnj ÞS�Bnlk þ b5ð�Þ�ið�lþ�jÞ �Bkjið ��a

	þÞljðMþÞni S�Bnlk þ b6
�Bkjið ��a

	þÞliS�BljkstrðMþÞ
þ b7ð�Þð�iþ�jÞð�kþ�nÞ �Bkjið ��a

	þÞnkS�BijnstrðMþÞ þ b8
�BkjiS�Bijkstrð ��a

	þMþÞ�; (26)

where the coefficients b1; b2 . . . ; b8 must be determined
from lattice simulations. The relation between the partially
quenched parameters n�; n� and the physical parameters
nD, nF in usual SUð3Þ �PT can be obtained by matching:
n� ¼ 2

3nD þ 2nF, n� ¼ � 5
3nD þ nF. Notice that the op-

erator b8
�BkjiS�Bijkstrð ��a

	þMþÞ does not contribute to the
flavor-changing transitions at tree level. This leaves seven
independent partially quenched NLO operators, one more
than that in ordinary SUð3Þ. However, because these coun-
terterms only contribute to tree level, no unphysical com-
binations will be introduced.

B. Isospin changing transitions

In the partially quenched theory, the supermatrix for the
�I ¼ 1 isospin changing transitions is

�� 1þ2i
ij ¼

�
1 i ¼ 1; j ¼ 2
0 otherwise:

(27)

Within the baryon octet there are six isospin �I ¼ 1
changing transitions, namely,

n ! p; �0 ! �þ; �� ! �0;

� ! �þ; �� ! �; �� ! �0:
(28)

The neutron to proton axial transition defines the nucleon
axial form factor GA;NNðq2Þ and induced pseudoscalar

form factor GP;NNðq2Þ

hpðP0ÞjJ1þ2i
�;5 jnðPÞi ¼ �UNðP0Þ

�
2S�GA;NNðq2Þ

þ q�q � S
ð2mNÞ2

GP;NNðq2Þ
�
UNðPÞ; (29)

where q� ¼ ðP0 � PÞ� is the four momentum transfer. The

�� transition matrix elements define the �� axial form
factor GA;��ðq2Þ and induced pseudoscalar form factor

GP;��ðq2Þ

h�0ðP0ÞjJ1þ2i
�;5 j��ðPÞi ¼ 1ffiffiffi

2
p �U�ðP0Þ

�
2S�GA;��ðq2Þ

þ q�q � S
ð2m�Þ2

GP;��ðq2Þ
�
U�ðPÞ:

(30)

While there are two �� isospin transitions, their matrix
elements are related by isospin algebra

h�þðP0ÞjJ1þ2i
�;5 j�0ðPÞi ¼ �h�0ðP0ÞjJ1þ2i

�;5 j��ðPÞi: (31)

The �� transition matrix elements define the �� axial
form factor GA;�� and induced pseudoscalar form factor

GP;��ðq2Þ

h�ðP0ÞjJ1þ2i
�;5 j��ðPÞi ¼ 1ffiffiffi

6
p �U�ðP0Þ

�
2S�GA;��ðq2Þ

þ q�q � S
ðm� þm�Þ2

GP;��ðq2Þ
�
U�ðPÞ:

(32)

Although there are two �� transition matrix elements,
they are related by isospin

h�þðP0ÞjJ1þ2i
�;5 j�ðPÞi ¼ h�ðP0ÞjJ1þ2i

�;5 j��ðPÞi: (33)

Finally, the �� axial form factor GA;�� and induced

pseudoscalar form factor GP;��ðq2Þ appear in the ��
transition matrix element

h�0ðP0ÞjJ1þ2i
�;5 j��ðPÞi ¼ �U�ðP0Þ

�
2S�GA;��ðq2Þ

þ q�q � S
ð2m�Þ2

GP;��ðq2Þ
�
U�ðPÞ:

(34)

Here we use heavy baryon spinors and notation. One can
easily show up to recoil corrections, 2 �UðP0ÞS�UðPÞ ¼
�UðP0Þ���5UðPÞ, where on the right-hand side appears

ordinary Dirac matrices and spinors. Thus the axial
charges, GA;B0Bð0Þ, are the standard ones. In our power

counting, while the tree-level contributions from the LO
axial current is of order "0, the tree-level contributions
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obtained from the NLO current count "2. In addition, at
order "2 there are leading nonanalytic contributions to the
matrix elements from the one-loop diagrams shown in
Figs. 1 and 2. The one-loop diagrams in Fig. 1 contribute
to the axial form factors while the induced pseudoscalar

form factors receive contributions from the one-loop dia-
grams in Fig. 2. Evaluation of the diagrams in Fig. 1
together with the tree-level contributions yields the follow-
ing expression for the axial form factor of �I ¼ 1 isospin
transition

GA;B0Bðq2Þ ¼ gB0B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZB0ZB

p þ 1

16�2f2

�
gB0B

X


CLðm;�Þ þHC2
�X



EJ ðm;�; �Þ þ X
0

�E0T ð��0 ;�; �Þ
�

þ C2
�X



AKðm;�; �Þ þ X
0

�A0Sð��0 ;�; �Þ
�
þX



YLðm;�Þ þ X
0

�Y;0Rð��0 ;�; �Þ
�

þ nB0B
q2

�2
�

þX


um
2
: (35)

B’BB’BBB’B

BB’

BB’

B’ B

B’ B

B’BB’BBB’B

BB’

BB’

B’ B

B’ B

FIG. 2 (color online). One-loop diagrams which contribute to the leading nonanalytic terms of the octet baryon induced pseudoscalar
form factors. Diagram elements are the same as Fig. 1.

B

BBB

BB

B

BB’ B’

B’B’

B’

B’ B’

B

BBB

BB

BB’ B’

B’B’

B’ B’

BB’

FIG. 1 (color online). One-loop diagrams which contribute to the leading nonanalytic terms of the octet baryon axial form factors.
Mesons are represented by a dashed line while the single and double lines are the symbols for an octet and a decuplet, respectively. The
solid circle is an insertion of the axial-current operator and the solid squares are the couplings given in Eq. (22). The wave function
renormalization diagrams are depicted in the bottom row. The diagrams with a cross on the loop meson are the hairpin contributions
which arise from the flavor neutral meson propagators.
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In Eq. (35), B (B0) stands for the initial (final) octet baryon,
and ZB and ZB0 are the wave function renormalization
factors and are given in the appendix. The constants
gB0B’s are the leading order octet baryon axial charges

gNN ¼ ðDþ FÞ; g�� ¼ 2D;

g�� ¼ ðD� FÞ; g�� ¼ 2F;
(36)

and the coefficients nB0B are given by

nNN ¼ nDþnF; n�� ¼ 2nD; n�� ¼ nD�nF;

n�� ¼ 2nF:

(37)

The coefficients C, E, �E0 , A, �A0 , Y, �Y0 , and u
are given in Tables I, II, III, IV, and V, while the non-
analytic functions appearing in Eq. (35), namely, L’s, J’s,
K’s, R’s, T ’s, and S’s are given by

L ðm;�Þ ¼ m2 log

�
m2

�2

�
; (38)

Kðm;�;�Þ ¼
�
m2 � 2

3
�2

�
log

�
m2

�2

�

þ 2

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p
�

þ 2

3

m2

�

�
�m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p

� log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p
��

; (39)

J ðm;�;�Þ ¼ ðm2 � 2�2Þ log
�
m2

�2

�

þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p
�
;

(40)

Rð��0 ;�; �Þ ¼ H ðLðm�
;�Þ;Lðm�0 ; �Þ;LðmX;�ÞÞ;

T ð��0 ;�; �Þ ¼ H ðJ ðm�
;�; �Þ;J ðm�0 ;�; �Þ;

J ðmX;�; �ÞÞ;
Sð��0 ;�; �Þ ¼ H ðKðm�

;�; �Þ;Kðm�0�; �Þ;
KðmX;�; �ÞÞ: (41)

TABLE III. The coefficients A and �A0 in PQ�PT for the isospin changing axial form factors. The A and �A0 coefficients are
categorized as in Table II.

A
�A0

�u �s us uj �u�u �u�s

NN 8
9Dþ 8

3F 0 0 8
3Dþ 8

9F 0 0

�� � 4
9Dþ 4

3F 0 16
9 Dþ 8

3F
16
9 D

16
9 D� 8

3F � 20
9 Dþ 4

3F
�� 0 8

9F
4
9Dþ 4

9F 0 8
9D� 8

9F � 8
9D� 8

9F
�� 8

9F 0 4
9Dþ 4

9F
8
9Dþ 8

9F
16
9 F � 8

9D� 8
9F

ur sj sr �s�s

NN 4
3Dþ 4

9F 0 0 0

�� 8
9D

8
9Dþ 8

3F
4
9Dþ 4

3F
4
9Dþ 4

3F
�� 0 16

9 F
8
9F

16
9 F

�� 4
9Dþ 4

9F
16
9 D� 16

9 F
8
9D� 8

9F
8
9D� 8

9F

TABLE II. The coefficients E and �E0 in PQ�PT for the isospin changing axial form factors. The E are categorized by the
loop mesons  with mass m, and �E0 are listed by pairs 0 of �q mesons.

E
�E0

�u �s us uj ur sj sr �u�u �u�s �s�s

NN � 20
27 0 0 � 40

81 � 20
81 0 0 0 0 0

�� � 10
27 0 � 10

54 � 10
27 � 10

54 0 0 0 0 0

�� 0 5
81

10
81 0 0 10

81
5
81

10
81 � 20

81
10
81

�� � 10
81 0 � 65

81 � 10
81 � 5

81 � 40
81 � 20

81 � 20
81

40
81 � 20

81

TABLE I. The coefficients C in PQ�PT for the isospin
changing axial form factors. The C are categorized by the loop

mesons  with mass m and are the same for all isospin

transitions.

C

uj ur
�2 �1
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At NLO, the momentum behavior of the axial form
factors is purely polynomial. This in turn implies that the
axial radii hr2B0Bi, which are defined by hr2B0Bi 	
limq!06

d
dq2

GA;B0Bðq2Þ, are insensitive to NLO chiral cor-
rections. Since no q2 dependence appears in the nonana-
lytic functions from one-loop diagrams, the axial form
factors are insensitive to the long-range effects introduced
by boundary conditions. Therefore, flavor twisted bound-
ary conditions can be used to produce momentum transfer
between initial and final baryon states without sizable finite
volume corrections to the extraction of the axial radii [48].

The one-loop diagrams which contribute at NLO to the
pseudoscalar form factor are depicted in Fig. 2.
Additionally there are further diagrams generated by the
insertion of local interactions from the fourth-order meson
Lagrangian. Despite the large number of diagrams, there
are a number of simplifications. In particular the second
and fourth diagrams of the second line in Fig. 2 (along with
local insertions on the meson line) lead to the one-loop

renormalized pion propagator. Additionally the second and
fourth diagrams of the first row in Fig. 2 (along with NLO
pion axial coupling) contribute to the one-loop value of the
pion decay constant. The remaining ten diagrams are gen-
erated from vertices in the NLO baryon Lagrangian. These
diagrams renormalize the tree-level axial coupling of the
pion to the baryons. Carefully accounting for all of these
factors, we find

GP;B0Bðq2Þ ¼ ðmB þmB0 Þ2
�

f�=f

q2 �m2
�

GA;B0Bð0Þ
ffiffiffiffiffiffi
Z�

p

� 1

3
hr2B0Bi

�
; (42)

where in this NLO expression, the axial charge GA;B0Bð0Þ,
pion mass m�, and pion decay constant f� are taken to be
their physical values and Z� is the pion wave function
renormalization which is shown in the appendix. In fitting
lattice data to Eq. (42), one would thus use the lattice

TABLE IV. The coefficients Y and �Y0 in PQ�PT for the isospin changing axial form factors. The Y and �Y0 coefficients are
categorized as in Table II.

Y
�Y0

�u �s �u�u

NN � 4
3D

3 þ 16
3 D

2F� 4DF2 0 �D3 þ 5D2F� 3DF2 � 9F3

�� � 16
9 D

3 þ 16
3 D

2F 0 16
3 D

2F� 8DF2

�� 0 � 2
9D

3 � 2
3D

2F� 2DF2 þ 2F3 �D3 þ 3D2F� 3DF2 þ F3

�� � 8
9D

3 þ 4
3D

2F� 4F3 0 �8F3

us uj �u�s

NN 0 4
3D

3 � 4
3D

2Fþ 4DF2 � 4F3 0

�� 4
9D

3 � 4
3D

2F 4
9D

3 � 8
3D

2Fþ 4DF2 � 8
3D

3 þ 16
3 D

2F� 8DF2

�� 2
9D

3 � 2
3D

2Fþ 6DF2 � 2F3 0 4D2F� 8DF2 þ 4F3

�� � 4
9D

3 þ 16
3 D

2F� 8DF2 þ 4F3 8
9D

3 þ 4
3D

2F� 4F3 8DF2 � 8F3

ur sj �s�s

NN 2
3D

3 � 2
3D

2Fþ 2DF2 � 2F3 0 0

�� 2
9D

3 � 4
3D

2Fþ 2DF2 4
3D

3 þ 8
3D

2F� 4DF2 2
3D

3 þ 4
3D

2F� 2DF2

�� 0 4
9D

3 þ 4
3D

2F� 4DF2 þ 4F3 �4DF2 þ 4F3

�� 4
9D

3 þ 2
3D

2F� 2F3 �4D2Fþ 8DF2 � 4F3 �2D2Fþ 4DF2 � 2F3

sr
NN 0

�� 2
3D

3 þ 4
3D

2F� 2DF2

�� 2
9D

3 þ 2
3D

2F� 2DF2 þ 2F3

�� �2D2Fþ 4DF2 � 2F3

TABLE V. The coefficients u in PQ�PT for the isospin changing axial form factors. The u coefficients are categorized by the
mesons with mass m.

u

uu ss jj rr
NN � 1

3b1 þ 2
3b2 � 1

6b3 þ 1
6 b4 þ 1

3b5 0 2
3b7 � 1

3b6
1
3b7 � 1

6b6
�� �b1 þ 1

2b2 � 1
4b3 þ 1

4 b5 � 1
4b3 þ 1

2b4
1
2b7 � b6

1
4b7 � 1

2b6
�� � 2

3b1 � 1
6b2 � 1

3b3 þ 1
3b4 � 1

12b5 � 1
6b7 � 2

3b6 � 1
12b7 � 1

3b6
�� 1

3b1 þ 5
6b2 þ 1

12b3 þ 1
6b4 þ 1

12b5
1
12b3 � 1

3b4 þ 1
3b5

5
6b7 þ 1

3b6
5
12b7 þ 1

6b6
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measured values for GA;B0Bð0Þ, m�, and f�. The final term
in the pseudoscalar form factor is hr2B0Bi, which is the axial
radius. Its appearance here was discovered long ago under
the guise of partially conserved axial-vector current hy-
pothesis (PCAC) by Adler and Dothan [49].

The simple structure of the psuedoscalar form factor at
NLO in both �PT and PQ�PT allows one to perform an
approximate check of the Goldberger-Treiman relation.
The residue of the pseudoscalar form factor at the pion
pole is proportional to the pion-baryon-baryon coupling
G�B0B. One can thus perturbatively investigate the
Goldberger-Treiman relation using a lattice determination
of the pseudoscalar form factor. This indirect method is
considerably simpler than a lattice measurement of baryon-
to-baryon-plus-pion correlation functions which contain
final state interactions.

C. Strangeness changing transitions

The �S ¼ �1 strangeness changing transitions corre-
sponds to the flavor matrix ��4þ5i which is given by

�� 4þ5i
ij ¼

�
1 i ¼ 1; j ¼ 3
0 otherwise;

(43)

in the partially quenched theory. With Eq. (43) there exist
six strangeness changing transitions among the hyperons

�0 ! p; �� ! n; � ! p;

�0 ! �þ; �� ! �0; �� ! �:
(44)

The N� transition matrix elements define the N� axial
form factor GA;N�ðq2Þ and induced pseudoscalar form

factor GP;N�ðq2Þ

hpðP0ÞjJ4þ5i
�;5 j�ðPÞi ¼ � 1ffiffiffi

6
p �UNðP0Þ

�
2S�GA;N�ðq2Þ

þ q�q � S
ðmN þm�Þ2

GP;N�ðq2Þ
�
U�ðPÞ;

(45)

where, as above, q� ¼ ðP0 � PÞ� is the four momentum

transfer. The�� transition matrix elements define the��

axial form factor GA;��ðq2Þ and induced pseudoscalar

form factor GP;��ðq2Þ

h�ðP0ÞjJ4þ5i
�;5 j��ðPÞi ¼ 1ffiffiffi

6
p �U�ðP0Þ

�
2S�GA;��ðq2Þ

þ q�q � S
ðm� þm�Þ2

GP;��ðq2Þ
�
U�ðPÞ:
(46)

The N� axial transitions defines the N� axial form factor
GA;N�ðq2Þ and the induced pseudoscalar form factor

GP;N�ðq2Þ

hnðP0ÞjJþ�;5j��ðPÞi ¼ �UNðP0Þ
�
2S�GA;N�ðq2Þ

þ q�q � S
ðmN þm�Þ2

GP;N�ðq2Þ
�
U�ðPÞ:

(47)

Finally, the �� axial form factor GA;��ðq2Þ and the in-

duced pseudoscalar form factor GP;��ðq2Þ is defined

through the �� transition matrix element

h�0ðP0ÞjJ4þ5
�;5 j��ðPÞi ¼ 1ffiffiffi

2
p �U�ðP0Þ

�
2S�GA;��ðq2Þ

þ q�q � S
ðm� þm�Þ2

GP;�	ðq2Þ
�
U�ðPÞ:
(48)

Notice while there are two N� and two �� transitions,
both of their matrix elements are related by isospin factors,
namely,

hpðP0ÞjJ4þ5i
�;5 j�0ðPÞi ¼ 1ffiffiffi

2
p hnðP0ÞjJ4þ5i

�;5 j��ðPÞi;

h�0ðP0ÞjJ4þ5i
�;5 j��ðPÞi ¼ 1ffiffiffi

2
p h�þðP0ÞjJ4þ5i

�;5 j�0ðPÞi:
(49)

Following the same considerations in Sec. III B and assem-
bling the LO and NLO contributions, the axial form factors
of strangeness changing transitions are given by

GA;B0Bðq2Þ ¼ gB0B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZB0ZB

p þ 1

16�2f2

�
gB0B

�X


CLðm;�Þ þ X
0

�C0Rð��0 ;�; �Þ
�
þHC2

�X


EJ ðm;�; �Þ

þ X
0

�E0T ð��0 ;�; �Þ
�
þ C2

�X


AKðm;�; �Þ þ X
0

�A0Sð��0 ;�; �Þ
�

þX


YLðm;�Þ þ X
0

�Y;0Rð��0 ;�; �Þ
�
þ nB0B

q2

�2
�

þX


um
2
: (50)

In Eq. (50), we use B and B0 to denote the initial and final states of octet baryon, and ZB and ZB0 are again the wave function
renormalization for which the explicit expressions are given in the appendix. The gB0B’s appearing above are the leading
order octet baryon axial charges
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gN� ¼ ð3FþDÞ; g�� ¼ ð3F�DÞ;
gN� ¼ ðD� FÞ; g�� ¼ ðFþDÞ; (51)

and the coefficients nB0B are given by a formula of exactly
the same form

nN� ¼ 3nF þ nD; n�� ¼ 3nF � nD;

nN� ¼ nD � nF; n�� ¼ nD þ nF:
(52)

The coefficientsC, �C0 , E, �E0 , A, �A0 , Y, �Y0 ,
and u are given in Tables VI, VII, VIII, IX, and X. Finally,
the nonanalytic functionsL’s, J ’s,K’s,R’s,T ’s, and S’s
in the above equations are defined in Sec. III B. Employing
the same argument as one did in deriving the isospin
changing pseudoscalar form factors, one arrives at a simi-
lar expression for the strangeness changing pseudoscalar
form factor

GP;B0Bðq2Þ ¼ ðmB þmB0 Þ2
�

fK=f

q2 �m2
K

GA;B0Bð0Þ
ffiffiffiffiffiffiffi
ZK

p

� 1

3
hr2B0Bi

�
; (53)

where in this NLO expression, the axial charge GA;B0Bð0Þ,
kaon mass mK, and kaon decay constant fK are taken to be
their physical values, and ZK is the kaon wave function
renormalization which is shown in the appendix. In fitting
lattice data to Eq. (53), one would thus use the lattice
measured values for GA;B0Bð0Þ, mK, and fK. The final
term in the pseudoscalar form factor is hr2B0Bi, which is
the strangeness changing axial radius. As has been shown
in Sec. III B, the simple structure of the psuedoscalar form
factor at NLO in both �PT and PQ�PT allows one to
perform an approximate check of the Goldberger-
Treiman relation. Here the residue of the pseudoscalar
form factor at the kaon pole is proportional to the kaon-
baryon-baryon couplingGKB0B; thus the pseudoscalar form
factor provides an indirect and simple method to investi-
gate the Goldberger-Treiman relation on the lattice.

IV. DISCUSSION

Above we have calculated the full set of flavor-changing
axial-current matrix elements of the hyperons. The expres-
sions will be useful for the study of the chiral and momen-
tum behavior of hyperon axial form factors using lattice
QCD.

TABLE VII. The coefficients E and �E0 in PQ�PT for the strangeness changing axial form factors. The E and �E0

coefficients are categorized as in Table II.

E
�E0

�u �s us uj ur sj sr �u�u �u�s �s�s

N� � 10
9 0 � 10

18 � 10
9 � 10

18 0 0 0 0 0

�� � 10
27 0 � 20

27 � 20
27 � 10

27 0 0 0 0 0

N� 10
81 0 5

81
10
81

5
81 0 0 0 0 0

�� � 10
81 � 10

81 � 40
81 � 20

81 � 10
81 � 20

81 � 10
81 � 20

81
40
81 � 20

81

TABLE VI. The coefficients C and �C0 in PQ�PT, which
are all the same for the strangeness changing axial form factors.
The C and �C0 coefficients are categorized as in Table II.

C
�C0

uj ur sj sr �u�u �u�s �s�s

�1 � 1
2 �1 � 1

2 � 1
2 1 � 1

2

TABLE VIII. The coefficients A and �A0 in PQ�PT for the strangeness changing axial form factors. The A and �A0

coefficients are categorized as in Table II.

A
�A0

�u �s us uj �u�u �u�s

N� 2Dþ 2F 0 � 2
3Dþ 2F 16

3 D 0 0

�� � 2
3Dþ 2

3F
2
9Dþ 2

3F
4
9D� 4

3F
20
9 D� 4F 16

9 D� 8
3F � 20

9 Dþ 4
3F

N� 2
9Dþ 10

9 F 0 2
9Dþ 2

9F
16
9 F � 4

9Dþ 4
3F

4
9D� 4

3F
�� � 2

9Dþ 2
9F � 2

9Dþ 2
9F

4
3Dþ 20

9 F
4
3Dþ 4

9F
4
9Dþ 4

9F � 8
9D� 8

9F

ur sj sr �s�s

N� 8
3D 0 0 0

�� 10
9 D� 2F 4

9Dþ 4
3F

2
9Dþ 2

3F
4
9Dþ 4

3F
N� 8

9F 0 0 0

�� 2
3Dþ 2

9F
4
3Dþ 4

9F
2
3Dþ 2

9F
4
9Dþ 4

9F
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Considering the axial charges of hyperons and of their
transitions, there are only two parameters which survive
the chiral limit, namely, D and F. As there are eight such
charges, there are six relations among them. Focusing just
on the isospin and strangeness transitions individually, we
have four of the six relations:

gNN þ g�� � g�� ¼ 0; (54)

gNN � g�� � g�� ¼ 0; (55)

gN� þ g�� � 3ðg�� � gN�Þ ¼ 0; (56)

and

gN� � g�� � gN� � g�� ¼ 0: (57)

Combining isospin and strangeness transitions together, we
arrive at the final two relations:

gN� þ g�� � 3g�� ¼ 0; (58)

and

gN� � g�� � g�� ¼ 0: (59)

These relations hold in SUð3Þ �PT, as well as SUð6j3Þ
PQ�PT. Of course chiral corrections modify these rela-
tions and the ‘‘0’’ should be interpreted asOðm2

=�
2
�Þ. The

expressions derived above in Secs. III B and III C provide
these Oðm2

=�
2
�Þ corrections which are generally linear

combinations of nonanalytic loop contributions and un-
known local counterterms.
The relations in Eqs. (54)–(57) actually apply not only to

the axial charges, but also to the respective hyperon tran-
sition matrix elements as a whole. The pseudoscalar form
factors do not satisfy Eqs. (58) and (59) due to the differ-
ence in pion versus kaon poles. The axial form factors, by
contrast, satisfy these latter two relations.
Apart from the axial couplings D, F, C, H , and meson

masses, the axial charges depend on six (eight) unknown
parameters in �PT (PQ�PT). This lack of predictive power
historically has been overlooked by supposing, what has

TABLE IX. The coefficients Y and �Y0 in PQ�PT for the strangeness changing axial form factors. The Y and �Y0

coefficients are categorized as in Table II.

Y
�Y0

�u �s �u�u

N� 1
9D

3 þ 5D2F� 9DF2 þ 3F3 0 � 4
3D

3 þ 2D2Fþ 12DF2 � 18F3

�� � 5
3D

3 þ 11
3 D

2F� 5DF2 þ 3F3 � 5
9D

3 �D2FþDF2 � 3F3 4
3D

3 � 22
3 D

2Fþ 12DF2 � 6F3

N� � 1
9D

3 �D2FþDF2 þ F3 0 2D2F� 8DF2 þ 6F3

�� � 1
3D

3 þ 7
3D

2F�DF2 � F3 � 1
3D

3 þ 7
3D

2F�DF2 � F3 2D2F� 2F3

us uj �u�s

N� � 25
9 D

3 þ 7D2F� 3DF2 � 3F3 20
9 D

3 � 4D2Fþ 12DF2 � 12F3 1
3D

3 þD2F� 3DF2 � 9F3

�� 8
9D

3 þ 16
3 D

2F� 8DF2 � 2
3D

3 � 22
3 D

2Fþ 14DF2 � 6F3 � 1
3D

3 � 7
3D

2Fþ 15DF2 � 15F3

N� 1
9D

3 � 1
3D

2Fþ 3DF2 � F3 4
9D

3 þ 4
3D

2F� 4DF2 þ 4F3 �D3 þ 5D2F� 7DF2 þ 3F3

�� � 2
3D

3 þ 2
3D

2F� 2DF2 þ 2F3 2
3D

3 � 2
3D

2Fþ 2DF2 � 2F3 �D3 þD2F� 3DF2 � 5F3

ur sj �s�s

N� 10
9 D

3 � 2D2Fþ 6DF2 � 6F3 0 0

�� � 1
3D

3 � 11
3 D

2Fþ 7DF2 � 3F3 10
9 D

3 þ 10
3 D

2F� 2DF2 � 6F3 2
3D

2F� 6F3

N� 2
9D

3 þ 2
3D

2F� 2DF2 þ 2F3 0 0

�� 1
3D

3 � 1
3D

2FþDF2 � F3 2
3D

3 � 2
3D

2Fþ 2DF2 � 2F3 2D2F� 2F3

sr
N� 0

�� 5
9D

3 þ 5
3D

2F�DF2 � 3F3

N� 0

�� 1
3D

3 � 1
3D

2FþDF2 � F3

TABLE X. The coefficients u in PQ�PT for the strangeness changing axial form factors. The coefficients u are categorized by
the mesons with mass m.

u

uu ss jj rr
N� 3

4b2 þ 3
4b5

3
4b2

3
2 b7

3
4b7

�� 1
2b1 þ 1

2b2 þ 1
4b3 � 3

4b4 þ 1
2 b5

1
2b1 þ 1

2b2 þ 1
4 b3 þ 1

4b4 b7 þ b6
1
2b7 þ 1

2b6
N� � 1

3b1 � 1
12 b2 � 1

3b3 þ 1
3b4 � 1

12b5 � 1
3b1 � 1

12 b2 � 1
6 b7 � 2

3b6 � 1
12b7 � 1

3b6
�� � 1

6b1 þ 1
3b2 � 1

12b3 þ 1
12b4 þ 1

6b5 � 1
6b1 þ 1

3 b2 � 1
12 b3 þ 1

12 b4 þ 1
6b5

2
3 b7 � 1

3b6
1
3b7 � 1

6b6
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been termed, the formal dominance of chiral logarithms.
One can do slightly better and attempt model estimation of
these parameters, but the fact stands that most chiral analy-
ses have seriously lacked the ability to make complete
predictions. This is the great advantage of lattice QCD
calculations, which have the promise to determine the
complete information about the low-energy constants.

Despite the absence of knowledge concerning the eight
coupling constants in the NLO current Eq. (26), we can
make two nontrivial predictions at next-to-leading order by
eliminating the local terms. The leading local terms are
cancelled in the relations Eqs. (54)–(59). Combinations of
these relations can be used to eliminate the next-to-leading
order local terms.While there are seven contributing terms,
only five of them, b1; . . . ; b5 contribute to the relations.
Thus there must exist at least one combination of
Eqs. (54)–(59) that is independent of the bi. Rather fortu-
itously there are two such nontrivial combinations of axial
charges which are independent of these couplings, viz.

�g 	 2gNN � gN� � gN� � g�� � g�� þ 2g��; (60)

�G 	 2gNN þ 2g�� � 2g�� þ gN� þ g��

þ g�� � gN�: (61)

These relations are independent of NLO counterterms in
both PQ�PT and �PT. The expressions for �g and �G in
�PT are3

ð4�fÞ2�g ¼ 2
3ðD3 þ 5D2F� 6DF2 � 6F3ÞG½L�
� C2½1081H þ 1

6ðDþ FÞ�G½J �
� 2

9C
2ðD� FÞG½K�; (62)

ð4�fÞ2�G ¼ 4
3DðD2 � 6F2ÞG½L� � 1

3DC2G½J �
þ 4

3FC
2G½K�; (63)

where the Gell-Mann Okubo linear combination functional
is defined by

G ½A� ¼ A� � 4AK þ 3A�; (64)

for any function A ¼ Aðm;�; �Þ. The quantities�g and

�G allow one to test chiral logarithms directly.
Accordingly these relations only superficially have scale
dependence, and upon the limit of SUð3ÞV symmetry, they

vanish. With these symmetry breaking relations, we have
separated out the short distance physics and hence isolated
long-distance chiral corrections. To obtain values for �g
and�G, as well as the curve shown in Fig. 3, we have fixed
the strange quark mass at its physical value and used the
SUð6Þ values for the axial couplings:D ¼ 3=4, F ¼ 2=3D,
C ¼ �2D, and H ¼ �3D. In particular, we find �g ¼
�0:0035 and �G ¼ �0:017 at physical pion mass m� ¼
140 MeV.
Four further nontrivial relations, analogous to �g and

�G above, exist when one includes charges arising from
the strangeness axial-current �s���5s. These matrix ele-

ments have been determined at zero momentum transfer in
PQ�PT [33]. Determination of these charges requires the
calculation of disconnected operator contractions on the
lattice. As such contributions are notoriously difficult to
determine, we leave it to future work to deduce the remain-
ing symmetry breaking relations.
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APPENDIX: WAVE FUNCTION
RENORMALIZATION

In this appendix, we list the necessary wave function
renormalization and meson Z-factors appearing in the
calculations. For the baryons, we have [39]

ZB ¼ 1� 1

16�2f2

�X


AL þ X
;0

A0R0

þ C2
�X



BJ  þ X
;0

B0T 0

��
; (A1)

150 200 250 300 350 400

m [MeV]

− 0.015

− 0.010

− 0.005

0.000

FIG. 3 (color online). Plot of �g and �G as a function of the
pion mass m�.

3Partially quenched expressions can be obtained from
Eqs. (62) and (63) under the replacements: G½L� !
GPQ½L;R�, G½K� ! GPQ½K;S�, and G½J � ! GPQ½J ;T �.
The partially quenched functional is given by

G PQ½A; B� ¼ 2A� � 4AK þ 2A�s
þ 2B�u�u

� 4B�u�s

þ 2B�s�s
;

for any function A ¼ Aðm;�; �Þ and hairpin function
B��0 ¼ Bð��0 ;�; �Þ. There is no scale dependence in
GPQ½A;B�.
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where the coefficients A,
�A;0 , B, and

�B0 are

given in Tables XI and XII. For the mesons, one has

Z’ ¼ 1þ 2

3

�
1

16�2f2
X


CLðm;�Þ
�

� 2

�
ðð2m2

jj þm2
rrÞ�4 þ w’�5Þ; (A2)

where �4 and �5 are the low-energy constants that appear
in L4 in the meson sector. Further, for ’ ¼ �, w� ¼ m2

uu

and one uses Table I for C while for ’ ¼ K, wK ¼ m2
us

and one uses Table VI for C. Finally the nonanalytic

functions J ’s and L’s are given in Sec. III B.
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