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We extend the Polyakov-Nambu-Jona-Lasinio model for two degenerate flavors by including the effect

of the SU(3) measure with a Vandermonde term. This ensures that the Polyakov loop always remains in

the domain [0, 1]. The pressure, energy density, specific heat, speed of sound, and conformal measure

show small or negligible effects from this term. However various quark number and isospin susceptibil-

ities are all found to approach their respective ideal gas limits around 2Tc. We compare our methods with

other similar approaches in Polyakov-Nambu-Jona-Lasinio model and also present a quantitative

comparison with lattice QCD data.
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I. INTRODUCTION

Recently, there is a lot of interest in the studies of
thermodynamics of strongly interacting matter using the
Polyakov loop enhanced Nambu-Jona-Lasinio (PNJL)
model [1–3]. This model couples the chiral and deconfine-
ment order parameters through a simple-minded coupling
of the NJL model [4] with the Polyakov loop model [5].
The two major thrusts in recent times have been to estimate
various thermodynamic observables using this model (see
e.g. [6–10]), and to make systematic improvements of the
model [11–13]. Another set of important results has come
from similar studies in chiral quark models that go beyond
the mean-field treatment [14].

In this paper we deal with the improvement of the
Polyakov loop model and describe some of its consequen-
ces, remaining within the domain of mean-field analysis.
The Polyakov loop model used in much of the recent
literature is the one given in Ref. [3]. The Polyakov loop
� has been treated here as a Z(3) spin field [15]. Using this
model we estimated [6] a very sensitive observable—the
quark number susceptibility (QNS) and also the higher
order coefficients in the Taylor expansion of pressure in
quark number chemical potential �0. Comparison with the
data from lattice QCD (LQCD) [16] showed that the QNS
in the PNJL model and LQCD agree quite well both
qualitatively and quantitatively. The fourth-order coeffi-
cient c4 showed qualitative agreement but had a quantita-
tive difference at high temperatures. Some of us further
extended the PNJL model to include isospin chemical
potential �I [8]. The isospin number susceptibility (INS)
and its derivative with respect to �0 and �I were obtained.

In this case the fourth-order derivative cI4 was quite con-
sistent with lattice data, but the INS was not. A possible
reason for such departures is that the mean-field treatment
of the PNJL model is insufficient. But then it should have
affected the coefficients systematically i.e., all the fourth-
order coefficients should deviate further from LQCD data
than the second-order coefficients.
There are, however, other simpler reasons that should be

considered first. The PNJL model is only a model which
can mimic some of the characteristics of a fundamental
theory like QCD and its discretized version LQCD.
Moreover, the parameters like the couplings and masses
are quite different in the PNJL model and the LQCD
simulations. Thus some quantitative difference is naturally
expected. Apart from these we made an important obser-
vation in [8] that� has a big role to play in the behavior of
these coefficients. We pointed out how the quantitative
differences could be caused by the behavior of � as a
function of temperature and chemical potentials. The
most important physical problem in the simple-minded
PNJL model is the following.� being the normalized trace
of the Wilson line L, which is an SU(3) matrix, should lie
in the range 0 � � � 1. But it was found to be greater than
1 at temperatures above 2Tc (see Fig. 2 in Ref. [8]). The
natural way to cure this problem is to consider a proper
Jacobian of transformation from the matrix valued field L
to the complex valued field�which will then constrain the
value of � to �< 1. This is quite a well-known construc-
tion in SU(N) matrix model (see e.g. [17–19]), in certain
variations of Polyakov loop model ([11,20]), as well as in
QCD motivated phenomenological models (see [21] and
references therein). Also this is ubiquitous in various
strong coupling effective theories of lattice QCD (see e.g.
[22]).
Here we introduce the Vandermonde term in the

Polyakov loop model in a conceptually different way
than that in the earlier models. In the next section we
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discuss our approach. In Sec. III we show the changes in
measurements of the susceptibilities and various other
quantities due to the Vandermonde (VdM) term. The final
section contains our conclusions.

II. FORMALISM

At a temperature T, the SU(3) Wilson line is given by

LðxÞ ¼ P expðigR1=T
0 Aa

0ðxÞ�ad�Þ, where g is the gauge

coupling, Aa
0 (a ¼ 1; 2; . . . 8) are the timelike components

of the gluon field, �a are the Gell-Mann matrices, and � the
imaginary time in the Euclidian field theory. The Polyakov

loop is defined as � ¼ trL=3 and its conjugate is �� ¼
trLy=3. Since L is itself a SU(3) matrix so�, �� � 1. The
gluon thermodynamics can be described as an effective
theory of the Polyakov loops [5]. On the other hand quark
thermodynamics can be effectively described in terms of
NJL model [4], and the two are coupled to obtain the PNJL
model (e.g., [3]). The thermodynamic potential in this
model can be obtained in terms of the sigma and pion
condensates and the thermal average of the Polyakov loop.

However the version of the PNJLmodel [3] leads to�>
1 for T > 2Tc. To rectify this anomaly, the authors of
Ref. [3] have recently proposed a complete modification
of the Polyakov loop model [11], motivated from the
strong coupling results used by Fukushima [2] Our aim
in this work is also similar, but the approach is somewhat
different. We retain the Polyakov loop potential of [3,6,8]
but treat it as a matrix model. Also the way we define
pressure is quite different as discussed below.

We first outline our scheme using an arbitrary matrix
model for the Wilson line L, which for simplicity is

assumed to be a potential V ½L� � V ½�; ���. In the fol-
lowing equation, we express the partition function for this
theory first as a path integral overL and then over the fields

� and ��.

Z ¼
Z

DLe�ð1=TÞV ½�; ���

¼
Z Y

x

dLðxÞe�ð1=TÞV ½�; ��� (1a)

¼
Z Y

x

J½�ðxÞ; ��ðxÞ�d�ðxÞd ��ðxÞe�ð1=TÞV ½�; ���; (1b)

where DL is the SU(3) Haar measure, J½�; ��� is the
Jacobian of transformation (also called Vandermonde de-

terminant; see e.g. Ref. [23]) from L to (�, ��), and

is given as J½�; ��� � ð27=24�2Þð1� 6 ���þ 4ð ��3 þ
�3Þ � 3ð ���Þ2Þ. Our interest then would be to obtain the
pressure which is given by

P ¼ T
@ lnZ

@v
¼ �

�
@V
@v

�
’ � 1

v
hV i; (2)

where v denotes the physical volume of the system and hi
denotes thermal averaging. The last approximation holds in
the infinite volume limit.

The role of the Jacobian is to be understood as follows.
First, it is a factor reweighting the field configurations and
hence significantly affects all thermal averages. However
the Jacobian is not explicitly space-time dependent; there
is no extra term to be averaged in Eq. (2) as one might
expect when redefining the path integration from L to �
[Eqs. (1a) and (1b)]. A typical example of such a depen-
dence would be if we were considering say a Fourier
transform of the fields. In case of a free field this kind of
dependence of the Jacobian on the volume and temperature
is very important in obtaining the correct partition
function.
Thus, in our mean-field treatment we have to carefully

incorporate the effect of the Jacobian and this is the main
aim of this paper. The effect of the Jacobian is reflected in

the mean fields h�i and h ��i, and we express the pressure as
P ¼ � 1

v
V ðh�i; h ��iÞ: (3)

To relate to pure glue theory, we now replace the potential
density V =v by a Landau-Ginzburg type functional U,
given by [3],

Uð�; ��; TÞ
T4

¼ �b2ðTÞ
2

���� b3
6
ð�3 þ ��3Þ þ b4

4
ð ���Þ2;

(4)

with

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
: (5)

To make a saddle point approximation to the mean fields,
the potential density U was minimized with respect to

(w.r.t.)� and �� in Ref. [3]. These were then used to obtain
pressure P ¼ �U. The coefficients ai (i ¼ 0, 1, 2, 3) and
bj (j ¼ 2, 3, 4) were fitted from lattice data of pressure in

pure gauge theory, and T0 is precisely the transition tem-
perature Tc ¼ 270 MeV [24–26]. As T ! 1, P=T4 !
16�2=90. However, to take care of the effect of the
Jacobian as discussed above, we now propose to minimize
the following modified potential,

U0ð�; ��Þ
T4

¼ Uð�; ��Þ
T4

� � ln½Jð�; ��Þ�; (6)

where � is a dimensionless parameter to be determined
phenomenologically. The mean-field value of pressure is
still obtained from the relation P ¼ �U. A very simple
example of this approach is demonstrated in the Appendix.
Note that the Jacobian term is considered as an extra
effective term in the modified potential density implying
a sort of normalized volume factor. This is quite natural as
the form of Eq. (1b) implies that there is a Jacobian sitting
at each and every space-time coordinate, depending on the

value of � and ��.
With the new minimization condition all the coefficients

should be estimated afresh. Instead, we retain the values of
ai and bj obtained in [3] and tune only the values of T0 and
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�. This is equivalent to a correlated modification of the ai
and bj keeping T0 fixed at 270 MeV.

We show the variation of the Polyakov loop and the
pressure P normalized to Stefan-Boltzmann (SB) pressure
PSB for pure gauge theory, as a function of temperature. In
Fig. 1 we have used a small nonzero constant value of � ¼
0:05. In Fig. 2 we find similar behavior for a temperature
dependent � ¼ 0:22T3

0=T
3. In both the figures the � ¼ 0

curves are for the Polyakov loop model without the VdM
term. Thus the parameter space of � is quite open at this
stage.

Within the range of temperatures (T < 3Tc) where the
Polyakov loop model is supposed to be a good description
of the system, our approach and that of Ref. [11] give
similar results. The reason behind this is that one can
suitably adjust the parameters in both approaches.
However, our method for introducing the VdM potential
as discussed above, is very much different from that of
Ref. [11]. The main difference is that the pressure com-
puted in Ref. [11] includes the VdM term. Thus the coef-
ficient of the VdM term requires an inverse temperature

dependence, so that on a naive extrapolation to high tem-
peratures, the pressure does not blow up with the logarithm
of the Jacobian. In that case another problem crops up with
the remaining part of the thermodynamic potential, which
at high temperatures has no bound, contrary to the claim
that� ! 1 as T ! 1. Precisely because� should go to 1
as T ! 1 we believe that the VdM term should be very
important at high temperatures to constrain the maximum
value of � to 1.
The exercise for introducing a VdM term for the

Polyakov loop model itself has nothing new to offer.
Even without it the potential U was able to describe the
pure glue theory quite well. However its importance be-
comes evident in the PNJLmodel. The Polyakov loop has a
coupling to the fermionic part as will be seen in the
corresponding thermodynamic potential below, which
forces the � to be greater than 1, and more so as the
chemical potential is increased. The VdM term can inhibit
such a behavior.
The thermodynamic potential of the PNJL model [3,6,8]

is given as

� ¼ Uð�; ��; TÞ þ 2G1ð�2
u þ �2

dÞ þ 4G2�u�d �
X

f¼u;d

2T
Z d3p

ð2�Þ3

� fln½1þ 3ð�þ ��e�ðEf��fÞ=TÞe�ðEf��fÞ=T þ e�3ðEf��fÞ=T�

þ ln½1þ 3ð ��þ�e�ðEfþ�fÞ=TÞe�ðEfþ�fÞ=T þ e�3ðEfþ�fÞ=T�g � X
f¼u;d

6
Z d3p

ð2�Þ3 Ef�ð�2 � ~p2Þ: (7)
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FIG. 1 (color online). � and P=PSB for � ¼ 0 (T0 ¼ 0:27 GeV) and � ¼ 0:5 (T0 ¼ 0:2555 GeV). The value of Tc is 0.270 GeV.
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FIG. 2 (color online). � and P=PSB for � ¼ 0 (T0 ¼ 0:27 GeV) and � ¼ ð0:22T3
0=T

3Þ (T0 ¼ 0:2555 GeV). Here Tc ¼
0:270 GeV.
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Here quark condensates for the two light flavors u and d are
given by �u ¼ h �uui and �d ¼ h �ddi, respectively, and the
respective chemical potentials are �u and �d. Note that
�0 ¼ ð�u þ�dÞ=2 and �I ¼ ð�u ��dÞ=2. The quasi-

particle energies are Eu;d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

u;d

q
, where mu;d ¼

m0 � 4G1�u;d � 4G2�d;u are the constituent quark masses
and m0 is the current quark mass (we assume flavor degen-
eracy). G1 and G2 are the effective coupling strengths of a
local, chiral symmetric four-point interaction. We take
G1 ¼ G2 ¼ G=4, where G is the coupling used in
Ref. [3]. � is the 3-momentum cutoff in the NJL model.
Uð�; ��; TÞ is the effective potential for � and �� as given
in Eq. (4). We locate the transition temperature in this
model from the peaks in the temperature variation of
d�=dT and d�u;d=dT.

Similar to the case of the Polyakov loop model wewould
now obtain the mean fields by minimizing

�0

T4
¼ �

T4
� � ln½Jð�; ��Þ�: (8)

The coefficient � in the VdM term can in general have
some temperature and/or chemical potential dependence.
Here we take a constant value � ¼ 0:2, which suffices for
the purpose of the present work. To set this valuewe looked
at the two important quantities affected by the VdM term.
The first one is �, which decreases with the increase of �
and hence decreases the pressure. The second one is the
transition temperature, which increases with �. Thus we try
to optimize � to get both the pressure and the transition
temperature as close as possible to the LQCD results for
two quark flavors.

On a naive extrapolation of this model to large chemical

potentials, the� and �� should grow towards 1 (deconfine-
ment at large chemical potential) even at very low tem-
peratures. Thus again the logarithmic term blows up. So if
pressure is computed including the VdM term as is done in
Ref. [11], an anomalous logarithmic divergence would
come up. There may be some new physics that can obscure
such terms by making � ! 0 as � ! 1. But that would
again run into a problem in restricting� in the domain 0 �
� � 1.

Apart from the difference in the treatment of the

VdM term we would now remove the condition � ¼ ��
used in [11], since it has important implications for
susceptibilities.

Before going over to our results let us take a digression
to the lattice computation of �. On the lattice � is com-
puted from the relation [15]

�ðTÞ ¼ expð� 4 Fq �qð1; TÞ=2TÞ; (9)

where 4Fq �qð1; TÞ ¼ Fq �qð1; TÞ � F00ðTÞ, and Fq �qðr; TÞ
is the free energy of a pair of heavy quark and antiquark
at a separation r at a temperature T. This has been used to
define a renormalized Polyakov loop in lattice simulations
of both pure gluon [27,28] and full QCD [29]. In fact the

data of [27] was used to obtain the different parameters of
the Polyakov loop model in [3], and is being used by us
here, and in that sense � is the renormalized Polyakov
loop. But even in this exercise the � in the Polyakov loop
model of [3] goes to 1 at large T and is thus different from
lattice results for T > Tc. On the lattice the value of� goes
above 1 for T > Tc. It has been argued that since the �
measured in lattice simulations is a renormalized quantity,
it is no longer a character of the group SU(3) and is thus not
limited to values below 1. From Eq. (9), it is evident that
�> 1 only when 4Fq �qð1; TÞ< 0, and this can be very

easily seen to be true in the lattice simulations and happens
for T > Tc. Now, the free energy Fq �qðr; TÞ can be consid-

ered to be composed of three components, namely, a con-
fining potential, a screening potential, and an entropy part.
For low temperatures the confining part is dominant and
4Fq �qð1; TÞ> 0. In the deconfined phase for large dis-

tances, the screening potential drops out so the entropy
part is dominant, which could lead to4Fq �qð1; TÞ ’ �T 4
Sq �qðTÞ< 0, where 4Sq �qðTÞ ¼ Sq �qðTÞ � S00, and Sq �qðTÞ
denotes the entropy of the system with a pair of quark
and antiquark. However the heavy quarks as such are not
expected to contribute significantly to the entropy and it
seems natural to have 4Sq �qðTÞ ¼ 0, and thus

4Fq �qð1; TÞ ¼ 0 for T > Tc. Instead the value is negative

on the lattice and 4Fq �qð1; TÞ ! �1 as T ! 1, leading

to � ! 1. One has to then worry about what can bend it
down towards 1 at asymptotic temperatures as was ob-
served by Gava and Jengo in perturbative evaluation of
� [30]. However this perturbative calculation also points to
the fact that as the temperature is lowered from asymptotic
values the � is greater than 1. Also recent continuum
estimates in chiral quark models [31] using dimensional
reduction find close agreement with both lattice and per-
turbative calculations.
On the other hand another lattice computation of the

Polyakov loop in pure glue theory uses a renormalization
dependent on temperature instead on the lattice spacing
and finds the values to remain below 1 at least up to T �
3:5Tc [32]. We thus admit that the state of affairs with the
lattice computation of� is not very clear to us at this stage.
There is a missing link from quantum computations to our
matrix model mean-field computations.

III. RESULTS AND DISCUSSIONS

A. PNJL Model: Pressure, specific heat,
and speed of sound

Now we discuss the results for the PNJL model with the
VdM term. Here the �0 as given in Eq. (8) is minimized
with respect to the fields and all the thermodynamic quan-
tities are obtained using these values. The peaks of the
d�=dT and d�u;d=dT curves, as shown in Fig. 3(a), differ

by 5 MeV. Their average position, which is at 230 MeV, is
taken as the transition (or crossover) temperature Tc. In
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spite of the significant difference of Tc in the PNJL model
with the corresponding LQCD value of 192(7)(4) MeV
[33], the thermodynamic quantities when plotted against
the scaled temperature T=Tc show similar behavior. We
shall henceforth show the temperature dependences in
terms of T=Tc.

As mentioned earlier we are using an optimized value of
� ¼ 0:2. The temperature dependence of the fields are
shown in Fig. 3(b). It agrees reasonably with that of the
LQCD results as shown in Fig. 1 of Ref. [34]. The scaled
pressure P=PSB is plotted in Fig. 3(c). It slightly over-
estimates the LQCD pressure [35]. However it agrees
well with the recent LQCD results for 2þ 1 flavors with
almost physical quark masses [36].

Now, the energy density � is obtained from the relation

� ¼ �T2 @

@T

�
�

T

���������V
¼ �T

@�

@T

��������V
þ�: (10)

The rate of change of energy density � with temperature at
constant volume is the specific heat CV which is given as

CV ¼ @�

@T

��������V
¼ �T

@2�

@T2

��������V
: (11)

The square of velocity of sound at constant entropy S is
given by

v2
s ¼ @P

@�

��������S
¼ @P

@T

��������V
=
@�

@T

��������V
¼ @�

@T

��������V
=T

@2�

@T2

��������V
:

(12)

The conformal measure is given by

C ¼ �=�; � ¼ �� 3P: (13)

These quantities are plotted in Fig. 4. At higher tem-
peratures the CV is slightly lower than the values obtained
in [6]. However, the velocity of sound and the conformal
measure remain unaltered in the whole range of tempera-
tures. Thus the VdM term affects CV but not quantities
involving ratios of pressure and energy density e.g. v2

s and
C. It is interesting to note that our earlier [6] as well as the
present work, have been able to predict the value of v2

s

quite well when compared to the recent LQCD results [36].
We hope similar encouraging results would be obtained on
the lattice for the specific heat.

B. Taylor expansion of pressure

The Taylor expansion coefficients of pressure with re-
spect to chemical potentials have been the focus of com-
parison of PNJL and LQCD results [6,8,11,37]. Here we
have expanded the scaled pressure (P=T4) in a Taylor
series for the quark number and isospin number chemical
potentials, �0 and �I, respectively,

PðT;�0; �IÞ
T4

¼ X1

n¼0

Xn

j¼0

n!

j!ðn� jÞ! c
jk
n ðTÞ

�
�0

T

�
j
�
�I

T

�
k
;

k ¼ n� j; (14)

where
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FIG. 3 (color online). (a) Peaks in d�=dT and d�=dT set the Tc at around 230 MeV. (b) � and � as functions of T=Tc. Note: In
this figure � ¼ Gð�u þ �dÞ.
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cjkn ðTÞ ¼ 1

n!

@nðPðT;�0; �IÞ=T4Þ
@ð�0

T Þj@ð�I

T Þk
���������0¼0;�I¼0

: (15)

The n ¼ odd terms vanish due to CP symmetry. Even for
the n ¼ even terms, due to flavor degeneracy all the co-

efficients cjkn with j and k both odd vanish identically. We
evaluate all the 10 nonzero coefficients (including the
pressure at �0 ¼ �I ¼ 0) up to order n ¼ 6 and compare
them to LQCD data. These coefficients were evaluated in
[6,8] and certain differences were found w.r.t. LQCD data.
We shall now discuss the effects of the VdM term on these
coefficients.

The coefficients we deal with are given by

cnðTÞ ¼ 1

n!

@nðPðT;�0Þ=T4Þ
@ð�0

T Þn
���������0¼0

¼ cn0n ; (16)

cInðTÞ ¼ 1

n!

@nðPðT;�0; �IÞ=T4Þ
@ð�0

T Þn�2@ð�I

T Þ2
���������0¼0;�I¼0

¼ cðn�2Þ2
n ;

n > 1: (17)

We present the QNS, INS, and their higher order deriva-
tives with respect to �0 in Fig. 5. We have plotted the
LQCD data from Ref. [16] for quantitative comparison. At
the second order [Fig. 5(a)] we find that the QNS c2
compares well with the LQCD data up to about 1:2Tc.
Thereafter the PNJL values rise up towards the SB limit,
while the LQCD values saturate at about 80% of this limit.
The INS cI2 also shows similar behavior, but at lower
temperatures it goes slightly above the corresponding
LQCD values. There is no significant difference of cI2
with and without the VdM term. However c2 was close
to the LQCD result without the VdM term [8], but now at
high temperatures it goes above the LQCD values and
approaches cI2. Thus at high temperatures these coefficients
overestimate the LQCD results but both are almost equal to
each other, similar to that observed on the lattice. This was
not so without the VdM term [8].

Now we discuss the fourth-order coefficients [Fig. 5(b)].
The values of c4 in the PNJL model with the VdM term

matches closely with those of LQCD data for the full range
of temperatures. This is in contrast to that found without
the VdM term [6] where they were close only up to T �
1:1Tc. The VdM term does not affect the coefficient cI4
which agrees well with LQCD data for the full range of T.
Also both these coefficients approach each other as well as
the corresponding SB limit. At the sixth-order [Fig. 5(c)]
the coefficients do not seem to be affected by the VdM
term.
Thus we write down the salient features regarding the

Taylor coefficients in this modified PNJL model:
(i) All the coefficients start approaching their respective

SB limit around 2Tc.
(ii) Both the QNS and INS approach each other at 2Tc.

This is also true for their corresponding responses to
quark chemical potential given by the fourth- and
sixth-order coefficients.

(iii) At high temperatures, except c2 and cI2, all the co-
efficients compare well quantitatively with the
LQCD data.

(iv) The main effect of the VdM term is to move c2 and c4
close to their respective SB limits.

We have emphasized the role of the Polyakov loop in
obtaining the values of the Taylor coefficients in our earlier
works [6,8]. In those works we found firstly that the
Polyakov loop goes above 1 at high temperatures and
also has a significant dependence on �0 but not on �I.
Here as shown in Fig. 6, the VdM term restricts the value of
� within 1, and also the�0 dependence at higher tempera-
tures is almost negligible. Thus even the splitting between

� and �� has almost disappeared. We note here that though

we let� and �� to be different, they come out to be almost
equal at high temperatures. This is in contrast to imposing

� ¼ �� for the full range of temperatures as done in

Ref. [11]. The difference between � and �� is responsible
for the difference of c2 and cI2 in the intermediate

temperatures.
To complete the comparison with the LQCD data we

have looked at the flavor diagonal (cuun ) and flavor off-
diagonal (cudn ) susceptibilities defined as
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cuun ¼ cn0n þ cðn�2Þ2
n

4
; and cudn ¼ cn0n � cðn�2Þ2

n

4
: (18)

The second-order flavor diagonal and off-diagonal suscep-
tibilities are given by

	uuðT;�u ¼ 0; �d ¼ 0Þ
T2

¼ @2PðT;�u;�dÞ
@�2

u

���������u¼�d¼0

¼ 2cuu2 ;

and

	udðT;�u ¼ 0; �d ¼ 0Þ
T2

¼ @2PðT;�u;�dÞ
@�u@�d

���������u¼�d¼0

¼ 2cud2 :

These are shown in Fig. 7. Except cuu2 , all the other

LQCD diagonal and off-diagonal coefficients are close to
their respective ideal gas values from 1:2Tc onwards. The
most striking discrepancy without the VdM term w.r.t the
LQCD data was (see [8]) in the second order flavour off-
diagonal susceptibility cud2 . cud2 signifies the mixing of u
and d quarks through the contribution of the two discon-
nected u and d quark loops. While the LQCD data shows
that this kind of correlation between the u� d flavors are
almost zero just away form Tc, the PNJL model results
remained nonzero even up to 2Tc. Adding the VdM term
this part of the PNJL physics is now consistent with LQCD
results. Below 1:2Tc there is still a large quantitative
difference between the PNJL and LQCD results for cud2 .

Obviously the VdM term is not expected to affect the
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results at low temperatures significantly. At the moment it
is not clear what physics lie behind the difference between
PNJL and LQCD results for cuu2 at high temperatures and

cud2 at low temperatures. Perhaps the quark masses may

hold an answer.

IV. SUMMARY

In this work the PNJL model of Refs. [3,6,8] has been
extended by introducing a VdM term. The important
change it brings about is to set the upper limit of the
Polyakov loop to 1. With this model we have studied
some thermodynamic properties of strongly interacting
matter with the light flavors u and d within a certain range
of temperature T, and small values of chemical potentials
�0 and �I. In principle the VdM term affects all thermo-
dynamic quantities. We adjusted the parameters in the
model so that the pressure and energy density is close to
that computed in LQCD. We have then made estimates of
the specific heat, the speed of sound, and conformal
measure.

Further, we have extracted the Taylor expansion coef-
ficients of pressure in the two chemical potentials up to
sixth order. All the coefficients approach their respective
SB limit above 2Tc. A quantitative comparison with the
LQCD results shows reasonable agreement, though the
QNS c2 and the INS cI2 on the lattice are smaller by about

20%. In contrast our earlier estimates [6,8] of these coef-
ficients without the VdM term showed that c4 and c

2
I differ

from the LQCD results. Thus the main effect of the VdM

term is to impose physical constraints on � and �� such

that at large temperatures the coefficients of the same order
approach each other. This is clearly visible from the flavor
off-diagonal coefficients shown in Fig. 7. The remaining
difference of the values of the QNS and INS in the model
and lattice still needs to be addressed. Possible future steps
to bring in better agreement could be to include beyond
mean-field effects and/or to include some sort of tempera-
ture dependence to the coefficient of the VdM term.
However the lattice quark masses may be important in
bridging the gap. We already found that such data for
pressure with almost physical quark masses [36] show an
increase at any given temperature when compared to data
with larger quark masses [35]. This would encourage us to
believe that extraction of the susceptibilities with similar
quark masses on the lattice may have a better agreement
with our results. Another way to compare results would be
to reestimate the parameters of the NJL model directly
from the pion mass and decay constants from the lattice.
We hope to undertake such studies in future.
In an alternative formulation of the PNJL model includ-

ing the effect of the VdM term, the coefficients c2, c4, c6,
and c8 have been calculated [11]. Surprisingly, we more or
less agree with those results quantitatively. Apart from the
fact that this may be possible due to various adjustable
parameters in both the models, the main reason seems to be

the small dependence of � and �� on the chemical poten-
tials. The basic difference between the two approaches is in
the use of the VdM potential. The VdM term is required to

obtain the mean-field solution of� and ��. But as we have
explained in the formalism that it should not be included in
the expression for pressure. On the other hand in Ref. [11]
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apart from obtaining the mean fields the VdM term is
included while calculating the value of pressure. The dif-
ference in the mean-field treatment coupled by almost
same final results provide hints to the fact that mean-field
treatment has certain shortcomings and is unable to settle
issues at hand. It would thus be worthwhile to look beyond.
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APPENDIX A

We demonstrate the methodology of extracting the av-
erage value of a quantity from mean-field approximation.
Suppose we have a variable � with a probability distribu-
tion given by expð��2Þ and we have to obtain the average
of the function in the exponential �2 [just like we have to
obtain the average of V in Eq. (2)]. We define the distri-
bution in the domain 0 � � � 1. The distribution is shown

in Fig. 8(a). The average is obtained as

h�2i ¼
R
1
0 d��2e��2

R
1
0 d�e��2 ¼ 0:2537; (19)

where Z ¼ R
1
0 d�e��2 ¼ 0:747 is like a partition func-

tion. In the given domain the distribution has no maximum
and thus a mean-field solution cannot be obtained. Let us
now make a change of variable from � to � where � ¼
�2. The distribution becomes 2� expð��4Þ as shown in
Fig. 8(b). Here, 2� is like the Jacobian in the main text.
One can now easily check that corresponding to Eq. (19),
we need to find the expectation value of �4 given by

h�4i ¼
R
1
0 2�d��4e��4

R
1
0 2�d�e��4 ¼ 0:2537: (20)

In this case the distribution has a maximum and we can do
a saddle point approximation. We thus minimize �4 �
ln½2��, which gives the mean-field value h�i ¼ 1=

ffiffiffi
2

p
.

Using this value we find h�i4 ¼ 0:25 ’ h�4i. So h�i4
gives a good approximation to h�4i. On the other hand if
we include the logarithm term we have h�i4 � ln½2h�i� ¼
�0:0966, which is widely different.
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