
B ! K1� decays in the light-cone QCD sum rules

Hisaki Hatanaka and Kwei-Chou Yang

Department of Physics, Chung Yuan Christian University, Chung-Li 320, Taiwan
(Received 17 March 2008; published 29 May 2008)

We present a detailed study of B! K1ð1270Þ� and B! K1ð1400Þ� decays. Using the light-cone sum

rule technique, we calculate the B! K1Að13P1Þ and B! K1Bð11P1Þ tensor form factors, TK1A

1 ð0Þ and
TK1B

1 ð0Þ, where the contributions are included up to the first order in mK1
=mb. We resolve the sign

ambiguity of the K1ð1270Þ–K1ð1400Þ mixing angle �K1
by defining the signs of decay constants, fK1A

and

f?K1B
. From the comparison of the theoretical calculation and the data for decays B! K1� and �� !

K�
1 ð1270Þ��, we find that �K1

¼ �ð34� 13Þ� is favored. In contrast to B! K��, the hard-spectator

contribution suppresses the B! K1ð1270Þ� and B! K1ð1400Þ� branching ratios slightly. The predicted

branching ratios are in agreement with the Belle measurement within the errors. We point out that a more

precise measurement for the ratio RK1
¼ BðB! K1ð1400Þ�Þ=BðB! K1ð1270Þ�Þ can offer a better

determination for the �K1
, and consequently the theoretical uncertainties can be reduced.
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I. INTRODUCTION

b! s� decays contain rich phenomenologies relevant
to the standard model and new physics. Radiative B decays
involving a vector meson have been observed by CLEO,
Belle, and BABAR [1–3]. Recently, the Belle Collaboration
has measured the B! K1� decays for the first time [4]:

B ðB� ! K�
1 ð1270Þ�Þ ¼ ð43� 9� 9Þ � 10�6; (1.1)

B ðB� ! K�
1 ð1400Þ�Þ< 15� 10�6; (1.2)

B ð �B0 ! �K0
1ð1270Þ�Þ< 58� 10�6; (1.3)

B ð �B0 ! �K0
1ð1400Þ�Þ< 15� 10�6; (1.4)

where K1 is the orbitally excited (P-wave) axial-vector
meson. The data indicate that BðB! K1ð1270Þ�Þ �
BðB! K��Þ and BðB! K1ð1270Þ�Þ � BðB!
K1ð1400Þ�Þ. It is quite hard to explain the above-
mentioned measurements using the existing theoretical
calculations [5–10]. Therefore, these measurements repre-
sent a challenge for theory. The production of the axial-
vector mesons has been seen in the two-body hadronic D
decays and in charmful B decays [11]. As for charmless
hadronic B decays, B0 ! a�1 ð1260Þ�� are the first modes
measured by B factories [12,13]. The BABAR
Collaboration has recently reported the observation of the
decays �B0 ! b�1 �

�, bþ1 K
�, B� ! b01�

�, b01K
�, a01�

�,
a�1 �0 [14,15], and �B0 ! K�

1 ð1270Þ�þ, K�
1 ð1400Þ�þ,

aþ1 K�, B� ! a�1 �K0, f1ð1285ÞK�, f1ð1420ÞK� [16]. The
related phenomenologies have been studied in the litera-
ture [17–23].

In this paper, we will focus on the study of the B! K1�
decays. The physical states K1ð1270Þ and K1ð1400Þ are the
mixtures of 13P1 (K1A) and 1

1P1 (K1B) states. K1A and K1B

are not mass eigenstates, and they can be mixed together

due to the strange and nonstrange light quark mass differ-
ence. Following the convention given in Ref. [24], their
relations can be written as

j �K1ð1270Þi ¼ j �K1Ai sin�K1
þ j �K1Bi cos�K1

;

j �K1ð1400Þi ¼ j �K1Ai cos�K1
� j �K1Bi sin�K1

:
(1.5)

In Ref. [24], two possible solutions with twofold ambigu-
ity, j�K1

j 	 33� and 57�, were obtained. A similar con-

straint, 35� & j�K1
j & 55�, was found in Ref. [25]. From

the data of �! K1ð1270Þ�� and K1ð1400Þ�� decays, the
mixing angle is extracted to be �37� and �58� in [26].
The sign ambiguity for �K1

is due to the fact that one can

add arbitrary phases to j �K1Ai and j �K1Bi. This sign ambi-
guity can be removed by fixing the signs for fK1A

and f?K1B
,

which do not vanish in the SU(3) limit and are defined by

h0j � ���5sj �K1AðP; �Þi ¼ �ifK1A
mK1A

�ð�Þ� ; (1.6)

h0j � 	��sj �K1BðP; �Þi ¼ if?K1B
���
��



ð�ÞP

�; (1.7)

(with 
 u or d) in the present paper. Following Ref. [27],
we adopt the convention fK1A

> 0, f?K1B
> 0, and �0123 ¼

�1. Thus, the signs of the �B! �K1A;B tensor form factors

also depend on the definition mentioned above. See also
the discussions after Eq. (5.2).
In the quark model calculation, it was argued that the

radiative B decay involving theK1B, which is the pure 1
1P1

octet state, is forbidden because the effective operatorO7 is
a spin-flip operator [5]. However, this is not true. Although,
in the quark model, the 11P1 meson is represented as a
constituent quark-antiquark pair with total spin S ¼ 0 and
angular momentum L ¼ 1, a real hadron in QCD language
should be described in terms of a set of Fock states, for
which each state with the same quantum number as the
hadron can be represented using light-cone distribution
amplitudes (LCDAs). In terms of LCDAs, the leading-twist
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LCDAs of the �K1B do not vanish, so that �B! �K1B tensor
form factors are not zero. As a matter of fact, due to the G

parity, the leading-twist LCDA �K1A

? (�K1B

k ) of the �K1A

( �K1B) meson defined by the nonlocal tensor current (non-
local axial-vector current) is antisymmetric under the ex-
change of quark and antiquark momentum fractions in the

SU(3) limit, whereas the�K1A

k (�K1B

? ) is symmetric [27,28].

The above properties were not well recognized in the
previous light-cone (LC) sum rule calculation [7,29]. In
Ref. [7], the author used only the ‘‘symmetrically’’ asymp-
totic form for leading-twist distribution amplitudes of the

real states K1ð1270Þ and K1ð1400Þ: �K1ð1270Þ
? ðuÞ ¼

�K1ð1400Þ
? ðuÞ ¼ 6u �u, in the LC sum rule calculation. In

Ref. [29], only the �B! �K1B tensor form factor TK1B

1 ð0Þ
[see Eq. (3.1) for the definition] is computed. The correct
forms of LCDAs for the axial-vector mesons have been
studied in detail in Ref. [27]. Using the LCDAs in
Ref. [27], B! K1� decays have recently been investigated
in the perturbative QCD (PQCD) approach [30].

In this paper, making use of the LCDAs for the �K1A and
�K1B in Refs. [27,28], we study the B! K1� decays. We
compute the relevant �B! �K1A and �K1B tensor form factors
in the LC sum rule approach. The method of LC sum rules
has been widely used in the studies of nonperturbative
processes, including weak baryon decays [31], heavy me-
son decays [32], and heavy to light transition form factors
[33–35]. We find that the B! K1� data favor a negative
�K1

. The more precise estimate can be made through the

analysis for the �� ! K�
1 ð1270Þ�� data. The predicted

branching ratios for B! K1ð1270Þ�, K1ð1400Þ� are in
agreement with the data within errors.

This paper is organized as follows. In Sec. II, the rele-
vant effective Hamiltonian is given. In Sec. III, we provide
the definition of �B! �K1 tensor form factors and then give
the formula for the B! K1� branching ratios. In Sec. IV
we derive the LC sum rules for the relevant tensor form
factors, TK1A

and TK1B
. The numerical results and detailed

analyses are given in Sec. V. We conclude in Sec. VI. The
relevant expressions for two-parton and three-parton
LCDAs are collected in Appendixes A and B, respectively.

II. THE EFFECTIVE HAMILTONIAN

Neglecting doubly Cabibbo-suppressed contributions,
the weak effective Hamiltonian relevant to b! s� is given
by

H effðb! s�Þ ¼ GFffiffiffi
2

p
�
VcbV

�
csðc1ð�ÞOc

1ð�Þ þ c2ð�ÞOc
2ð�ÞÞ

� VtbV
�
ts

X8
i¼3

cið�ÞOið�Þ
�
; (2.1)

where

Oc
1 ¼ ð �cbÞV�Að �scÞV�A;

Oc
2 ¼ ð �c
b�ÞV�Að �s�c
ÞV�A;

O3 ¼ ð�sbÞV�A
X
q

ð �qqÞV�A;

O4 ¼ ð�s
b�ÞV�A
X
q

ð �q�q
ÞV�A;

O5 ¼ ð�sbÞV�A
X
q

ð �qqÞVþA;

O6 ¼ ð�s
b�ÞV�A
X
q

ð �q�q
ÞVþA;

O7 ¼ emb

8�2
�s
	

��ð1þ �5Þb
F��;

O8 ¼ gsmb

8�2
�s
	

��ð1þ �5ÞTa
�b�Ga
��;

(2.2)

where 
, � are the SUð3Þ color indices, V � A correspond
to ��ð1� �5Þ, and we have neglected corrections due to
the s-quark mass. We will adopt the next-to-leading order
(NLO) Wilson coefficients computed in Ref. [36].

III. THE FORMULA FOR THE B ! K1�
BRANCHING RATIO

The penguin form factors for B! K1 are defined as
follows:

h �K1ðp; �Þj�s	���5q
�bj �BðpBÞi ¼ 2TK1

1 ðq2Þ����	���ð�Þp�Bp	;
(3.1)

h �K1ðp; �Þj�s	��q�bj �BðpBÞi ¼ �iTK1

2 ðq2Þ½ðm2
B �m2

K1
Þ���ð�Þ

� ð��ð�ÞqÞðpþ pBÞ��
� iTK1

3 ðq2Þð��ð�ÞqÞ

�
�
q� � q2

m2
B �m2

K1

� ðpþ pBÞ�
�
; (3.2)

with

TK1

1 ð0Þ ¼ TK1

2 ð0Þ; (3.3)

where �K1 can be �K1A or �K1B [or �K1ð1270Þ, �K1ð1400Þ].
At the next-to-leading order of 
s, the branching ratio

can be expressed as [9,37,38]

BðB! K1�Þ ¼ �B�ðB! K1�Þ

¼ �B
G2
F
jVtbV�

tsj2
32�4

m2
b;polem

3
BðTK1

1 ð0ÞÞ2

�
�
1�m2

K1

m2
B

�
3jcð0Þeff7 þ Að1Þj2; (3.4)

where mb;pole is the pole mass of the b quark, and 
 is the

HISAKI HATANAKA AND KWEI-CHOU YANG PHYSICAL REVIEW D 77, 094023 (2008)

094023-2



electromagnetic fine structure constant. The effective co-

efficient cð0Þeff7 in the naive dimensional regularization

(NDR) scheme is defined by cð0Þeff7 ¼ c7 � 1
3 c5 � c6. A

ð1Þ

can be decomposed as

Að1Þð�Þ ¼ Að1Þ
C7
ð�Þ þ Að1Þ

verð�Þ þ Að1ÞK1
sp ð�spÞ; (3.5)

where Að1Þ
c7 , A

ð1Þ
ver, which are the NLO corrections due to the

Wilson coefficient cð0Þeff7 and in the b! s� vertex, respec-

tively, and Að1ÞK1
sp , which is the hard-spectator correction,

are given by

Að1Þ
c7 ð�Þ ¼


sð�Þ
4�

cð1Þeff7 ð�Þ; (3.6)

Að1Þ
verð�Þ ¼ 
sð�Þ

4�

�
32

81
½13cð0Þ1 ð�Þ � 9cð0Þeff8 ð�Þ� ln �mb

�
þ 4

27

�ð33� 2�2 þ 6�iÞcð0Þeff8 ð�Þ þ r2ðzÞcð0Þ1 ð�Þ
�
;

(3.7)

Að1ÞK1
sp ð�spÞ ¼

�
sð�spÞCF
3Nc

fBf
?
K1
��1
B

mBT
K1

1 ð0Þ
�
cð0Þeff8 ð�spÞ

� hu�1iðK1Þ
? � cð0Þ1 ð�spÞ

�
�i5ðzðcÞ0 ; 0; 0Þ

�u

	
?

�
:

(3.8)

Here ceff8 ¼ c8 þ c5, mB=�B describes the first negative

moment of the B-meson distribution amplitude �B1

[38,39], and

hu�1iðK1Þ
? 


Z 1

0
du

�K1

? ðuÞ
u

; (3.9)

�
�i5ðzðcÞ0 ; 0; 0Þ

�u

	
?



Z 1

0
du

�i5ðzðcÞ0 ; 0; 0Þ
�u

�K1

? ðuÞ; (3.10)

with z ¼ ð �mc= �mbÞ2 and zðcÞ0 ’ m2
B �u= �m

2
c, where �mc 


�mcð �mcÞ and �mb 
 �mbð �mbÞ are the MS c- and b-quark
masses, respectively. The detailed definitions of the func-

tions r2ðzÞ and �i5ðzðcÞ0 ; 0; 0Þ can be found in Refs. [36,37].
In the numerical calculation, we set the scale for the vertex
corrections to be � ¼ �mb and the scale for the spectator

interactions to be �sp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h �mb

p
, where �h ’ 0:5 GeV

corresponds to the hadronic scale.

IV. THE LIGHT-CONE SUM RULE FOR TK1

1

To calculate the form factor TK1

1 , we consider the two-
point correlation function, which is sandwiched between
the vacuum and transverse polarized K1 meson,

i
Z
d4xeiqxh �K1ðP;?ÞjT½�sðxÞ	��bðxÞjyBð0Þ�j0i

¼ �iAðp2
B; q

2Þf��ð?Þ
� ð2Pþ qÞ� � ��ð?Þ

� ð2Pþ qÞ�g
þ iBðp2

B; q
2Þf��ð?Þ

� q� � ��ð?Þ
� q�g

þ 2iCðp2
B; q

2Þ ��ð?Þq
m2
B �m2

K1

fP�q� � q�P�g; (4.1)

where jB ¼ i � �5b (with  
 u or d) is the interpolating
current for the B meson, p2

B ¼ ðPþ qÞ2, and P is the
momentum of theK1 meson. Note that in this sectionK1 

K1A orK1B.A is the only relevant term in the present study,
and at the hadron level it can be written in the form

A ðp2
B; q

2Þ ¼ TK1

1 ðq2Þ � 1

m2
B � p2

B

�m
2
BfB
mb

þ � � � ; (4.2)

where the dots denote contributions that have poles p2
B ¼

m2
B� with mB� being the masses of the higher resonance B�

mesons. To obtain the result for A, we have taken into
account here the transverse polarized K1, instead of its
longitudinal component, because for the longitudinal K1,
A mixes with B and C for an energetic K1.
In a region of sufficiently large virtualities, m2

b � p2
B �

�QCDmb, with a small q2  0, the operator product expan-
sion is applicable in Eq. (4.1), so that in QCD for an
energetic K1 meson the correlation function in Eq. (4.1)
can be represented in terms of the LCDAs of theK1 meson:

i
Z
d4xeiqxh �K1ðP;?ÞjT½�sðxÞ	��bðxÞjyBð0Þ�j0i

¼
Z 1

0

�i
ðqþkÞ2�m2

b

Tr½	��ðq6 þk6 þmbÞ�5M
K1

? �jk¼uEn�du

þ1

4

Z 1

0
dv

Z 1

0
D


�2vE2ðn�qÞðfA3K1
Að
ÞþfV3K1

V ð
ÞÞTrð	���6 �ð?Þn6 �Þ
fm2

b�½qþð
1þ
gvÞEn��2g2

þO
�m2

K1

E2

�
; (4.3)

where fA3K1
�OðfK1

mK1
Þ, fV3K1

�OðfK1
mK1

Þ, E ¼ j ~Pj,
P� ¼ En�� þm2

K1
n�þ=ð4EÞ ’ En�� with two lightlike vec-

tors satisfying n�nþ ¼ 2 and n2� ¼ n2þ ¼ 0. Here E�
mb, and we have assigned the momentum of the s quark
in the K1 meson to be

k� ¼ uEn�� þ k�? þ k2?
4uE

n�þ; (4.4)

where k? is of order �QCD. In Eq. (4.3), in calculating

contributions due to the two-parton LCDAs of the �K1 in the
momentum space, we have used the following substitution
for the Fourier transform of h �K1ðP;?Þj�s
ðxÞ ð0Þj0i,
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x� ! �i @

@k�
’ �i

�
n�þ
2E

@

@u
þ @

@k?�

�
; (4.5)

where the term of order k2? is omitted. Thus, we can obtain

the light-cone transverse projection operatorMK1

? of the �K1

meson in the momentum space:

MK1

? ¼ i
f?K1

4
E�6 �ð�Þ? n6 ��5�?ðuÞ � i

fK1
mK1

4

�
�6 �ð�Þ? �5g

ðaÞ
? ðuÞ

� E
Z u

0
dv�aðvÞn6 ��5�

�ð�Þ
?�

@

@k?�

þ i"���	�
���ð�Þ�? n��

�
n	þ

gðvÞ0? ðuÞ
8

� E
gðvÞ? ðuÞ

4

@

@k?	

��







k¼up
þO

�m2
K1

E2

�
; (4.6)

where �a 
 �k � gðaÞ? and the detailed definitions for the

relevant two-parton LCDAs are collected in Appendix A.
A similar discussion for the vector meson projection op-
erators can be found in Ref. [40]. From the expansion of
the transverse projection operator, one can find that con-

tributions arising from �a; , g
ðvÞ0
? , and gðvÞ? are suppressed

by mK1
=E as compared with that from �?. Note that in

Eq. (4.3) the derivative with respect to the transverse
momentum acts on the hard scattering amplitude before
the collinear approximation is taken. The three-parton
chiral-even distribution amplitudes of twist 3, Að
Þ and
V ð
Þ, together with their decay constants, fA3K1

and fV3K1
,

are defined by

h �K1ðP; �Þj�sðxÞ�
�5gsG��ðvxÞ ð0Þj0i
¼ p
½p���ð�Þ?� � p��

�ð�Þ
?� �fA3K1

Aðv;�pxÞ þ � � � ;
(4.7)

h �K1ðP; �Þj �sðxÞ�
gs ~G��ðvxÞ ð0Þj0i
¼ ip
½p���ð�Þ?� � p��

�ð�Þ
?� �fV3K1

V ðv;�pxÞ þ � � � ;
(4.8)

where we have set p� ¼ P� �m2
K1
�z�=ð2P�zÞ with

�z � ¼ x� � P�

m2
K1

fxP� ½ðxPÞ2 � x2m2
K1
�1=2g:

Here the ellipses stand for terms of twist higher than 3, the
following shorthand notations are used,

A ðv;�pxÞ 

Z

D
eipxð
1þv
gÞAð
Þ; (4.9)

etc., and the integration measure is defined as

Z
D
 


Z 1

0
d
1

Z 1

0
d
2

Z 1

0
d
g

�
1�X


i

�
; (4.10)

with 
1, 
2, 
g being the momentum fractions carried by

the s quark, � ð
 �u or �dÞ quark, and gluon, respec-
tively. At the quark-gluon level, after performing the in-
tegration of Eq. (4.3), the result for AQCD reads (with
�u ¼ 1� u)

AQCD ¼ �mbf
?
K1

2

Z 1

0
du

�
1

m2
b � up2

B � �uq2

�
�?ðuÞ �mK1

fK1

mbf
?
K1

�
ugðaÞ? ðuÞ þ�aðuÞ þ

gðvÞ? ðuÞ
4

� gðvÞ0? ðuÞ
4

p2
B þ q2

p2
B � q2

��

� mK1
fK1

4mbf
?
K1

ðm2
b þ q2Þ

ðm2
b � up2

B � �uq2Þ2 g
ðvÞ
? ðuÞ

�
�

Z 1

0
vdv

Z 1

0
D


fA3K1
Að
Þ þ fV3K1

V ð
Þ
2ð
1 þ v
gÞ

�
�

1

m2
b � ð
1 þ v
gÞðp2

B � q2Þ � q2
� m2

b � q2

½m2
b � ð
1 þ v
gÞðp2

B � q2Þ � q2�2
�
: (4.11)

We have given the results of A from the hadron and quark-
gluon points of view, respectively. Thus, the contribution
due to the lowest-lying K1 meson can be further approxi-
mated with the help of quark-hadron duality:

TK1

1 ðq2Þ � 1

m2
B � p2

B

�m
2
BfB
mb

¼ 1

�

Z s0

m2
b

ImAQCDðs; q2Þ
s� p2

B

ds;

(4.12)

where s0 is the excited state threshold. After applying the
Borel transform p2

B ! M2 to the above equation, we obtain

TK1

1 ðq2Þ ¼ mb

m2
BfB

e�m2
B=M

2 1

�

Z s0

m2
b

es=M
2
ImAQCDðs; q2Þds:

(4.13)

Finally, the light-cone sum rule for TK1

1 reads
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TK1

1 ðq2Þ ¼ � m2
bf

?
K1

2m2
BfB

eðm2
B�m2

b
Þ=M2

Z 1

0
du

�
1

u
e �uðq2�m2

b
Þ=ðuM2Þ�½cðu; s0Þ�

�
�?ðuÞ �mK1

fK1

mbf
?
K1

�
ugðaÞ? ðuÞ þ�aðuÞ þ

gðvÞ? ðuÞ
4

� gðvÞ0? ðuÞ
4

m2
b þ ðu� �uÞq2
m2
b � q2

��
� 1

u
e �uðq2�m2

b
Þ=ðuM2Þ 1

4

mK1
fK1

mbf
?
K1

ðm2
b þ q2ÞgðvÞ? ðuÞ

�
�½cðu; s0Þ�
uM2

þ ½cðu; s0Þ�
�

�mK1
fK1

mbf
?
K1

gðvÞ0? ðuÞ
2

q2

m2
b � q2

eðm2
b
�q2Þ=M2

�

� mb

2m2
BfB

eðm2
B�m2

b
Þ=M2

Z 1

0
vdv

Z 1

0
D


fA3K1
Að
Þ þ fV3K1

V ð
Þ
ð
1 þ v
gÞ2

eð1�
1�v
gÞðq2�m2
b
Þ=½ð
1þv
gÞM2�

�
�
�½cð
1 þ v
g; s0Þ� � ðm2

b � q2Þ
�
�½cð
1 þ v
g; s0Þ�
ð
1 þ v
gÞM2

þ ½cð
1 þ v
g; s0Þ�
��
; (4.14)

where cðu; s0Þ ¼ us0 �m2
b þ ð1� uÞq2 and �½� � �� is the

step function. Note that here f?K1A
is chosen to be fK1A

,
while fK1B

is adopted to be f?K1B
ð1 GeVÞ. [See Eq. (A4) and

related discussions.]

V. RESULTS

A. TK1A

1 and TK1B

1 LCSR results andB ! K1� branching
ratios

Parameters relevant to the present study are collected in
Table I. We first analyze the T1ð0Þ sum rules numerically.
The pole b quark mass is adopted in the LC sum rule. The
f?K1

and parameters appearing in the distribution ampli-

tudes are evaluated at the factorization scale �f ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
B �m2

b;pole

q
. On the other hand, the form factor T1ð0Þ

depends on the renormalization scale of the effective
Hamiltonian, for which the scale is set to be �mbð �mbÞ. The
working Borel window is 7:0 GeV2 <M2 < 13:0 GeV2,
where the correction originating from higher resonance
states amounts to 15% to 35%. We do not include the
contributions of the twist-4 LCDAs and three-parton
twist-3 chiral-even LCDAs in the light-cone sum rule since
these corrections to light-cone expansion series is of order
ðmK1

=mbÞ2 and might be negligible. The excited state

threshold s0 can be determined when the most stable
plateau of the LC sum rule result is obtained within the
Borel window. We find that the corresponding threshold s0
lies in the interval 32–36 GeV2.

Two remarks are in order. First, we have consistently
used fB ¼ 190� 10 MeV in all numerical analyses. In the
literature, it was assumed that the theoretical errors due to
the radiative corrections in the form factor sum rules can be
canceled if one adopts the fB sum rule result with the same
order of 
s corrections in the calculation [34,35].
Nevertheless, the resulting sum rule result for TBK�1 ð0Þ
seems to be significantly larger than the estimate extracted
from the data [37], although the sum rule result can be
improved by including 
s corrections [35]. We have
checked that, using the physical value of fB, that we adopt

here, in the TBK
�

1 ð0Þ LC sum rule with the same order in 
s
and mK1

=mb, we get T
BK�
1 ð0Þ 	 0:25þ0:03

�0:02 which is in good

agreement with the result constrained by the data [37,41].
Extracting from the data, the current estimation is

TBK
�

1 ð0Þ ¼ 0:267� 0:018 [41]. The lattice QCD result is

TBK
�

1 ð0Þ ¼ 0:24� 0:03þ0:04
�0:01 [42]. Therefore, although the

radiative corrections can be important in the form factor
sum rule calculations, its effects are significantly reduced
and may be negligible in the present analysis. Second,

ak;K1A

1 , a?;K1A

0 , a?;K1A

2 , ak;K1B

0 , ak;K1B

2 , and a?;K1B

1 are

G-parity violating Gegenbaur moments, which vanish in
the SU(3) limit. Using the QCD sum rules, the relation

a?;K1A

0 þ ð0:59� 0:15Þak;K1B

0 ¼ 0:17� 0:11 was obtained,

instead of their individual values [27]. It will be seen later
that, due to the data for BðB! K1ð1270Þ�Þ � BðB!
K1ð1400Þ�Þ and for �� ! K�

1 ð1270Þ��, �K1
and ak;K1B

0

should be negative. Here we further make reasonable as-

sumptions that jak;K1B

0 fK1B
j � 30%� f?K1B

and

ja?;K1A

0 f?K1A
jð1 GeVÞ � 30%� fK1A

to account for the pos-

sible SU(3) breaking effect; i.e., we assume the G-parity
correction is roughly less than 30%. [See Eqs. (5.3), (5.4),
(5.5), and (5.6) for the detailed definitions of parameters.]

Finally, we arrive at ak;K1B

0 ¼ �0:15� 0:15 and a?;K1A

0 ¼
0:26þ0:04

�0:22. As shown in Table I, once these two parameters

are determined, the remaining G-parity violating
Gegenbaur moments are thus updated according to the
relations given in Eq. (141) in Ref. [27].
To illustrate the qualities and uncertainties of the sum

rules, we plot the results for TK1A

1 ð0Þ and TK1B

1 ð0Þ as func-
tions of M2 in Fig. 1. We obtain

TK1A

1 ð0Þ ¼ 0:31þ0:06þ0:01þ0:06
�0:04�0:01�0:03;

TK1B

1 ð0Þ ¼ �ð0:25þ0:03þ0:01þ0:05
�0:02�0:01�0:07Þ;

(5.1)

where the first, second, and third error bars come from the
variations of mb;pole, fB, and the remaining parameters,

respectively. The third errors are mainly due to the
G-parity violating Gegenbaur moments of the leading-
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twist LCDAs. Corrections arising from the three-parton
LCDAs are less than 3%.

In calculating the B! K1ð1270Þ� and K1ð1400Þ�
branching ratios, B! K1 tensor form factors have the
expressions

TK1ð1270Þ
1 ð0Þ ¼ TK1A

1 ð0Þ sin�K1
þ TK1B

1 ð0Þ cos�K1
;

TK1ð1400Þ
1 ð0Þ ¼ TK1A

1 ð0Þ cos�K1
� TK1B

1 ð0Þ sin�K1
:

(5.2)

From Eq. (4.14), we know that TK1A

1 and TK1B

1 depend on the
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M2 GeV2

0.1
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7. 8. 9. 10. 11. 12. 13.

M2 GeV2
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FIG. 1 (color online). TK1A

1 ð0Þ and TK1B

1 ð0Þ as functions of the Borel mass squared, where the central values of input parameters have
been used in the solid curve. The dashed (dot-dashed) curves are for variation of the mb;pole (parameters for LCDAs) with the central

values of the remaining theoretical parameters.

TABLE I. Summary of input parameters [11,27,39].

Running quark masses (GeV), pole b-quark mass (GeV), and couplings

�mcð �mcÞ msð2 GeVÞ �mbð �mbÞ mb;pole 
sðmZÞ 


1:25� 0:10 0:09� 0:01 4:25� 0:15 4:90� 0:05 0.1176 1=137

CKM matrix elements and the moment of the B distribution amplitude

jVcsj jVcbj �B

0:957� 0:095 ð41:6� 0:6Þ � 10�3 ð0:35� 0:15Þ GeV

Masses (GeV) and decay constants (MeV) for mesons

mK1A
mK1B

fK1A
f?K1B

ð1 GeVÞ fB

1:31� 0:06 1:34� 0:08 250� 13 190� 10 190� 10

Gegenbaur moments for the K1A meson at scales 1 GeV and 2.2 GeV (in parentheses)

ak;K1A

1 ak;K1A

2 a?;K1A

0 a?;K1A

1 a?;K1A

2

�0:30þ0:26
�0:00 �0:05� 0:03 0:26þ0:03

�0:22 �1:08� 0:48 0:02� 0:20
ð�0:24þ0:21

�0:00Þ ð�0:04� 0:02Þ ð0:24þ0:03
�0:21Þ ð�0:84� 0:37Þ ð0:01� 0:15Þ

Gegenbaur moments for the K1B meson at scales 1 GeV and 2.2 GeV (in parentheses)

ak;K1B

0 ak;K1B

1 ak;K1B

2 a?;K1B

1 a?;K1B

2

�0:15� 0:15 �1:95� 0:45 0:09þ0:16
�0:18 0:30þ0:00

�0:31 �0:02� 0:22
ð�0:15� 0:15Þ ð�1:56� 0:36Þ ð0:06þ0:11

�0:13Þ ð0:25þ0:00
�0:26Þ ð�0:02� 0:17Þ

Parameters of twist-3 three-parton LCDAs of the K1A meson at the scale 2.2 GeV

fV3;K1A
(in GeV2) !V

K1A
	VK1A

fA3;K1A
(in GeV2) �AK1A

	AK1A

0:0034� 0:0018 �3:1� 1:1 �0:13� 0:16 0:0014� 0:0007 0:70� 0:46 2:4� 2:0

Parameters of twist-3 three-parton LCDAs of the K1B meson at the scale 2.2 GeV

fV3;K1B
(in GeV2) �VK1B

	VK1B
fA3;K1B

(in GeV2) !A
K1B

	AK1B

0:0029� 0:0012 0:09� 0:24 0:31� 0:68 �0:0041� 0:0018 �1:7� 0:4 �0:05� 0:04
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definition of the signs of fK1A
and f?K1B

, so that the resultant

�K1
also depends on the signs of fK1A

and f?K1B
.

As for the relevant physical properties of �K1 mesons, we
have

h0j � ���5sj �K1ð1270ÞðP;�Þi¼�ifK1ð1270ÞmK1ð1270Þ�
ð�Þ
�

¼�iðfK1A
mK1A

sin�K1

þfK1B
mK1B

ak;K1B

0 cos�K1
Þ�ð�Þ� ;

(5.3)

h0j � ���5sj �K1ð1400ÞðP;�Þi¼�ifK1ð1400ÞmK1ð1400Þ�
ð�Þ
�

¼�iðfK1A
mK1A

cos�K1

�fK1B
mK1B

ak;K1B

0 sin�K1
Þ�ð�Þ� ;

(5.4)

h0j � 	��sj �K1ð1270ÞðP; �Þi ¼ if?K1ð1270Þ���
��


ð�ÞP

�

¼ iðf?K1A
a?;K1A

0 sin�K

þ f?K1B
cos�KÞ���
��
ð�ÞP�;

(5.5)

and

h0j � 	��sj �K1ð1400ÞðP; �Þi ¼ if?K1ð1400Þ���
��


ð�ÞP

�

¼ iðf?K1A
a?;K1A

0 cos�K

� f?K1B
sin�KÞ���
��
ð�ÞP�;

(5.6)

where the values of fK1A
, f?K1B

, mK1A
, mK1B

, ak;K1B

0 , and

a?;K1A

0 are given in Table I, and use of fK1B
¼

f?K1B
ð1 GeVÞ and f?K1A

¼ fkK1A
is made in the present study.

Following this definition, ak;K1B

0 and a?;K1A

0 vanish in the SU

(3) limit, and we have the relations

�K1ð1270Þ
? ðuÞ ¼ f?K1A

f?K1ð1270Þ
�K1A

? ðuÞ sin�K1

þ f?K1B

f?K1ð1270Þ
�K1B

? ðuÞ cos�K1
; (5.7)

�K1ð1400Þ
? ðuÞ ¼ f?K1A

f?K1ð1400Þ
�K1A

? ðuÞ cos�K1

� f?K1B

f?K1ð1400Þ
�K1B

? ðuÞ sin�K1
: (5.8)

In Fig. 2 we plot the branching ratios of B� ! K�
1 ð1270Þ�

and B� ! K�
1 ð1400Þ� as functions of �K1

. The mixing

angle dependence of the K�
1 ð1270Þ� mode is opposite to

that of the K�
1 ð1400Þ� mode. To satisfy the observable

BðB! K1ð1270Þ�Þ � BðB! K1ð1400Þ�Þ, we find that

the sign of �K1
should be negative. The further constraint

for �K1
can be obtained from the �� ! K�

1 ð1270Þ��
analysis.

B. The constraint for �K1
from the �� ! K�

1 ð1270Þ��

data

The decay constant fK1ð1270Þ can be extracted from the

measurement �� ! K�
1 ð1270Þ�� by ALEPH [43]:

Bð�� ! K�
1 ð1270Þ��Þ ¼ ð4:7� 1:1Þ � 10�3, where the

formula for the decay rate is given by

�ð�! K1��Þ ¼ G2
F

16�
jVusj2f2K1

ðm2
� þ 2m2

K1
Þðm2

� �m2
K1
Þ2

m3
�

:

(5.9)

It was obtained in Refs. [26,30] that

jfK1ð1270Þj ¼ 169þ19
�21 MeV: (5.10)

As obtained in the previous subsection, �K1
should be

negative to account for the observable BðB!
K1ð1270Þ�Þ � BðB! K1ð1400Þ�Þ. Using the values for
fK1A

and fK1B
as given in Table I, the result for fK1ð1270Þ in

Eq. (5.10), and the relation in Eq. (5.3), we find that ak;K1B

0

should be negative. Further substituting ak;K1B

0 ¼ �0:15�
0:15 into Eq. (5.3), we obtain that �K1

lies in the interval

�21�–� 47�. We can use the obtained angle to predict the
decay constants fK1ð1270Þ and fK1ð1400Þ:

fK1ð1270Þ ¼ �ð169þ25þ49
�25�40Þ MeV; (5.11)
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FIG. 2 (color online). Branching ratios as functions of the
mixing angle �K1

. The upper five (red) curves at �K1
¼

�50� are for the K1ð1270Þ� mode, and the lower five (blue)
curves for the K1ð1400Þ� mode. The solid curves correspond to
central values of the input parameters. The dot-dashed and
dashed curves denote the theoretical uncertainties due to the
parameters of LCDAs and mb;pole, respectively. The horizontal

line is the experimental limit on B! K1ð1400Þ�, and the
horizontal band shows the experimental result for the
K1ð1270Þ� mode with its 1	 error.
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fK1ð1400Þ ¼ 179þ13þ30
�13�39 MeV; (5.12)

for �K1
¼ ð�34� 13Þ�, where the first error is due to the

uncertainties of decay constants and ak;K1B

0 , and the second

due to the variation of �K1
. The first error is dominated by

the variation of ak;K1B

0 . The predicted �K1
¼ ð�34� 13Þ�

is also consistent with the result given in Ref. [24], where
j�K1

j 	 33� or 57�. We thus predict

B ð�� ! K�
1 ð1400Þ��Þ ¼ ð3:5þ0:5þ1:2

�0:5�1:5Þ � 10�3; (5.13)

to be compared with the current data Bð�� !
K�

1 ð1400Þ��Þ ¼ ð1:7� 2:6Þ � 10�3 [11] which has large
experimental error. If a more precise measurement for
Bð�� ! K�

1 ð1400Þ��Þ can also be achieved, we can ex-

tract directly the values of �K1
and ak;K1B

0 . Consequently, we

can have more precise predictions for the BðB!
K1ð1270Þ�Þ and BðB! K1ð1400Þ�Þ branching ratios and
B! K1 transition form factors.

C. B ! K1� branching ratios

Using �mc= �mb ¼ 1:25 GeV=4:25 GeV, one finds

BðB! K1�Þ ¼ �B
G2
F
jVtbV�

tsj2
32�4

m2
b;polem

3
B

�
1�m2

K1

m2
B

�
3

� ðTK1

1 ð0ÞÞ2jð�0:392� i0:015Þ
þ Að1ÞK1

sp ð�hÞj2; (5.14)

where TK1ð1270Þ
1 ð0Þ and TK1ð1400Þ

1 ð0Þ, as given in Eq. (5.2),
are �K1

dependent. For �K1
¼ �ð34� 13Þ�, we have

TK1ð1270Þ
1 ð0Þ ¼ �ð0:38þ0:06þ0:08þ0:02

�0:04�0:07�0:04Þ;
TK1ð1400Þ
1 ð0Þ ¼ 0:12þ0:03þ0:02þ0:08

�0:02�0:00�0:09;
(5.15)

where the first uncertainty comes from the variation of
mb;pole and fB in the sum rules, the second from the

parameters of LCDAs, and the third from �K1
. To illustrate

the contribution due to the hard-spectator correction, it is
interesting to note that, using �B ¼ 0:35 GeV, �K1

¼
�34�, TK1A

1 ð0Þ ¼ 0:31, TK1B

1 ð0Þ ¼ �0:25, and the center

values of the remaining input parameters, we obtain

Að1ÞK1ð1270Þ
sp ð�hÞ ¼ 0:016þ i0:013;

Að1ÞK1ð1400Þ
sp ð�hÞ ¼ 0:017� i0:047;

(5.16)

which suppress the decay rates slightly by about 8%, in
contrast to the B! K�� decay where the interference

between the hard-spectator correction Að1ÞK�
sp ð�hÞ ¼

�0:013� i0:011 and the remainder is constructive [37].
In Table II, we present a comparison of the resulting

branching ratios in this work with the data. Our results are
consistent with the Belle measurement [4] within errors. A
much more precise determination of �K1

can be made by

the measurement

RK1
¼ BðB! Kð1400Þ�Þ

BðB! Kð1270Þ�Þ : (5.17)

The current upper bound of this ratio is RK1
< 0:5. It can be

seen from Fig. 3 that RK1
weakly depends on the theoretical

uncertainty. Thus, RK1
is a suitable quantity for measuring

the mixing angle �K1
. In the light-cone sum rule calcula-

tion, the physical quantities, including the branching ratios
and transition form factors, receive large errors from the
uncertainties of G-parity violating Gegenbaur moments. A
more precise value for �K1

can be used to extract a better

result of ak;K1B

0 from the data for Bð�� ! K�
1 ð1270Þ��Þ;

the remaining G-parity violating Gegenbaur moments can
thus be determined using Eq. (141) in Ref. [27]. On the
other hand, we can also obtain good estimates for �K1

and

ak;K1B

0 from the data Bð�� ! K�
1 ð1270Þ��Þ and Bð�� !

K�
1 ð1400Þ��Þ if we can improve the measurement for

Bð�� ! K�
1 ð1400Þ��Þ. Consequently, theoretical uncer-

tainties due to G-parity violating Gegenbaur moments

TABLE II. Branching ratios for the radiative decays B!
K1ð1270Þ�, K1ð1400Þ� (in units of 10�6) in this work and
experiment [4]. The branching ratios correspond to �K1

¼
�ð34� � 13�Þ in our work, where the first error comes from
the variation of mb;pole and fB, the second from the parameters

of LCDAs, the third from �B, and the fourth from �K1
. The

annihilation amplitudes are not included in the neutral B decay
modes.

BðB� ! K�
1 ð1270Þ�Þ BðB� ! K�

1 ð1400Þ�Þ
Experiment 43� 13 <15
This work 79þ25þ36þ2þ7

�16�28�5�14 7:7þ4:7þ2:4þ0:1þ14:2
�2:6�0:0�0:2�7:1

Bð �B0 ! �K0
1ð1270Þ�Þ Bð �B0 ! �K0

1ð1400Þ�Þ
Experiment <58 <15
This work 74þ23þ34þ2þ7

�15�26�5�13 7:2þ4:4þ2:2þ0:1þ13:3
�2:4�0:0�0:2�6:6
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FIG. 3 (color online). Same as Fig. 2 except for the ratio
RK1

¼ BðB! K1ð1400Þ�Þ=BðB! K1ð1270Þ�Þ as a function

of the mixing angle �K1
.
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and �K1
can be reduced in the form factor and branching

ratio calculations.

VI. CONCLUSIONS

We have presented a detailed study of B! K1ð1270Þ�
and B! K1ð1400Þ� decays. Our main results are as fol-
lows.

(i) Using the light-cone sum rule technique, we have
evaluated the B! K1A; K1B tensor form factors,

TK1A

1 ð0Þ and TK1B

1 ð0Þ, where the contributions have

been included up to the first order in mK1
=mb. We

obtain TK1A

1 ð0Þ ¼ 0:31þ0:06þ0:01þ0:06
�0:04�0:01�0:03 and TK1B

1 ð0Þ ¼
�ð0:25þ0:03þ0:01þ0:05

�0:02�0:01�0:07Þ.
(ii) The sign ambiguity of the K1ð1270Þ–K1ð1400Þ mix-

ing angle �K1
can be resolved by defining fK1A

and

f?K1B
to be positive. Combining the analysis for

the decays B! K1� and �� ! K�
1 ð1270Þ��, we

find that the mixing angle �K1
should be negative,

and its value lies in the interval �ð34� 13Þ�. We
obtain fK1ð1270Þ ¼ �ð169þ25þ49

�25�40Þ MeV and

fK1ð1400Þ ¼ 179þ13þ30
�13�39 MeV, and predict Bð��!

K�
1 ð1400Þ��Þ¼ ð3:5þ0:5þ1:2

�0:5�1:5Þ�10�3.

(iii) We find TK1ð1270Þ
1 ð0Þ ¼ �ð0:38þ0:06þ0:08þ0:02

�0:04�0:07�0:04Þ,
TK1ð1400Þ
1 ð0Þ ¼ 0:12þ0:03þ0:02þ0:08

�0:02�0:00�0:09. The hard-spectator

contribution suppresses the B! K1ð1270Þ� and
B! K1ð1400Þ� decay rates slightly by about 8%,
in contrast with the situation for B! K��. The
predicted branching ratios for the decays B!
K1ð1270Þ� and B! K1ð1400Þ� agree with the data
within the errors.

(iv) We point out that better determinations of the �K1

and G-parity violating Gegenbaur moments of
leading-twist light-cone distribution amplitudes can
be obtained from a more precise measurement for
the ratio RK1

¼ BðB! K1ð1400Þ�Þ=BðB!
K1ð1270Þ�Þ or from an improved measurement for
Bð�� ! K�

1 ð1400Þ��Þ together with the Bð�� !
K�

1 ð1270Þ��Þ data. Thus, the theoretical uncertain-
ties can be further reduced.
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APPENDIX A: TWO-PARTON DISTRIBUTION
AMPLITUDES

In the calculation, the LCDAs of the axial meson appear
in the following way:

h �K1ðP;�Þj�s
ðyÞ ðxÞj0i ¼ � i

4

Z 1

0
dueiðuPyþ �uPxÞ

�
fK1

mK1

�
P6 �5

��ð�Þz
Pz

�kðuÞ þ
�
�6 � �P6 �

�
ð�Þz
Pz

�
�5g

ðaÞ
? ðuÞ

� z6 �5

��ð�Þz
2ðPzÞ2m

2
K1

�g3ðuÞ þ ����	�
�
ð�Þp

�z	��
gðvÞ? ðuÞ

4

�
þ f?K1

�
1

2
ðP6 �6 �ð�Þ � �6 �ð�ÞP6 Þ�5�?ðuÞ

� 1

2
ðP6 z6 � z6 P6 Þ�5

��ð�Þz
ðPzÞ2m

2
K1

�hðtÞk ðuÞ � 1

4
ð�6 �ð�Þz6 � z6 �6 �ð�ÞÞ�5

m2
K1

Pz
�h3ðuÞ þ ið��ð�ÞzÞm2

K1
�5

hðpÞk ðuÞ
2

��



þOððx� yÞ2Þ; (A1)

where

�g 3ðuÞ ¼ g3ðuÞ þ�k � 2gðaÞ? ðuÞ;
�hðtÞk ðuÞ ¼ hðtÞk ðuÞ � 1

2�?ðuÞ � 1
2h3ðuÞ;

�h3ðuÞ ¼ h3ðuÞ ��?ðuÞ;
(A2)

z2 ¼ ðy� xÞ2 � 0, and P2 ¼ m2
K1
. The detailed LCDAs

are defined in Ref. [27]. Here �k, �? are of twist 2, gðaÞ? ,
gðvÞ? , hðtÞk , hðpÞk of twist 3, and g3, h3 of twist 4. In the SU(3)
limit, due to G parity, �k, g

ðaÞ
? , gðvÞ? , and g3 are symmetric

(antisymmetric) under the replacement u$ 1� u for the
13P1 (11P1) states, whereas �?, h

ðtÞ
k , hðpÞk , and h3 are

antisymmetric (symmetric). For convenience, we normal-
ize the distribution amplitudes of the 13P1 and 11P1 states
to be subject to

Z 1

0
du�3P1

k ðuÞ ¼ 1;
Z 1

0
du�1P1

? ðuÞ ¼ 1: (A3)

We take f?3P1
¼ f3P1

and f1P1
¼ f?1P1

ð� ¼ 1 GeVÞ in the
study, such that we define

h �K1AðP; �Þj�sð0Þ	���5 ð0Þj0i
¼ f?K1A

a?;K1A

0 ð��ð�Þ� P� � ��ð�Þ� P�Þ;
h �K1BðP; �Þj �sð0Þ���5 ð0Þj0i ¼ ifK1B

ak;K1B

0 mK1B
��ð�Þ� ;

(A4)

where a?;K1A

0 and ak;K1B

0 are the Gegenbaur zeroth mo-
ments, which vanish in the SU(3) limit.
We take into account the approximate forms of twist-2

distributions for the �K1A meson to be [27]

�kðuÞ ¼ 6u �u½1þ 3ak1�þ ak2
3
2ð5�2 � 1Þ�; (A5)
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�?ðuÞ ¼ 6u �u½a?0 þ 3a?1 �þ a?2
3
2ð5�2 � 1Þ�; (A6)

and for the �K1B meson to be

�kðuÞ ¼ 6u �u½ak0 þ 3ak1�þ ak2
3
2ð5�2 � 1Þ�; (A7)

�?ðuÞ ¼ 6u �u½1þ 3a?1 �þ a?2
3
2ð5�2 � 1Þ�; (A.8)

where � ¼ 2u� 1.
For the two-parton twist-3 chiral-even LCDAs, which

are relevant here, we take the approximate expressions up
to conformal spin 9=2 and OðmsÞ [27]:

gðaÞ? ðuÞ ¼ 3

4
ð1þ �2Þ þ 3

2
ak1�

3 þ
�
3

7
ak2 þ 5�V3;K1A

�
ð3�2 � 1Þ þ

�
9

112
ak2 þ

105

16
�A3;K1A

� 15

64
�V3;K1A

!V
K1A

�
ð35�4 � 30�2 þ 3Þ

þ 5

�
21

4
�V3;K1A

	VK1A
þ �A3;K1A

�
�AK1A

� 3

16
	AK1A

��
�ð5�2 � 3Þ � 9

2
�a?1 ~þ

�
3

2
þ 3

2
�2 þ lnuþ ln �u

�

� 9

2
�a?1 ~�ð3�þ ln �u� lnuÞ; (A9)

gðvÞ? ðuÞ ¼ 6u �u

�
1þ

�
ak1 þ

20

3
�A3;K1A

�AK1A

�
�þ

�
1

4
ak2 þ

5

3
�V3;K1A

�
1� 3

16
!V
K1A

�
þ 35

4
�A3;K1A

�
ð5�2 � 1Þ þ 35

4

�
�V3;K1A

	VK1A

� 1

28
�A3;K1A

	AK1A

�
�ð7�2 � 3Þ

�
� 18a?1 ~þð3u �uþ �u ln �uþ u lnuÞ � 18a?1 ~�ðu �u�þ �u ln �u� u lnuÞ; (A10)

for the �K1A state, and

gðaÞ? ðuÞ ¼ 3

4
ak0ð1þ �2Þ þ 3

2
ak1�

3 þ 5

�
21

4
�V3;K1B

þ �A3;K1B

�
1� 3

16
!A
K1B

��
�ð5�2 � 3Þ þ 3

16
ak2ð15�4 � 6�2 � 1Þ

þ 5�V3;K1B
�VK1B

ð3�2 � 1Þ þ 105

16

�
�A3;K1B

	AK1B
� 1

28
�VK1B

	VK1B

�
ð35�4 � 30�2 þ 3Þ

� 15 �a?2
�
~þ�3 þ 1

2
~�ð3�2 � 1Þ

�
� 3

2
½~þð2�þ ln �u� lnuÞ þ ~�ð2þ lnuþ ln �uÞ�ð1þ 6a?2 Þ; (A11)

gðvÞ? ðuÞ ¼ 6u �u

�
ak0 þ ak1�þ

�
1

4
ak2 þ

5

3
�V3;K1B

�
�VK1B

� 3

16
	VK1B

�
þ 35

4
�A3;K1B

	AK1B

�
ð5�2 � 1Þ

þ 20

3
�

�
�A3;K1B

þ 21

16

�
�V3;K1B

� 1

28
�A3;K1B

!A
K1B

�
ð7�2 � 3Þ

�
� 5a?2 ½2 ~þ�þ ~�ð1þ �2Þ�

�

� 6½~þð �u ln �u� u lnuÞ þ ~�ð2u �uþ �u ln �uþ u lnuÞ�ð1þ 6a?2 Þ; (A12)

for the �K1B state, where

~� ¼ � f?K1

fK1

ms

mK1

; �V;A3;K1
¼ fV;A3K1

fK1
mK1

: (A13)

APPENDIX B: THREE-PARTON CHIRAL-EVEN
DISTRIBUTION AMPLITUDES OF TWIST 3

Taking into account the contributions up to terms of
conformal spin 9=2 and considering the corrections of
order ms, the twist-3 three-parton chiral-even distribution
amplitudes, defined in Eqs. (4.7) and (4.8), can be approxi-
mately written as [27]

Að
Þ ¼ 5040ð
s � 
 Þ
s
 
2
g

þ 360
s
 

2
g½�AK1A

þ 	AK1A

1
2ð7
g � 3Þ�; (B1)

V ð
Þ ¼ 360
s
 

2
g½1þ!V

K1A

1
2ð7
g � 3Þ�

þ 5040ð
s � 
 Þ
s
 
2
g	

V
K1A
; (B2)

for the �K1A state, and

Að
Þ ¼ 360
s
 

2
g½1þ!A

K1B

1
2ð7
g � 3Þ�

þ 5040ð
s � 
 Þ
s
 
2
g	

A
K1B
; (B3)

V ð
Þ ¼ 5040ð
s � 
 Þ
s
 
2
g

þ 360
s
 

2
g½�VK1B

þ 	VK1B

1
2ð7
g � 3Þ�; (B4)

for the �K1B state, where �’s correspond to conformal spin
7=2, while!’s and 	’s are parameters with conformal spin
9=2. Note that as the SU(3)-symmetry (and G parity) is
restored, we have �0s ¼ 	0s ¼ 0.
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