$B \to K_1 \gamma$ decays in the light-cone QCD sum rules

Hisaki Hatanaka and Kwei-Chou Yang

Department of Physics, Chung Yuan Christian University, Chung-Li 320, Taiwan (Received 17 March 2008; published 29 May 2008)

We present a detailed study of $B \to K_1(1270)\gamma$ and $B \to K_1(1400)\gamma$ decays. Using the light-cone sum rule technique, we calculate the $B \to K_{1A}(1^3P_1)$ and $B \to K_{1B}(1^1P_1)$ tensor form factors, $T_1^{K_{1A}}(0)$ and $T_2^{K_{1B}}(0)$ where the contributions are included up to the first order in m_{α}/m_{α} . We resolve the si $T_{1B}^{K_{1B}}(0)$, where the contributions are included up to the first order in m_{K_1}/m_b . We resolve the sign
ambiguity of the K (1270) K (1400) mixing angle ft, by defining the signs of decay constants ft, and ambiguity of the $K_1(1270) - K_1(1400)$ mixing angle θ_{K_1} by defining the signs of decay constants, $f_{K_{1A}}$ and f_{\pm} . $f_{K_{1B}}^{\perp}$. From the comparison of the theoretical calculation and the data for decays $B \to K_1 \gamma$ and $\tau \to K^* \to (1270)$
 K^{\perp} (1270) μ , we find that $A = -(34 \pm 13)$ ° is favored. In contrast to $B \to K^* \gamma$, the hard $K_1^-(1270)\nu_\tau$, we find that $\theta_{K_1} = -(34 \pm 13)^\circ$ is favored. In contrast to $B \to K^* \gamma$, the hard-spectator
contribution suppresses the $B \to K$ (1270) γ and $B \to K$ (1400) γ branching ratios slightly. The predicted contribution suppresses the $B \to K_1(1270)\gamma$ and $B \to K_1(1400)\gamma$ branching ratios slightly. The predicted branching ratios are in agreement with the Belle measurement within the errors. We point out that a more precise measurement for the ratio $R_{K_1} = \mathcal{B}(B \to K_1(1400)\gamma)/\mathcal{B}(B \to K_1(1270)\gamma)$ can offer a better determination for the θ_{K_1} , and consequently the theoretical uncertainties can be reduced.

DOI: [10.1103/PhysRevD.77.094023](http://dx.doi.org/10.1103/PhysRevD.77.094023) PACS numbers: 13.20.He, 12.38. -t, 12.38.Lg, 14.40.Ev

I. INTRODUCTION

 $b \rightarrow s\gamma$ decays contain rich phenomenologies relevant to the standard model and new physics. Radiative B decays involving a vector meson have been observed by CLEO, Belle, and $BABAR$ [1[–3\]](#page-10-0). Recently, the Belle Collaboration has measured the $B \to K_1 \gamma$ decays for the first time [\[4](#page-10-0)]:

$$
\mathcal{B}(B^- \to K_1^-(1270)\gamma) = (43 \pm 9 \pm 9) \times 10^{-6}, \quad (1.1)
$$

$$
\mathcal{B}(B^- \to K_1^-(1400)\gamma) < 15 \times 10^{-6}, \tag{1.2}
$$

$$
\mathcal{B}(\bar{B}^0 \to \bar{K}_1^0(1270)\gamma) < 58 \times 10^{-6}, \tag{1.3}
$$

$$
\mathcal{B}(\bar{B}^0 \to \bar{K}_1^0(1400)\gamma) < 15 \times 10^{-6}, \tag{1.4}
$$

where K_1 is the orbitally excited (P-wave) axial-vector meson. The data indicate that $\mathcal{B}(B \to K_1(1270)\gamma) \sim$
 $\mathcal{B}(B \to K^*\gamma)$ and $\mathcal{B}(B \to K_1(1270)\gamma) \gg \mathcal{B}(B \to$ $\mathcal{B}(B \to K^*\gamma)$ and $\mathcal{B}(B \to K_1(1270)\gamma) \gg \mathcal{B}(B \to K_1(1400)\gamma)$ It is quite hard to explain the above- $K_1(1400)\gamma$. It is quite hard to explain the above-
mentioned measurements using the existing theoretical mentioned measurements using the existing theoretical calculations $[5–10]$ $[5–10]$. Therefore, these measurements represent a challenge for theory. The production of the axialvector mesons has been seen in the two-body hadronic D decays and in charmful B decays $[11]$. As for charmless hadronic B decays, $B^0 \to a_{\perp}^{\pm} (1260) \pi^{\pm}$ are the first modes
measured by B factories [12,13] The BARAR measured by B factories $[12,13]$. The BABAR Collaboration has recently reported the observation of the decays $\bar{B}^0 \to b_1^{\pm} \pi^{\mp}$, $b_1^{\pm} K^-$, $B^- \to b_1^0 \pi^-$, $b_1^0 K^-$, $a_1^0 \pi^-$,
 $a^- \pi^0$ [14.15] and $\bar{B}^0 \to K^-$ (1270) π^+ , K^- (1400) π^+ $a_1^- \pi^0$ [14,15], and $\bar{B^0} \to K_1^- (1270) \pi^+$, $K_1^- (1400) \pi^+$,
 $a_1^+ K^-$, $B^- \to a_1^- \bar{K}^0$, $f_1 (1285) K^-$, $f_1 (1420) K^-$ [16]. The

related phenomenologies have been studied in the literarelated phenomenologies have been studied in the literature [17[–23\]](#page-10-0).

In this paper, we will focus on the study of the $B \to K_1 \gamma$ decays. The physical states $K_1(1270)$ and $K_1(1400)$ are the mixtures of $1^{3}P_{1}$ (K_{1A}) and $1^{1}P_{1}$ (K_{1B}) states. K_{1A} and K_{1B} are not mass eigenstates, and they can be mixed together due to the strange and nonstrange light quark mass difference. Following the convention given in Ref. [\[24\]](#page-10-0), their relations can be written as

$$
|\bar{K}_1(1270)\rangle = |\bar{K}_{1A}\rangle \sin\theta_{K_1} + |\bar{K}_{1B}\rangle \cos\theta_{K_1},
$$

$$
|\bar{K}_1(1400)\rangle = |\bar{K}_{1A}\rangle \cos\theta_{K_1} - |\bar{K}_{1B}\rangle \sin\theta_{K_1}.
$$
 (1.5)

In Ref. [\[24\]](#page-10-0), two possible solutions with twofold ambiguity, $|\theta_{K_1}| \approx 33^{\circ}$ and 57°, were obtained. A similar con-
straint 35° $\lt |\theta_{K_1}| \lt 55^{\circ}$ was found in Ref 1251. From straint, $35^\circ \lesssim |\theta_{K_1}| \lesssim 55^\circ$, was found in Ref. [\[25\]](#page-10-0). From
the data of $\pi \rightarrow K$ (1270)*y*, and K (1400)*y*, decays the the data of $\tau \to K_1(1270)\nu_\tau$ and $K_1(1400)\nu_\tau$ decays, the mixing angle is extracted to be $\pm 37^{\circ}$ and $\pm 58^{\circ}$ in [[26\]](#page-10-0).
The sign ambiguity for $\theta_{\rm m}$ is due to the fact that one can The sign ambiguity for θ_{K_1} is due to the fact that one can add arbitrary phases to $|\bar{K}_{1A}\rangle$ and $|\bar{K}_{1B}\rangle$. This sign ambiguity can be removed by fixing the signs for $f_{K_{1A}}$ and $f_{K_{1B}}^{\perp}$, which do not vanish in the SU(3) limit and are defined by

$$
\langle 0|\bar{\psi}\gamma_{\mu}\gamma_{5}s|\bar{K}_{1A}(P,\lambda)\rangle = -if_{K_{1A}}m_{K_{1A}}\epsilon_{\mu}^{(\lambda)},\qquad(1.6)
$$

$$
\langle 0|\bar{\psi}\sigma_{\mu\nu}s|\bar{K}_{1B}(P,\lambda)\rangle = i f_{K_{1B}}^{\perp} \epsilon_{\mu\nu\alpha\beta} \epsilon_{(\lambda)}^{\alpha} P^{\beta}, \qquad (1.7)
$$

(with $\psi \equiv u$ or d) in the present paper. Following Ref. [[27\]](#page-10-0),
we adopt the convention $f_{\kappa} > 0$ $f_{\pm}^{\perp} > 0$ and $e^{0.0123} =$ we adopt the convention $f_{K_{1A}} > 0$, $f_{K_{1B}}^{\perp} > 0$, and $\epsilon^{0123} = -1$. Thus, the signs of the $\bar{B}_{\text{max}} \bar{K}$ tonsor form fectors -1. Thus, the signs of the $\bar{B} \rightarrow \bar{K}_{1A,B}$ tensor form factors also depend on the definition mentioned above. See also the discussions after Eq. ([5.2](#page-5-0)).

In the quark model calculation, it was argued that the radiative B decay involving the K_{1B} , which is the pure 1^1P_1 octet state, is forbidden because the effective operator O_7 is a spin-flip operator [\[5\]](#page-10-0). However, this is not true. Although, in the quark model, the 1^1P_1 meson is represented as a constituent quark-antiquark pair with total spin $S = 0$ and angular momentum $L = 1$, a real hadron in QCD language should be described in terms of a set of Fock states, for which each state with the same quantum number as the hadron can be represented using light-cone distribution amplitudes (LCDAs). In terms of LCDAs, the leading-twist LCDAs of the \bar{K}_{1B} do not vanish, so that $\bar{B} \rightarrow \bar{K}_{1B}$ tensor form factors are not zero. As a matter of fact, due to the G parity, the leading-twist LCDA $\Phi_{\perp}^{K_{1A}}$ ($\Phi_{\parallel}^{K_{1B}}$) of the \bar{K}_{1A}
(\bar{K}) meson defined by the nonlocal tensor current (non (\bar{K}_{1B}) meson defined by the nonlocal tensor current (nonlocal axial-vector current) is antisymmetric under the exchange of quark and antiquark momentum fractions in the SU(3) limit, whereas the $\Phi_{\parallel}^{K_{1A}}$ ($\Phi_{\perp}^{K_{1B}}$) is symmetric [\[27,28\]](#page-10-0).
The above properties were not well recognized in the The above properties were not well recognized in the previous light-cone (LC) sum rule calculation [[7,29\]](#page-10-0). In Ref. [[7\]](#page-10-0), the author used only the ''symmetrically'' asymptotic form for leading-twist distribution amplitudes of the real states $K_1(1270)$ and $K_1(1400)$: $\Phi_{\perp}^{K_1(1270)}(u) =$
 $\Phi_{\perp}^{K_1(1400)}(u) = 6u\bar{v}$ in the LC sum rule selection. In $\Phi_{\perp}^{K_1(1400)}(u) = 6u\bar{u}$, in the LC sum rule calculation. In
Ref. [20], only the $\bar{P} \rightarrow \bar{K}$ tensor form fector $T^{K_{1B}}(0)$ Ref. [[29\]](#page-10-0), only the $\bar{B} \to \bar{K}_{1B}$ tensor form factor $T_1^{K_{1B}}(0)$
[see Eq. (3.1) for the definition] is computed. The correct [see Eq. (3.1) for the definition] is computed. The correct forms of LCDAs for the axial-vector mesons have been studied in detail in Ref. [\[27\]](#page-10-0). Using the LCDAs in Ref. [\[27\]](#page-10-0), $B \to K_1 \gamma$ decays have recently been investigated in the perturbative QCD (PQCD) approach [\[30\]](#page-10-0).

In this paper, making use of the LCDAs for the \bar{K}_{1A} and \overline{K}_{1B} in Refs. [[27](#page-10-0),[28](#page-10-0)], we study the $B \to K_1 \gamma$ decays. We compute the relevant $\bar{B} \to \bar{K}_{1A}$ and \bar{K}_{1B} tensor form factors in the LC sum rule approach. The method of LC sum rules has been widely used in the studies of nonperturbative processes, including weak baryon decays [[31](#page-10-0)], heavy meson decays [\[32\]](#page-10-0), and heavy to light transition form factors [\[33–35\]](#page-10-0). We find that the $B \to K_1 \gamma$ data favor a negative θ_{K_1} . The more precise estimate can be made through the analysis for the $\tau^- \to K_1^-(1270)\nu_\tau$ data. The predicted
branching ratios for $R \to K_1(1270)\nu$, $K_1(1400)\nu$ are in branching ratios for $B \to K_1(1270)\gamma$, $K_1(1400)\gamma$ are in agreement with the data within errors.

This paper is organized as follows. In Sec. II, the relevant effective Hamiltonian is given. In Sec. III, we provide the definition of $\bar{B} \rightarrow \bar{K}_1$ tensor form factors and then give the formula for the $B \to K_1 \gamma$ branching ratios. In Sec. IV we derive the LC sum rules for the relevant tensor form factors, $T_{K_{1A}}$ and $T_{K_{1B}}$. The numerical results and detailed analyses are given in Sec. V. We conclude in Sec. VI. The relevant expressions for two-parton and three-parton LCDAs are collected in Appendixes A and B, respectively.

II. THE EFFECTIVE HAMILTONIAN

Neglecting doubly Cabibbo-suppressed contributions, the weak effective Hamiltonian relevant to $b \rightarrow s\gamma$ is given by

$$
\mathcal{H}_{\text{eff}}(b \to s\gamma) = \frac{G_F}{\sqrt{2}} \Biggl\{ V_{cb} V_{cs}^*(c_1(\mu) O_1^c(\mu) + c_2(\mu) O_2^c(\mu)) - V_{tb} V_{ts}^* \sum_{i=3}^8 c_i(\mu) O_i(\mu) \Biggr\},
$$
\n(2.1)

$$
O_1^c = (\bar{c}b)_{V-A}(\bar{s}c)_{V-A},
$$

\n
$$
O_2^c = (\bar{c}_\alpha b_\beta)_{V-A}(\bar{s}_\beta c_\alpha)_{V-A},
$$

\n
$$
O_3 = (\bar{s}b)_{V-A} \sum_q (\bar{q}q)_{V-A},
$$

\n
$$
O_4 = (\bar{s}_\alpha b_\beta)_{V-A} \sum_q (\bar{q}_\beta q_\alpha)_{V-A},
$$

\n
$$
O_5 = (\bar{s}b)_{V-A} \sum_q (\bar{q}q)_{V+A},
$$

\n
$$
O_6 = (\bar{s}_\alpha b_\beta)_{V-A} \sum_q (\bar{q}_\beta q_\alpha)_{V+A},
$$

\n
$$
O_7 = \frac{em_b}{8\pi^2} \bar{s}_\alpha \sigma^{\mu\nu} (1 + \gamma_5) b_\alpha F_{\mu\nu},
$$

\n
$$
O_8 = \frac{g_s m_b}{8\pi^2} \bar{s}_\alpha \sigma^{\mu\nu} (1 + \gamma_5) T_{\alpha\beta}^a b_\beta G_{\mu\nu}^a,
$$

where α , β are the SU(3) color indices, $V \pm A$ correspond
to $\gamma^{\mu}(1 + \gamma^5)$ and we have neglected corrections due to to $\gamma^{\mu} (1 \pm \gamma^5)$, and we have neglected corrections due to the s-quark mass. We will adopt the next-to-leading order the s-quark mass. We will adopt the next-to-leading order (NLO) Wilson coefficients computed in Ref. [[36](#page-10-0)].

III. THE FORMULA FOR THE $B \to K_1 \gamma$ BRANCHING RATIO

The *penguin* form factors for $B \to K_1$ are defined as follows:

$$
\langle \bar{K}_1(p,\lambda)|\bar{s}\sigma_{\mu\nu}\gamma_5 q^{\nu}b|\bar{B}(p_B)\rangle = 2T_1^{K_1}(q^2)\epsilon_{\mu\nu\rho\sigma}\epsilon_{(\lambda)}^{*\nu}p_B^{\rho}\rho^{\sigma},
$$
\n(3.1)

$$
\langle \bar{K}_1(p,\lambda)|\bar{s}\sigma^{\mu\nu}q_{\nu}b|\bar{B}(p_B)\rangle = -i\mathcal{T}_2^{K_1}(q^2)[(m_B^2 - m_{K_1}^2)\epsilon_{(\lambda)}^{*\mu} - (\epsilon_{(\lambda)}^*q)(p + p_B)^{\mu}] \\
- i\mathcal{T}_3^{K_1}(q^2)(\epsilon_{(\lambda)}^*q) \\
\times \left[q^{\mu} - \frac{q^2}{m_B^2 - m_{K_1}^2}\right] \\
\times (p + p_B)^{\mu}, \qquad (3.2)
$$

with

$$
T_1^{K_1}(0) = T_2^{K_1}(0), \tag{3.3}
$$

where \bar{K}_1 can be \bar{K}_{1A} or \bar{K}_{1B} [or $\bar{K}_1(1270), \bar{K}_1(1400)$].

At the next-to-leading order of α_s , the branching ratio can be expressed as [[9](#page-10-0),[37](#page-10-0),[38](#page-10-0)]

$$
\mathcal{B}(B \to K_1 \gamma) = \tau_B \Gamma(B \to K_1 \gamma)
$$

= $\tau_B \frac{G_F^2 \alpha |V_{tb} V_{ts}^*|^2}{32 \pi^4} m_{b,\text{pole}}^2 m_B^3 (T_1^{K_1}(0))^2$
 $\times \left(1 - \frac{m_{K_1}^2}{m_B^2}\right)^3 |c_7^{(0)\text{eff}} + A^{(1)}|^2,$ (3.4)

where $m_{b,\text{pole}}$ is the pole mass of the b quark, and α is the

electromagnetic fine structure constant. The effective coefficient $c_7^{(0)$ eff in the naive dimensional regularization (NDR) scheme is defined by $c_7^{(0) \text{eff}} = c_7 - \frac{1}{3}c_5 - c_6$. $A^{(1)}$ can be decomposed as

$$
A^{(1)}(\mu) = A_{C_7}^{(1)}(\mu) + A_{\text{ver}}^{(1)}(\mu) + A_{\text{sp}}^{(1)K_1}(\mu_{\text{sp}}),
$$
 (3.5)

where $A_{c_7}^{(1)}$, $A_{ver}^{(1)}$, which are the NLO corrections due to the Wilson coefficient $c_7^{(0) \text{eff}}$ and in the $b \rightarrow s\gamma$ vertex, respectively and $A^{(1)K_1}$, which is the hard aposteter correction tively, and $A_{\text{sp}}^{(1)K_1}$, which is the hard-spectator correction, are given by

$$
A_{c_7}^{(1)}(\mu) = \frac{\alpha_s(\mu)}{4\pi} c_7^{(1)\text{eff}}(\mu), \tag{3.6}
$$

$$
A_{\text{ver}}^{(1)}(\mu) = \frac{\alpha_s(\mu)}{4\pi} \left\{ \frac{32}{81} \left[13c_1^{(0)}(\mu) - 9c_8^{(0)\text{eff}}(\mu) \right] \ln \frac{\bar{m}_b}{\mu} + \frac{4}{27} \right\}
$$

$$
\times (33 - 2\pi^2 + 6\pi i) c_8^{(0)\text{eff}}(\mu) + r_2(z) c_1^{(0)}(\mu) \right\},\tag{3.7}
$$

$$
A_{\rm sp}^{(1)K_1}(\mu_{\rm sp}) = \frac{\pi \alpha_s(\mu_{\rm sp}) C_F}{3N_c} \frac{f_B f_{K_1}^{\perp} \lambda_B^{-1}}{m_B T_1^{K_1}(0)} \Big\{ c_8^{(0) \text{eff}}(\mu_{\rm sp}) \times \langle u^{-1} \rangle_{\perp}^{(K_1)} - c_1^{(0)}(\mu_{\rm sp}) \Big\{ \frac{\Delta i_5(z_0^{(c)}, 0, 0)}{\bar{u}} \Big\}_{\perp} \Big\}.
$$
\n(3.8)

Here $c_8^{\text{eff}} = c_8 + c_5$, m_B/λ_B describes the first negative
moment of the B-meson distribution amplitude Φ_{24} moment of the *B*-meson distribution amplitude Φ_{B1} [\[38,39\]](#page-10-0), and

$$
\langle u^{-1} \rangle_{\perp}^{(K_1)} \equiv \int_0^1 du \frac{\Phi_{\perp}^{K_1}(u)}{u}, \tag{3.9}
$$

$$
\left\langle \frac{\Delta i_5(z_0^{(c)}, 0, 0)}{\bar{u}} \right\rangle_{\perp} \equiv \int_0^1 du \frac{\Delta i_5(z_0^{(c)}, 0, 0)}{\bar{u}} \Phi_{\perp}^{K_1}(u), \quad (3.10)
$$

with $z = (\bar{m}_c/\bar{m}_b)^2$ and $z_0^{(c)} \approx m_B^2 \bar{u}/\bar{m}_c^2$, where $\bar{m}_c \equiv \bar{m}_c(\bar{m}_c)$ and $\bar{m}_c \equiv \bar{m}_c(\bar{m}_c)$ are the \overline{MS} c, and b quark $\bar{m}_c(\bar{m}_c)$ and $\bar{m}_b \equiv \bar{m}_b(\bar{m}_b)$ are the $\overline{\text{MS}}$ c- and b-quark
masses respectively. The detailed definitions of the funcmasses, respectively. The detailed definitions of the functions $r_2(z)$ and $\Delta i_5(z_0^{(c)}, 0, 0)$ can be found in Refs. [\[36,37\]](#page-10-0).
In the numerical calculation, we set the scale for the vertex In the numerical calculation, we set the scale for the vertex corrections to be $\mu = \bar{m}_b$ and the scale for the spectator interactions to be $\mu_{sp} = \sqrt{\Lambda_h \bar{m}_b}$, where $\Lambda_h \approx 0.5 \text{ GeV}$ corresponds to the hadronic scale.

IV. THE LIGHT-CONE SUM RULE FOR $T^{K_{1}}_{1}$

To calculate the form factor $T_1^{K_1}$, we consider the twopoint correlation function, which is sandwiched between the vacuum and transverse polarized K_1 meson,

$$
i \int d^4x e^{iqx} \langle \bar{K}_1(P, \perp) | T[\bar{s}(x)\sigma_{\mu\nu}b(x)j_B^{\dagger}(0)] | 0 \rangle
$$

= $-i \mathcal{A}(p_B^2, q^2) \{ \epsilon_{\mu}^{*(\perp)} (2P + q)_{\nu} - \epsilon_{\nu}^{*(\perp)} (2P + q)_{\mu} \} + i \mathbb{B}(p_B^2, q^2) \{ \epsilon_{\mu}^{*(\perp)} q_{\nu} - \epsilon_{\nu}^{*(\perp)} q_{\mu} \} + 2i \mathbb{C}(p_B^2, q^2) \frac{\epsilon^{*(\perp)} q}{m_B^2 - m_{K_1}^2} \{ P_{\mu} q_{\nu} - q_{\mu} P_{\nu} \}, \quad (4.1)$

where $j_B = i\bar{\psi}\gamma_5 b$ (with $\psi \equiv u$ or d) is the interpolating
current for the *B* meson $p^2 = (P + a)^2$ and *P* is the current for the B meson, $p_B^2 = (P + q)^2$, and P is the momentum of the K, meson Note that in this section K, \equiv momentum of the K_1 meson. Note that in this section $K_1 \equiv K_{\cdot}$ or K_{\cdot} , \wedge is the only relevant term in the present study K_{1A} or K_{1B} . A is the only relevant term in the present study, and at the hadron level it can be written in the form

$$
\mathcal{A}\left(p_B^2, q^2\right) = T_1^{K_1}(q^2) \cdot \frac{1}{m_B^2 - p_B^2} \cdot \frac{m_B^2 f_B}{m_b} + \cdots, \quad (4.2)
$$

where the dots denote contributions that have poles p_B^2 = where the dots denote contributions that have poles $p_B - m_{B^*}^2$ with m_{B^*} being the masses of the higher resonance B^* mesons. To obtain the result for A, we have taken into account here the transverse polarized K_1 , instead of its longitudinal component, because for the longitudinal K_1 , A mixes with B and C for an energetic K_1 .

In a region of sufficiently large virtualities, $m_b^2 - p_b^2$
 $h = m$, with a small $a^2 \ge 0$ the operator product exp In a region of sufficiently large virtualities, m_b p_B \gg
 $\Lambda_{\text{QCD}} m_b$, with a small $q^2 \ge 0$, the operator product expan-
sion is applicable in Eq. (4.1), so that in OCD for an sion is applicable in Eq. (4.1) , so that in QCD for an energetic K_1 meson the correlation function in Eq. (4.1) can be represented in terms of the LCDAs of the K_1 meson:

$$
i \int d^{4}x e^{iqx} \langle \bar{K}_{1}(P, \perp)|T[\bar{s}(x)\sigma_{\mu\nu}b(x)j_{B}^{\dagger}(0)]|0\rangle
$$

\n
$$
= \int_{0}^{1} \frac{-i}{(q+k)^{2} - m_{b}^{2}} Tr[\sigma_{\mu\nu}(\rlap{/}+ \rlap{/}k+m_{b})\gamma_{5}M_{\perp}^{K_{1}}]|_{k=uE_{n}} du
$$

\n
$$
+ \frac{1}{4} \int_{0}^{1} dv \int_{0}^{1} D\underline{\alpha}
$$

\n
$$
\times \frac{2vE^{2}(n-q)(f_{3K_{1}}^{A}\mathcal{A}(\underline{\alpha}) + f_{3K_{1}}^{V}\mathcal{V}(\underline{\alpha}))Tr(\sigma_{\mu\nu}\rlap{/}t_{(\perp)}^{*}\rlap{/}n-)}{\{m_{b}^{2} - [q + (\alpha_{1} + \alpha_{g}v)E_{n} -]^{2}\}^{2}}
$$

\n
$$
+ \mathcal{O}\left(\frac{m_{K_{1}}^{2}}{E^{2}}\right), \tag{4.3}
$$

where $f_{3K_1}^A \sim \mathcal{O}(f_{K_1}m_{K_1}), f_{3K_1}^V \sim \mathcal{O}(f_{K_1}m_{K_1}), E = |\vec{P}|,$
 $B^{\mu} = F_{3\mu}{}^{\mu} + m^2 R_{\mu}{}^{\mu} / (4E) \approx F_{3\mu}{}^{\mu}$ with two lightlike year. $P^{\mu} = En^{\mu} + m_{K_1}^2 n^{\mu}/(4E) \approx En^{\mu}$ with two lightlike vec-
tore estisfying $x_1 x_2 = 2$ and $x^2 = x^2 = 0$. Here E and tors satisfying $n_{-}n_{+}=2$ and $n_{-}^{2}=n_{+}^{2}=0$. Here $E \sim m_{+}$ and we have assigned the momentum of the squark m_b , and we have assigned the momentum of the s quark in the K_1 meson to be

$$
k^{\mu} = uE n^{\mu} + k^{\mu}_{\perp} + \frac{k^2_{\perp}}{4uE} n^{\mu}_{+},
$$
 (4.4)

where k_{\perp} is of order Λ_{QCD} . In Eq. (4.3), in calculating contributions due to the two-parton LCDAs of the \bar{K}_1 in the momentum space, we have used the following substitution for the Fourier transform of $\langle \bar{K}_1(P, \perp) | \bar{s}_\alpha(x) \psi_\delta(0) | 0 \rangle$,

HISAKI HATANAKA AND KWEI-CHOU YANG PHYSICAL REVIEW D 77, 094023 (2008)

$$
x^{\mu} \to -i \frac{\partial}{\partial k_{\mu}} \simeq -i \left(\frac{n_{+}^{\mu}}{2E} \frac{\partial}{\partial u} + \frac{\partial}{\partial k_{\perp \mu}} \right), \tag{4.5}
$$

where the term of order k_{\perp}^2 is omitted. Thus, we can obtain
the light cone transverse projection operator M^{K_1} of the \bar{K} the light-cone transverse projection operator $M_{\perp}^{K_1}$ of the \bar{K}_1
meson in the momentum space: meson in the momentum space:

$$
M_{\perp}^{K_1} = i \frac{f_{K_1}^{\perp}}{4} E \mathbf{\ell}_{\perp}^{*(\lambda)} \mathbf{\psi}_{-\gamma_5} \Phi_{\perp}(u) - i \frac{f_{K_1} m_{K_1}}{4} \Big\{ \mathbf{\ell}_{\perp}^{*(\lambda)} \gamma_5 g_{\perp}^{(a)}(u) - E \int_0^u dv \Phi_a(v) \mathbf{\psi}_{-\gamma_5} \epsilon_{\perp \mu}^{*(\lambda)} \frac{\partial}{\partial k_{\perp \mu}} + i \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \epsilon_{\perp}^{*(\lambda) \nu} n^{\rho} \Big[n^{\sigma} \frac{g_{\perp}^{(v) \prime}(u)}{8} - E \frac{g_{\perp}^{(v)}(u)}{4} \frac{\partial}{\partial k_{\perp \sigma}} \Big] \Big\} \Big|_{k=u_p} + \mathcal{O} \Big(\frac{m_{K_1}^2}{E^2} \Big), \tag{4.6}
$$

where $\Phi_a \equiv \Phi_{\parallel} - g_{\perp}^{(a)}$ and the detailed definitions for the relevant two-parton LCDAs are collected in Appendix A where $\Phi_a = \Psi_{\parallel} - g_{\perp}$ and the detailed definitions for the relevant two-parton LCDAs are collected in Appendix A. A similar discussion for the vector meson projection operators can be found in Ref. [[40](#page-10-0)]. From the expansion of the transverse projection operator, one can find that contributions arising from Φ_a , $g_{\perp}^{(v)}$, and $g_{\perp}^{(v)}$ are suppressed
by m_{ν} /*F* as compared with that from Φ . Note that in by m_{K_1}/E as compared with that from Φ_{\perp} . Note that in Eq. [\(4.3\)](#page-2-0) the derivative with respect to the transverse momentum acts on the hard scattering amplitude before the collinear approximation is taken. The three-parton chiral-even distribution amplitudes of twist 3, $\mathcal{A}(\underline{\alpha})$ and $\hat{\gamma}^{V}$ together with their decay constants f^A and f^V $\mathcal{V}(\underline{\alpha})$, together with their decay constants, $f_{3K_1}^A$ and $f_{3K_1}^V$, are defined by

$$
\langle \bar{K}_1(P, \lambda) | \bar{s}(x) \gamma_\alpha \gamma_5 g_s G_{\mu\nu}(vx) \psi(0) | 0 \rangle
$$

= $p_\alpha [p_\nu \epsilon_{\perp \mu}^{*(\lambda)} - p_\mu \epsilon_{\perp \nu}^{*(\lambda)}] f_{3K_1}^A \mathcal{A}(v, -px) + \cdots,$ (4.7)

$$
\langle \bar{K}_1(P, \lambda) | \bar{s}(x) \gamma_\alpha g_s \tilde{G}_{\mu\nu}(vx) \psi(0) | 0 \rangle
$$

= $i p_\alpha [p_\mu \epsilon_{\perp \nu}^{*(\lambda)} - p_\nu \epsilon_{\perp \mu}^{*(\lambda)}] f_{3K_1}^V \mathcal{V}(v, -px) + \cdots,$ (4.8)

where we have set $p_{\mu} = P_{\mu} - m_{K_1}^2 \bar{z}_{\mu} / (2P\bar{z})$ with

$$
\bar{z}_{\mu} = x_{\mu} - \frac{P_{\mu}}{m_{K_1}^2} \{ xP - [(xP)^2 - x^2 m_{K_1}^2]^{1/2} \}.
$$

Here the ellipses stand for terms of twist higher than 3, the following shorthand notations are used,

$$
\mathcal{A}\left(v,-px\right) \equiv \int \mathcal{D}\underline{\alpha}e^{ipx(\alpha_1+\nu\alpha_g)}\mathcal{A}(\underline{\alpha}),\tag{4.9}
$$

etc., and the integration measure is defined as

$$
\int \mathcal{D}\underline{\alpha} \equiv \int_0^1 d\alpha_1 \int_0^1 d\alpha_2 \int_0^1 d\alpha_3 \delta \Big(1 - \sum \alpha_i \Big), \quad (4.10)
$$

with α_1 , α_2 , α_g being the momentum fractions carried by the s quark, $\psi(\equiv \bar{u} \text{ or } \bar{d})$ quark, and gluon, respectively At the quark-gluon level after performing the intively. At the quark-gluon level, after performing the integration of Eq. (4.3) , the result for A^{QCD} reads (with $\bar{u} = 1 - u$

$$
\begin{split}\n\mathbb{A}^{\text{QCD}} &= -\frac{m_b f_{K_1}^{\perp}}{2} \int_0^1 du \Biggl\{ \frac{1}{m_b^2 - u p_B^2 - \bar{u} q^2} \Biggl[\Phi^{\perp}(u) - \frac{m_{K_1} f_{K_1}}{m_b f_{K_1}^{\perp}} \Biggl(u g_{\perp}^{(a)}(u) + \Phi_a(u) + \frac{g_{\perp}^{(v)}(u)}{4} - \frac{g_{\perp}^{(v)}(u)}{4} \frac{p_B^2 + q^2}{p_B^2 - q^2} \Biggr) \Biggr] \\
&- \frac{m_{K_1} f_{K_1}}{4 m_b f_{K_1}^{\perp}} \frac{(m_b^2 + q^2)}{(m_b^2 - u p_B^2 - \bar{u} q^2)^2} g_{\perp}^{(v)}(u) \Biggr\} - \int_0^1 v dv \int_0^1 D \underline{\alpha} \frac{f_{3K_1}^A \mathcal{A}(\underline{\alpha}) + f_{3K_1}^V \mathcal{V}(\underline{\alpha})}{2(\alpha_1 + v \alpha_g)} \\
&\times \left[\frac{1}{m_b^2 - (\alpha_1 + v \alpha_g)(p_B^2 - q^2) - q^2} - \frac{m_b^2 - q^2}{[m_b^2 - (\alpha_1 + v \alpha_g)(p_B^2 - q^2) - q^2]^2} \right].\n\end{split} \tag{4.11}
$$

We have given the results of A from the hadron and quarkgluon points of view, respectively. Thus, the contribution due to the lowest-lying K_1 meson can be further approximated with the help of quark-hadron duality:

$$
T_1^{K_1}(q^2) \cdot \frac{1}{m_B^2 - p_B^2} \cdot \frac{m_B^2 f_B}{m_b} = \frac{1}{\pi} \int_{m_b^2}^{s_0} \frac{\text{Im}\mathbb{A}^{\text{QCD}}(s, q^2)}{s - p_B^2} ds,
$$
\n(4.12)

where s_0 is the excited state threshold. After applying the Borel transform $p_B^2 \to M^2$ to the above equation, we obtain

$$
T_1^{K_1}(q^2) = \frac{m_b}{m_B^2 f_B} e^{-m_B^2/M^2} \frac{1}{\pi} \int_{m_b^2}^{s_0} e^{s/M^2} \operatorname{Im} \mathbb{A}^{\text{QCD}}(s, q^2) ds. \tag{4.13}
$$

Finally, the light-cone sum rule for $T_1^{K_1}$ reads

$$
T_{1}^{K_{1}}(q^{2}) = -\frac{m_{b}^{2}f_{K_{1}}^{1}}{2m_{B}^{2}f_{B}}e^{(m_{B}^{2}-m_{b}^{2})/M^{2}}\int_{0}^{1}du\left\{\frac{1}{u}e^{\bar{u}(q^{2}-m_{b}^{2})/(uM^{2})}\theta[c(u,s_{0})]\right\}\Phi^{\perp}(u) - \frac{m_{K_{1}}f_{K_{1}}^{1}}{m_{b}f_{K_{1}}^{1}}\left(ug_{\perp}^{(a)}(u) + \Phi_{a}(u) + \frac{g_{\perp}^{(v)}(u)}{4}\right) - \frac{g_{\perp}^{(v)'}(u)}{4}\frac{m_{b}^{2} + (u-\bar{u})q^{2}}{m_{b}^{2} - q^{2}}\right)\left]-\frac{1}{u}e^{\bar{u}(q^{2}-m_{b}^{2})/(uM^{2})}\frac{1}{4}\frac{m_{K_{1}}f_{K_{1}}^{1}}{m_{b}f_{K_{1}}^{1}}(m_{b}^{2} + q^{2})g_{\perp}^{(v)}(u)\left(\frac{\theta[c(u,s_{0})]}{uM^{2}} + \delta[c(u,s_{0})]\right) - \frac{m_{K_{1}}f_{K_{1}}^{1}}{m_{b}f_{K_{1}}^{1}}\frac{g_{\perp}^{(v)'}(u)}{2}\frac{q^{2}}{m_{b}^{2} - q^{2}}e^{(m_{b}^{2} - q^{2})/M^{2}}\right]-\frac{m_{b}}{2m_{B}^{2}f_{B}}e^{(m_{B}^{2}-m_{b}^{2})/M^{2}}\int_{0}^{1}v dv \int_{0}^{1}D\underline{\alpha}\frac{f_{3K_{1}}^{A}\mathcal{A}(\underline{\alpha}) + f_{3K_{1}}^{V}\mathcal{V}(\underline{\alpha})}{(\alpha_{1} + v\alpha_{g})^{2}}e^{(1-\alpha_{1}-v\alpha_{g})(q^{2}-m_{b}^{2})/[(\alpha_{1}+v\alpha_{g})M^{2}]}\times\left\{\theta[c(\alpha_{1} + v\alpha_{g}, s_{0})] - (m_{b}^{2} - q^{2})\left(\frac{\theta[c(\alpha_{1} + v\alpha_{g}, s_{0})]}{(\alpha_{1} + v\alpha_{g})M^{2}} + \delta[c(\alpha_{1} + v\alpha_{g
$$

where $c(u, s_0) = us_0 - m_b^2 + (1 - u)q^2$ and $\theta[\cdots]$ is the step function. Note that here $f_{K_{1A}}^{\perp}$ is chosen to be $f_{K_{1A}}$, while $f_{K_{1B}}$ is adopted to be $f_{K_{1B}}^{\perp}(1\text{ GeV})$. [See Eq. [\(A4](#page-8-0)) and related discussions 1 related discussions.]

V. RESULTS

A. $T_1^{K_{1A}}$ and $T_1^{K_{1B}}$ LCSR results and $B \to K_1 \gamma$ branching
ratios ratios

Parameters relevant to the present study are collected in Table [I.](#page-5-0) We first analyze the $T_1(0)$ sum rules numerically. The pole b quark mass is adopted in the LC sum rule. The $f_{K_1}^{\perp}$ and parameters appearing in the distribution amplitudes are evaluated at the factorization scale $\mu_f =$ $\sqrt{m_B^2 - m_{b,\text{pole}}^2}$. On the other hand, the form factor $T_1(0)$ depends on the renormalization scale of the effective Hamiltonian, for which the scale is set to be $\bar{m}_b(\bar{m}_b)$. The working Borel window is 7.0 GeV² $\lt M^2$ < 13.0 GeV², where the correction originating from higher resonance states amounts to 15% to 35%. We do not include the contributions of the twist-4 LCDAs and three-parton twist-3 chiral-even LCDAs in the light-cone sum rule since these corrections to light-cone expansion series is of order $(m_{K_1}/m_b)^2$ and might be negligible. The excited state
threshold see can be determined when the most stable threshold s_0 can be determined when the most stable plateau of the LC sum rule result is obtained within the Borel window. We find that the corresponding threshold s_0 lies in the interval $32-36 \text{ GeV}^2$.

Two remarks are in order. First, we have consistently used $f_B = 190 \pm 10$ MeV in all numerical analyses. In the literature it was *assumed* that the theoretical errors due to literature, it was *assumed* that the theoretical errors due to the radiative corrections in the form factor sum rules can be canceled if one adopts the f_B sum rule result with the same order of α_s corrections in the calculation [\[34,35\]](#page-10-0). Nevertheless, the resulting sum rule result for $T_1^{BK*}(0)$ seems to be significantly larger than the estimate extracted from the data [\[37\]](#page-10-0), although the sum rule result can be improved by including α_s corrections [\[35\]](#page-10-0). We have checked that, using the physical value of f_B , that we adopt

here, in the $T_1^{BK^*}(0)$ LC sum rule with the same order in α_s
and m_s/m , we get $T^{BK^*}(0) \approx 0.25^{+0.03}$ which is in good and m_{K_1}/m_b , we get $T_1^{BK^*}(0) \approx 0.25^{+0.03}_{-0.02}$ which is in good agreement with the result constrained by the data [\[37,41\]](#page-10-0). Extracting from the data, the current estimation is $T_1^{BK^*}(0) = 0.267 \pm 0.018$ [[41](#page-10-0)]. The lattice QCD result is $T_2^{BK^*}(0) = 0.24 \pm 0.03^{+0.04}$ [42]. Therefore, although the $T_1^{BK^*}(0) = 0.24 \pm 0.03_{-0.01}^{+0.04}$ [[42](#page-10-0)]. Therefore, although the radiative corrections can be important in the form factor radiative corrections can be important in the form factor sum rule calculations, its effects are significantly reduced and may be negligible in the present analysis. Second, $a_1^{\parallel K_{1A}}, a_0^{\perp, K_{1A}}, a_2^{\perp, K_{1A}}, a_0^{\parallel, K_{1B}}, a_2^{\parallel, K_{1B}}, \text{ and } a_1^{\perp, K_{1B}} \text{ are}$ G-parity violating Gegenbaur moments, which vanish in the SU(3) limit. Using the QCD sum rules, the relation $a_0^{\perp,K_{1A}} + (0.59 \pm 0.15)a_0^{\parallel,K_{1B}} = 0.17 \pm 0.11$ was obtained,
instead of their individual values [27]. It will be seen later instead of their individual values [\[27\]](#page-10-0). It will be seen later that, due to the data for $\mathcal{B}(B \to K_1(1270)\gamma) \gg \mathcal{B}(B \to$ $K_1(1400)\gamma$ and for $\tau^- \to K_1^-(1270)\nu_\tau$, θ_{K_1} and $a_0^{\parallel K_{1B}}$
should be negative. Here we further make reasonable as should be negative. Here we further make reasonable assumptions that $|a_0^{\parallel,K_{1B}}|$ $|a_0^{\parallel K_{1B}} f_{K_{1B}}| \leq 30\% \times f_{K_{1B}}^{\perp}$ and $|a_0^{\perp,K_{1A}}f_{K_{1A}}^{\perp}| (1 \text{ GeV}) \leq 30\% \times f_{K_{1A}}$ to account for the pos-
sible SU(3) breaking effect: i.e., we assume the G parity sible $SU(3)$ breaking effect; i.e., we assume the G -parity correction is roughly less than 30%. [See Eqs. [\(5.3\)](#page-6-0), [\(5.4\)](#page-6-0), [\(5.5\)](#page-6-0), and ([5.6](#page-6-0)) for the detailed definitions of parameters.] Finally, we arrive at $a_0^{\parallel, K_{1B}} = -0.15 \pm 0.15$ and $a_0^{\perp, K_{1A}} = 0.26^{+0.04}_{-0.22}$. As shown in Table [I,](#page-5-0) once these two parameters are determined, the remaining G-parity violating Gegenbaur moments are thus updated according to the relations given in Eq. (141) in Ref. [[27](#page-10-0)].

To illustrate the qualities and uncertainties of the sum rules, we plot the results for $T_1^{K_{1A}}(0)$ and $T_1^{K_{1B}}(0)$ as functions of M^2 in Fig. 1. We obtain tions of \overline{M}^2 in Fig. [1.](#page-5-0) We obtain

$$
T_1^{K_{1A}}(0) = 0.31^{+0.06+0.01+0.06}_{-0.04-0.01-0.03},
$$

\n
$$
T_1^{K_{1B}}(0) = -(0.25^{+0.03+0.01+0.05}_{-0.02-0.01-0.07}),
$$
\n(5.1)

where the first, second, and third error bars come from the variations of $m_{b,\text{pole}}$, f_B , and the remaining parameters, respectively. The third errors are mainly due to the G-parity violating Gegenbaur moments of the leading-

HISAKI HATANAKA AND KWEI-CHOU YANG PHYSICAL REVIEW D 77, 094023 (2008)

twist LCDAs. Corrections arising from the three-parton LCDAs are less than 3%.

Ė

þ ċ

Ė

In calculating the $B \to K_1(1270)\gamma$ and $K_1(1400)\gamma$ branching ratios, $B \to K_1$ tensor form factors have the expressions

$$
T_1^{K_1(1270)}(0) = T_1^{K_{1A}}(0) \sin \theta_{K_1} + T_1^{K_{1B}}(0) \cos \theta_{K_1},
$$

\n
$$
T_1^{K_1(1400)}(0) = T_1^{K_{1A}}(0) \cos \theta_{K_1} - T_1^{K_{1B}}(0) \sin \theta_{K_1}.
$$
\n(5.2)

From Eq. ([4.14](#page-4-0)), we know that $T_1^{K_{1A}}$ and $T_1^{K_{1B}}$ depend on the

FIG. 1 (color online). $T_1^{K_{1A}}(0)$ and $T_1^{K_{1B}}(0)$ as functions of the Borel mass squared, where the central values of input parameters have been used in the solid curve. The dashed (dot-dashed) curves are for varia values of the remaining theoretical parameters.

definition of the signs of $f_{K_{1A}}$ and $f_{K_{1B}}^{\perp}$, so that the resultant θ_{K_1} also depends on the signs of $f_{K_{1A}}$ and $f_{K_{1B}}^{\perp}$.

As for the relevant physical properties of \bar{K}_1 mesons, we have

$$
\langle 0|\bar{\psi}\gamma_{\mu}\gamma_{5}s|\bar{K}_{1}(1270)(P,\lambda)\rangle = -if_{K_{1}(1270)}m_{K_{1}(1270)}\epsilon_{\mu}^{(\lambda)}
$$

$$
= -i(f_{K_{1A}}m_{K_{1A}}\sin\theta_{K_{1}} + f_{K_{1B}}m_{K_{1B}}a_{0}^{\parallel K_{1B}}\cos\theta_{K_{1}})\epsilon_{\mu}^{(\lambda)},
$$

(5.3)

$$
\langle 0|\bar{\psi}\gamma_{\mu}\gamma_{5}s|\bar{K}_{1}(1400)(P,\lambda)\rangle = -if_{K_{1}(1400)}m_{K_{1}(1400)}\epsilon_{\mu}^{(\lambda)}
$$

= $-i(f_{K_{1A}}m_{K_{1A}}\cos\theta_{K_{1}} - f_{K_{1B}}m_{K_{1B}}a_{0}^{\parallel K_{1B}}\sin\theta_{K_{1}})\epsilon_{\mu}^{(\lambda)},$
(5.4)

$$
\langle 0|\bar{\psi}\sigma_{\mu\nu}s|\bar{K}_1(1270)(P,\lambda)\rangle = if_{K_1(1270)}^{\perp}\epsilon_{\mu\nu\alpha\beta}\epsilon_{(\lambda)}^{\alpha}P^{\beta}
$$

$$
= i(f_{K_{1A}}^{\perp}a_0^{\perp,K_{1A}}\sin\theta_K + f_{K_{1B}}^{\perp}\cos\theta_K)\epsilon_{\mu\nu\alpha\beta}\epsilon_{(\lambda)}^{\alpha}P^{\beta},
$$
(5.5)

and

$$
\langle 0|\bar{\psi}\sigma_{\mu\nu}s|\bar{K}_1(1400)(P,\lambda)\rangle = if_{K_1(1400)}^{\perp}\epsilon_{\mu\nu\alpha\beta}\epsilon_{(\lambda)}^{\alpha}P^{\beta}
$$

$$
= i(f_{K_{1A}}^{\perp}a_0^{\perp,K_{1A}}\cos\theta_K
$$

$$
-f_{K_{1B}}^{\perp}\sin\theta_K)\epsilon_{\mu\nu\alpha\beta}\epsilon_{(\lambda)}^{\alpha}P^{\beta},
$$
(5.6)

where the values of $f_{K_{1A}}$, $f_{K_{1B}}^{\perp}$, $m_{K_{1A}}$, $m_{K_{1B}}$, $a_0^{\parallel K_{1B}}$, and $a_0^{\perp,K_{1A}}$ are given in Table [I](#page-5-0), and use of $f_{K_{1B}} =$ $f_{K_{1B}}^{\perp}(1 \text{ GeV})$ and $f_{K_{1A}}^{\perp} = f_{K_{1A}}^{\parallel}$ is made in the present study. Following this definition, $a_0^{\parallel, K_{1B}}$ and $a_0^{\perp, K_{1A}}$ vanish in the SU (3) limit, and we have the relations

$$
\Phi_{\perp}^{K_1(1270)}(u) = \frac{f_{K_{1A}}^{\perp}}{f_{K_1(1270)}} \Phi_{\perp}^{K_{1A}}(u) \sin \theta_{K_1} + \frac{f_{K_{1B}}^{\perp}}{f_{K_1(1270)}} \Phi_{\perp}^{K_{1B}}(u) \cos \theta_{K_1}, \quad (5.7)
$$

$$
\Phi_{\perp}^{K_1(1400)}(u) = \frac{f_{K_{1A}}^{\perp}}{f_{K_1(1400)}^{\perp}} \Phi_{\perp}^{K_{1A}}(u) \cos \theta_{K_1} - \frac{f_{K_{1B}}^{\perp}}{f_{K_1(1400)}^{\perp}} \Phi_{\perp}^{K_{1B}}(u) \sin \theta_{K_1}.
$$
 (5.8)

In Fig. 2 we plot the branching ratios of $B^- \to K_1^-(1270)\gamma$
and $B^- \to K^-(1400)\gamma$ as functions of θ_{γ} . The mixing and $B^- \to K_1^-(1400)\gamma$ as functions of θ_{K_1} . The mixing
angle dependence of the $K^-(1270)\gamma$ mode is opposite to angle dependence of the $K_1^-(1270)\gamma$ mode is opposite to the $K_1^-(1400)\gamma$ mode. To satisfy the observable that of the $K_1(1400)\gamma$ mode. To satisfy the observable $R(R \to K_1(1270)\gamma) \gg R(R \to K_1(1400)\gamma)$ we find that $\mathcal{B}(B \to K_1(1270)\gamma) \gg \mathcal{B}(B \to K_1(1400)\gamma)$, we find that

FIG. 2 (color online). Branching ratios as functions of the mixing angle θ_{K_1} . The upper five (red) curves at $\theta_{K_1} =$
-50° are for the K (1270) w mode, and the lower five (blue) -50° are for the $K_1(1270)\gamma$ mode, and the lower five (blue) curves for the $K_1(1400)\gamma$ mode. The solid curves correspond to central values of the input parameters. The dot-dashed and dashed curves denote the theoretical uncertainties due to the parameters of LCDAs and $m_{b,\text{pole}}$, respectively. The horizontal line is the experimental limit on $B \to K_1(1400)\gamma$, and the horizontal band shows the experimental result for the $K_1(1270)\gamma$ mode with its 1σ error.

the sign of θ_{K_1} should be negative. The further constraint for θ_{K_1} can be obtained from the $\tau^- \to K_1^- (1270) \nu_\tau$ analysis.

B. The constraint for θ_{K_1} from the $\tau^- \to K_1^-(1270)\nu_\tau$ data

The decay constant $f_{K_1(1270)}$ can be extracted from the measurement $\tau^- \to K_1^-(1270)\nu_\tau$ by ALEPH [\[43\]](#page-10-0):
 $R(\tau^- \to K^-(1270)\nu_\tau) = (4.7 + 1.1) \times 10^{-3}$ where the $\mathcal{B}(\tau^- \to K_1^-(1270)\nu_{\tau}) = (4.7 \pm 1.1) \times 10^{-3}$, where the formula for the decay rate is given by formula for the decay rate is given by

$$
\Gamma(\tau \to K_1 \nu_\tau) = \frac{G_F^2}{16\pi} |V_{us}|^2 f_{K_1}^2 \frac{(m_\tau^2 + 2m_{K_1}^2)(m_\tau^2 - m_{K_1}^2)^2}{m_\tau^3}.
$$
\n(5.9)

It was obtained in Refs. [\[26,30\]](#page-10-0) that

$$
|f_{K_1(1270)}| = 169^{+19}_{-21} \text{ MeV.}
$$
 (5.10)

As obtained in the previous subsection, θ_{K_1} should be negative to account for the observable $\mathcal{B}(B \rightarrow$ $K_1(1270)\gamma$ \gg $\mathcal{B}(B \to K_1(1400)\gamma)$. Using the values for $f_{K_{1A}}$ and $f_{K_{1B}}$ as given in Table [I,](#page-5-0) the result for $f_{K_1(1270)}$ in Eq. (5.10), and the relation in Eq. (5.3), we find that $a_0^{\parallel K_{1B}}$ should be negative. Further substituting $a_0^{\parallel K_{1B}} = -0.15 \pm 0.15$ into Eq. (5.3), we obtain that θ_{∞} lies in the interval 0.15 into Eq. (5.3), we obtain that θ_{K_1} lies in the interval -21° – 47°. We can use the obtained angle to predict the decay constants $f_{K_1(1270)}$ and $f_{K_1(1400)}$:

$$
f_{K_1(1270)} = -(169^{+25}_{-25}_{-40}) \text{ MeV}, \tag{5.11}
$$

$$
f_{K_1(1400)} = 179^{+13+30}_{-13-39} \text{ MeV}, \tag{5.12}
$$

for $\theta_{K_1} = (-34 \pm 13)^{\circ}$, where the first error is due to the uncertainties of decay constants and $a_0^{\parallel, K_{1B}}$, and the second due to the variation of θ_{K_1} . The first error is dominated by the variation of $a_0^{\parallel K_{1B}}$. The predicted $\theta_{K_1} = (-34 \pm 13)^\circ$
is also consistent with the result given in Ref. [24], where is also consistent with the result given in Ref. [[24](#page-10-0)], where $|\theta_{K_1}| \approx 33^{\circ}$ or 57°. We thus predict

$$
\mathcal{B}(\tau^- \to K_1^-(1400)\nu_\tau) = (3.5^{+0.5+1.2}_{-0.5-1.5}) \times 10^{-3}, \quad (5.13)
$$

to be compared with the current data $\mathcal{B}(\tau^- \rightarrow$ $K_1^{-}(1400)\nu_{\tau}$ = $(1.7 \pm 2.6) \times 10^{-3}$ [11] which has large
experimental error. If a more precise measurement for experimental error. If a more precise measurement for $\mathcal{B}(\tau^- \to K_1^-(1400)\nu_{\tau})$ can also be achieved, we can ex-
treat directly the values of 0, and $\epsilon^{||K||}$. Consequently, we tract directly the values of θ_{K_1} and $a_0^{\parallel, K_{1B}}$. Consequently, we can have more precise predictions for the $\mathcal{B}(B \rightarrow$ $K_1(1270)\gamma$ and $\mathcal{B}(B \to K_1(1400)\gamma)$ branching ratios and $B \rightarrow K_1$ transition form factors.

C. $B \to K_1 \gamma$ branching ratios

Using $\bar{m}_c/\bar{m}_b = 1.25 \text{ GeV}/4.25 \text{ GeV}$, one finds

$$
\mathcal{B}(B \to K_1 \gamma) = \tau_B \frac{G_F^2 \alpha |V_{tb} V_{ts}^*|^2}{32 \pi^4} m_{b,\text{pole}}^2 m_B^2 \left(1 - \frac{m_{K_1}^2}{m_B^2}\right)^3
$$

$$
\times (T_1^{K_1}(0))^2 |(-0.392 - i0.015)
$$

+ $A_{sp}^{(1)K_1}(\mu_h)|^2,$ (5.14)

where $T_1^{K_1(1270)}(0)$ and $T_1^{K_1(1400)}(0)$, as given in Eq. [\(5.2\)](#page-5-0), are θ_{11} dependent. For $\theta_{12} = -(34 + 13)^{\circ}$, we have are θ_{K_1} dependent. For $\theta_{K_1} = -(34 \pm 13)^{\circ}$, we have

$$
T_1^{K_1(1270)}(0) = -(0.38^{+0.06+0.08+0.02}_{-0.04-0.07-0.04}),
$$

\n
$$
T_1^{K_1(1400)}(0) = 0.12^{+0.03+0.02+0.08}_{-0.02-0.00-0.09},
$$
\n(5.15)

where the first uncertainty comes from the variation of $m_{b,\text{pole}}$ and f_B in the sum rules, the second from the parameters of LCDAs, and the third from θ_{K_1} . To illustrate the contribution due to the hard-spectator correction, it is interesting to note that, using $\lambda_B = 0.35$ GeV, $\theta_{K_1} =$
 $\lambda_B = 34^\circ$, $T_{A_1/4}^{K_1/4}$, $T_{A_2}^{K_2}$, $T_{A_3/4}^{K_3}$, $T_{A_4}^{K_4}$, $T_{A_5}^{K_5}$ -34° , $T_1^{K_{1A}}(0) = 0.31$, $T_1^{K_{1B}}(0) = -0.25$, and the center values of the remaining input parameters, we obtain values of the remaining input parameters, we obtain

$$
A_{\rm sp}^{(1)K_1(1270)}(\mu_h) = 0.016 + i0.013,
$$

\n
$$
A_{\rm sp}^{(1)K_1(1400)}(\mu_h) = 0.017 - i0.047,
$$
\n(5.16)

which suppress the decay rates slightly by about 8%, in contrast to the $B \to K^* \gamma$ decay where the interference between the hard-spectator correction $A_{\rm sp}^{(1)K^*}(\mu_h) = -0.013 - i0.011$ and the remainder is constructive [37] $-0.013 - i0.011$ and the remainder is constructive [[37](#page-10-0)].

In Table II , we present a comparison of the resulting branching ratios in this work with the data. Our results are consistent with the Belle measurement [[4\]](#page-10-0) within errors. A much more precise determination of θ_{K_1} can be made by the measurement

TABLE II. Branching ratios for the radiative decays $B \rightarrow$ $K_1(1270)\gamma$, $K_1(1400)\gamma$ (in units of 10^{-6}) in this work and experiment [\[4\]](#page-10-0). The branching ratios correspond to θ_{K_1} = Experiment [4]. The branching ratios correspond to v_{K_1} –
-(34° ± 13°) in our work, where the first error comes from
the variation of m_{ini} and f_n the second from the parameters the variation of $m_{b,\text{pole}}$ and f_B , the second from the parameters of LCDAs, the third from λ_B , and the fourth from θ_{K_1} . The annihilation amplitudes are not included in the neutral B decay modes.

	$\mathcal{B}(B^- \to K_1^-(1270)\gamma)$	$\mathcal{B}(B^- \to K_1^-(1400)\gamma)$
Experiment This work	43 ± 13 $79^{+25+36+2+7}_{-16-28-5-14}$	< 15 $7.7^{+4.7+2.4+0.1+14.2}_{-2.6-0.0-0.2-7.1}$
	$\mathcal{B}(\bar{B}^0 \to \bar{K}^0_1(1270)\gamma)$	$\mathcal{B}(\bar{B}^0 \to \bar{K}^0_1(1400)\gamma)$
Experiment This work	$<$ 58 $74^{+23+34+2+7}_{-15-26-5-13}$	$<$ 15 $7.2^{+4.4+2.2+0.1+13.3}_{-2.4-0.0-0.2-6.6}$

$$
R_{K_1} = \frac{\mathcal{B}(B \to K(1400)\gamma)}{\mathcal{B}(B \to K(1270)\gamma)}.
$$
 (5.17)

The current upper bound of this ratio is R_{K_1} < 0.5. It can be seen from Fig. 3 that R_{K_1} weakly depends on the theoretical uncertainty. Thus, R_{K_1} is a suitable quantity for measuring the mixing angle θ_{K_1} . In the light-cone sum rule calculation, the physical quantities, including the branching ratios and transition form factors, receive large errors from the uncertainties of G-parity violating Gegenbaur moments. A more precise value for θ_{K_1} can be used to extract a better result of $a_0^{\parallel K_{1B}}$ from the data for $\mathcal{B}(\tau^- \to K_1^-(1270)\nu_\tau)$;
the remaining G-parity violating Gegenbaur moments can the remaining G-parity violating Gegenbaur moments can thus be determined using Eq. (141) in Ref. [\[27](#page-10-0)]. On the other hand, we can also obtain good estimates for θ_{K_1} and $a_0^{\parallel K_{1B}}$ from the data $\mathcal{B}(\tau^- \to K_1^-(1270)\nu_\tau)$ and $\mathcal{B}(\tau^- \to K^-(1400)\nu_\tau)$ if we can improve the measurement for $K_{\perp}^{-}(1400)\nu_{\tau}$ if we can improve the measurement for
 $R(\tau^{-} \to K^{-}(1400)\nu)$ Consequently theoretical uncer- $\mathcal{B}(\tau^- \to K_1^-(1400)\nu_{\tau})$. Consequently, theoretical uncertainties due to G-parity violating Gegenhaur moments tainties due to G-parity violating Gegenbaur moments

FIG. 3 (color online). Same as Fig. [2](#page-6-0) except for the ratio $R_{K_1} = \mathcal{B}(B \to K_1(1400)\gamma)/\mathcal{B}(B \to K_1(1270)\gamma)$ as a function of the mixing angle θ_{K_1} .

and θ_{K_1} can be reduced in the form factor and branching ratio calculations.

VI. CONCLUSIONS

We have presented a detailed study of $B \to K_1(1270)\gamma$ and $B \to K_1(1400)\gamma$ decays. Our main results are as follows.

- (i) Using the light-cone sum rule technique, we have evaluated the $B \to K_{1A}$, K_{1B} tensor form factors, $T_{h}^{K_{1A}}(0)$ and $T_{1}^{K_{1B}}(0)$, where the contributions have
been included up to the first order in m_{1A}/m_{1A} . We been included up to the first order in m_{K_1}/m_b . We obtain $T_1^{K_{1A}}(0) = 0.31^{+0.06+0.01+0.06}_{-0.04-0.01-0.03}$ and $T_1^{K_{1B}}(0) =$
-(0.25^{+0.03+0.01+0.05)} $-(0.25^{+0.03+0.01+0.05}_{-0.02-0.01-0.07}).$
- (ii) The sign ambiguity of the $K_1(1270) K_1(1400)$ mixing angle θ_{K_1} can be resolved by defining $f_{K_{1A}}$ and $f_{K_{1B}}^{\perp}$ to be positive. Combining the analysis for the decays $B \to K_1 \gamma$ and $\tau^- \to K_1^-(1270)\nu_{\tau}$, we find that the mixing angle θ_{ν} should be negative find that the mixing angle θ_{K_1} should be negative, and its value lies in the interval $-(34 \pm 13)$
obtain $f_{X,(1270)} = -(169^{+25+49})$ MeV and its value lies in the interval $-(34 \pm 13)$ °. We obtain $f_{K_1(1270)} = -(169^{+25+49}_{-25-40}) \text{ MeV}$ and
 $f_{K_1(\mu\nu)} = 179^{+13+30} \text{ MeV}$ and predict $R(\tau \rightarrow$ $f_{K_1(1400)} = 179^{+13+30}_{-13-39}$ MeV, and predict $\mathcal{B}(\tau \to K_1^-(1400)\nu_\tau) = (3.5^{+0.5+1.2}_{-0.5-1.5}) \times 10^{-3}$.

We find $\tau^{K_1(1270)}$ (0.29 ± 0.06 ± 0.08 ± 0.09)
- (iii) We find $T_1^{K_1(1270)}(0) = -(0.38^{+0.06+0.08+0.02})$
 $T_1^{K_1(1400)}(0) = 0.12^{+0.03+0.02+0.08}$ The hard apostotant $T_1^{K_1(1400)}(0) = 0.12^{+0.03+0.02+0.08}_{-0.02-0.00-0.09}$. The hard-spectator

contribution suppresses the $B \to K_1(1270)\gamma$ and $B \to K_1(1400)\gamma$ decay rates slightly by about 8%, in contrast with the situation for $B \to K^* \gamma$. The predicted branching ratios for the decays $B \rightarrow$ $K_1(1270)\gamma$ and $B \to K_1(1400)\gamma$ agree with the data within the errors.

(iv) We point out that better determinations of the θ_{K_1} and G-parity violating Gegenbaur moments of leading-twist light-cone distribution amplitudes can be obtained from a more precise measurement for the ratio $R_{K_1} = \mathcal{B}(B \to K_1(1400)\gamma)/\mathcal{B}(B \to$ $K_1(1270)\gamma$ or from an improved measurement for $\mathcal{B}(\tau^- \to K_1^-(1400)\nu_\tau)$ together with the $\mathcal{B}(\tau^- \to K^-(1270)\nu)$ data. Thus the theoretical uncertain- $K_1^{-}(1270)\nu_{\tau}$ data. Thus, the theoretical uncertain-
ties can be further reduced ties can be further reduced.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Council of R.O.C. under Grant No. NSC96- 2112-M-033-004-MY3 and No. NSC96-2811-M-033-004.

APPENDIX A: TWO-PARTON DISTRIBUTION AMPLITUDES

In the calculation, the LCDAs of the axial meson appear in the following way:

$$
\langle \bar{K}_{1}(P,\lambda)|\bar{s}_{\alpha}(y)\psi_{\delta}(x)|0\rangle = -\frac{i}{4}\int_{0}^{1} due^{i(uPy+\bar{u}Px)}\Big\{f_{K_{1}}m_{K_{1}}\Big[\mathbf{p}_{\gamma_{5}}\frac{\epsilon_{(\lambda)}^{*}z}{P_{Z}}\Phi_{\parallel}(u) + \Big(\mathbf{f}^{*}-\mathbf{p}\frac{\epsilon_{(\lambda)}^{*}z}{P_{Z}}\Big)\gamma_{5}g_{\perp}^{(a)}(u) -\frac{\epsilon_{(\lambda)}^{*}z}{2(P_{Z})^{2}}m_{K_{1}}^{2}\bar{s}_{3}(u) + \epsilon_{\mu\nu\rho\sigma}\epsilon_{(\lambda)}^{*}p^{\rho}z^{\sigma}\gamma^{\mu}\frac{g_{\perp}^{(v)}(u)}{4}\Big] + f_{K_{1}}^{\perp}\Big[\frac{1}{2}(\mathbf{p}\mathbf{f}^{*}_{(\lambda)}-\mathbf{f}^{*}_{(\lambda)}\mathbf{p})\gamma_{5}\Phi_{\perp}(u) -\frac{1}{2}(\mathbf{p}\mathbf{f} - \mathbf{f}\mathbf{p})\gamma_{5}\frac{\epsilon_{(\lambda)}^{*}z}{(P_{Z})^{2}}m_{K_{1}}^{2}\bar{h}_{\parallel}^{(i)}(u) - \frac{1}{4}(\mathbf{f}^{*}_{(\lambda)}\mathbf{f} - \mathbf{f}\mathbf{f}^{*}_{(\lambda)})\gamma_{5}\frac{m_{K_{1}}^{2}}{P_{Z}}\bar{h}_{3}(u) + i(\epsilon_{(\lambda)}^{*}z)m_{K_{1}}^{2}\gamma_{5}\frac{h_{\parallel}^{(p)}(u)}{2}\Big]\Big\}_{\delta\alpha} + \mathcal{O}((x-y)^{2}),
$$
\n(A1)

where

$$
\bar{g}_3(u) = g_3(u) + \Phi_{\parallel} - 2g_{\perp}^{(a)}(u),
$$

\n
$$
\bar{h}_{\parallel}^{(i)}(u) = h_{\parallel}^{(i)}(u) - \frac{1}{2}\Phi_{\perp}(u) - \frac{1}{2}h_3(u),
$$

\n
$$
\bar{h}_3(u) = h_3(u) - \Phi_{\perp}(u),
$$
\n(A2)

 $z^2 = (y - x)^2 \neq 0$, and $P^2 = m_{K_1}^2$. The detailed LCDAs
are defined in Ref. [27]. Here Φ_u Φ_v are of twist 2, $g^{(a)}$ are defined in Ref. [\[27\]](#page-10-0). Here $\Phi_{\parallel}^{n_1} \Phi_{\perp}$ are of twist 2, $g_{\perp}^{(a)}$,
 $g_{\perp}^{(v)}$, $h_{\perp}^{(p)}$ of twist 3 and g_2 , h_2 of twist 4 In the SU(3) $g_{\perp}^{(v)}$, $h_{\parallel}^{(l)}$, $h_{\parallel}^{(p)}$ of twist 3, and g_3 , h_3 of twist 4. In the SU(3)
limit, due to G parity, Φ_{\parallel} , $g_{\perp}^{(u)}$, $g_{\perp}^{(v)}$, and g_3 are symmetric
(antisymmetric) under the replacement $u \leftrightarrow$ (antisymmetric) under the replacement $u \leftrightarrow 1 - u$ for the 1^3P_1 (1^1P_1) states, whereas Φ_{\perp} , $h_{\parallel}^{(t)}$, $h_{\parallel}^{(p)}$, and h_3 are antisymmetric (symmetric) For convenience we normalantisymmetric (symmetric). For convenience, we normalize the distribution amplitudes of the $1³P₁$ and $1¹P₁$ states to be subject to

$$
\int_0^1 du \Phi_{\parallel}^{3P_1}(u) = 1, \qquad \int_0^1 du \Phi_{\perp}^{1P_1}(u) = 1. \tag{A3}
$$

We take $f_{3P_1}^{\perp} = f_{3P_1}$ and $f_{1P_1} = f_{1P_1}^{\perp}(\mu = 1 \text{ GeV})$ in the study such that we define study, such that we define

$$
\langle \bar{K}_{1A}(P,\lambda)|\bar{s}(0)\sigma_{\mu\nu}\gamma_5\psi(0)|0\rangle
$$

= $f_{K_{1A}}^{\perp}a_0^{\perp,K_{1A}}(\epsilon_{\mu}^{*(\lambda)}P_{\nu}-\epsilon_{\nu}^{*(\lambda)}P_{\mu}),$

$$
\langle \bar{K}_{1B}(P,\lambda)|\bar{s}(0)\gamma_{\mu}\gamma_5\psi(0)|0\rangle = i f_{K_{1B}}a_0^{\parallel,K_{1B}}m_{K_{1B}}\epsilon_{\mu}^{*(\lambda)},
$$
(A4)

where $a_0^{\perp, K_{1A}}$ and $a_0^{\parallel, K_{1B}}$ are the Gegenbaur zeroth moments, which vanish in the SU(3) limit.

We take into account the approximate forms of twist-2 distributions for the \bar{K}_{1A} meson to be [\[27](#page-10-0)]

$$
\Phi_{\parallel}(u) = 6u\bar{u}[1 + 3a_{1}^{\parallel}\xi + a_{2}^{\parallel 3}(5\xi^{2} - 1)], \quad (A5)
$$

HISAKI HATANAKA AND KWEI-CHOU YANG

and for the \bar{K}_{1B} meson to be

$$
\Phi_{\perp}(u) = 6u\bar{u}[a_0^{\perp} + 3a_1^{\perp}\xi + a_2^{\perp}\frac{3}{2}(5\xi^2 - 1)], \quad (A6)
$$

 $\Phi_{\parallel}(u) = 6u\bar{u}[a_{0}^{\parallel} + 3a_{1}^{\parallel}\xi + a_{2}^{\parallel} \frac{3}{2}(5\xi^{2} - 1)],$ (A7)

$$
\Phi_{\perp}(u) = 6u\bar{u}[1 + 3a_1^{\perp}\xi + a_2^{\perp}\frac{3}{2}(5\xi^2 - 1)], \quad (A.8)
$$

where $\xi = 2u - 1$.

For the two-parton twist-3 chiral-even LCDAs, which are relevant here, we take the approximate expressions up to conformal spin 9/2 and $\mathcal{O}(m_s)$ [\[27\]](#page-10-0):

$$
g_{\perp}^{(a)}(u) = \frac{3}{4}(1+\xi^2) + \frac{3}{2}a_{1}^{\parallel}\xi^3 + \left(\frac{3}{7}a_{2}^{\parallel} + 5\zeta_{3,K_{1A}}^{V}\right)(3\xi^2 - 1) + \left(\frac{9}{112}a_{2}^{\parallel} + \frac{105}{16}\zeta_{3,K_{1A}}^{A} - \frac{15}{64}\zeta_{3,K_{1A}}^{V}\omega_{K_{1A}}^{V}\right)(35\xi^4 - 30\xi^2 + 3) + 5\left[\frac{21}{4}\zeta_{3,K_{1A}}^{V}\sigma_{K_{1A}}^{V} + \zeta_{3,K_{1A}}^{A}\left(\lambda_{K_{1A}}^{A} - \frac{3}{16}\sigma_{K_{1A}}^{A}\right)\right]\xi(5\xi^2 - 3) - \frac{9}{2}\bar{a}_{1}^{\perp}\tilde{\delta}_{+}\left(\frac{3}{2} + \frac{3}{2}\xi^2 + \ln u + \ln \bar{u}\right) - \frac{9}{2}\bar{a}_{1}^{\perp}\tilde{\delta}_{-}(3\xi + \ln \bar{u} - \ln u),
$$
\n(A9)

$$
g_{\perp}^{(\nu)}(u) = 6u\bar{u}\left\{1 + \left(a_{1}^{\parallel} + \frac{20}{3}\zeta_{3,K_{1A}}^{A}\lambda_{K_{1A}}^{A}\right)\xi + \left[\frac{1}{4}a_{2}^{\parallel} + \frac{5}{3}\zeta_{3,K_{1A}}^{V}\right]\left(1 - \frac{3}{16}\omega_{K_{1A}}^{V}\right) + \frac{35}{4}\zeta_{3,K_{1A}}^{A}\right](5\xi^{2} - 1) + \frac{35}{4}\left(\zeta_{3,K_{1A}}^{V}\sigma_{K_{1A}}^{V} - \frac{1}{28}\zeta_{3,K_{1A}}^{A}\sigma_{K_{1A}}^{A}\right)\xi(7\xi^{2} - 3)\right\} - 18a_{1}^{\perp}\delta_{+}(3u\bar{u} + \bar{u}\ln\bar{u} + u\ln u) - 18a_{1}^{\perp}\delta_{-}(u\bar{u}\xi + \bar{u}\ln\bar{u} - u\ln u), \tag{A10}
$$

for the \bar{K}_{1A} state, and

$$
g_{\perp}^{(a)}(u) = \frac{3}{4}a_{0}^{0}(1+\xi^{2}) + \frac{3}{2}a_{1}^{0}\xi^{3} + 5\left[\frac{21}{4}\zeta_{3,K_{1B}}^{V} + \zeta_{3,K_{1B}}^{A}\left(1-\frac{3}{16}\omega_{K_{1B}}^{A}\right)\right]\xi(5\xi^{2}-3) + \frac{3}{16}a_{2}^{0}(15\xi^{4}-6\xi^{2}-1) + 5\zeta_{3,K_{1B}}^{V}\lambda_{K_{1B}}^{V}(3\xi^{2}-1) + \frac{105}{16}\left(\zeta_{3,K_{1B}}^{A}\sigma_{K_{1B}}^{A} - \frac{1}{28}\zeta_{K_{1B}}^{V}\sigma_{K_{1B}}^{V}\right)(35\xi^{4}-30\xi^{2}+3) - 15\bar{a}_{2}^{\perp}\left[\tilde{\delta}_{+}\xi^{3} + \frac{1}{2}\tilde{\delta}_{-}(3\xi^{2}-1)\right] - \frac{3}{2}[\tilde{\delta}_{+}(2\xi+\ln\bar{u}-\ln u) + \tilde{\delta}_{-}(2+\ln u+\ln\bar{u})](1+6a_{2}^{\perp}),
$$
(A11)

$$
g_{\perp}^{(\nu)}(u) = 6u\bar{u}\left\{a_{0}^{\parallel} + a_{1}^{\parallel}\xi + \left[\frac{1}{4}a_{2}^{\parallel} + \frac{5}{3}\zeta_{3,K_{1B}}^{V}\left(\lambda_{K_{1B}}^{V} - \frac{3}{16}\sigma_{K_{1B}}^{V}\right) + \frac{35}{4}\zeta_{3,K_{1B}}^{A}\sigma_{K_{1B}}^{A}\right](5\xi^{2} - 1) + \frac{20}{3}\xi\left[\zeta_{3,K_{1B}}^{A} + \frac{21}{16}\left(\zeta_{3,K_{1B}}^{V} - \frac{1}{28}\zeta_{3,K_{1B}}^{A}\omega_{K_{1B}}^{A}\right)(7\xi^{2} - 3)\right] - 5a_{2}^{\perp}[2\tilde{\delta}_{+}\xi + \tilde{\delta}_{-}(1 + \xi^{2})]\right\} - 6[\tilde{\delta}_{+}(\bar{u}\ln\bar{u} - u\ln u) + \tilde{\delta}_{-}(2u\bar{u} + \bar{u}\ln\bar{u} + u\ln u)](1 + 6a_{2}^{\perp}), \tag{A12}
$$

for the \bar{K}_{1B} state, where

$$
\tilde{\delta}_{\pm} = \pm \frac{f_{K_1}^{\perp}}{f_{K_1}} \frac{m_s}{m_{K_1}}, \qquad \zeta_{3,K_1}^{V,A} = \frac{f_{3K_1}^{V,A}}{f_{K_1}m_{K_1}}.
$$
 (A13)

APPENDIX B: THREE-PARTON CHIRAL-EVEN DISTRIBUTION AMPLITUDES OF TWIST 3

Taking into account the contributions up to terms of conformal spin $9/2$ and considering the corrections of order m_s , the twist-3 three-parton chiral-even distribution amplitudes, defined in Eqs. [\(4.7\)](#page-3-0) and ([4.8](#page-3-0)), can be approximately written as [[27](#page-10-0)]

$$
\mathcal{A}(\underline{\alpha}) = 5040(\alpha_s - \alpha_\psi)\alpha_s \alpha_\psi \alpha_g^2 + 360\alpha_s \alpha_\psi \alpha_g^2 [\lambda_{K_{1A}}^A + \sigma_{K_{1A}}^A \frac{1}{2}(7\alpha_g - 3)], \quad \text{(B1)}
$$

$$
\mathcal{V}(\underline{\alpha}) = 360\alpha_s \alpha_\psi \alpha_g^2 [1 + \omega_{K_{1A}}^V \frac{1}{2} (7\alpha_g - 3)] + 5040(\alpha_s - \alpha_\psi) \alpha_s \alpha_\psi \alpha_g^2 \sigma_{K_{1A}}^V,
$$
 (B2)

for the \bar{K}_{1A} state, and

$$
\mathcal{A}(\underline{\alpha}) = 360\alpha_s \alpha_\psi \alpha_g^2 [1 + \omega_{K_{1B}}^A \frac{1}{2} (7\alpha_g - 3)] + 5040(\alpha_s - \alpha_\psi) \alpha_s \alpha_\psi \alpha_g^2 \sigma_{K_{1B}}^A,
$$
 (B3)

$$
\mathcal{V}(\underline{\alpha}) = 5040(\alpha_s - \alpha_\psi)\alpha_s \alpha_\psi \alpha_g^2 + 360\alpha_s \alpha_\psi \alpha_g^2 [\lambda_{K_{1B}}^V + \sigma_{K_{1B}}^V \frac{1}{2}(7\alpha_g - 3)], \quad (B4)
$$

for the \bar{K}_{1B} state, where λ 's correspond to conformal spin 7/2, while ω 's and σ 's are parameters with conformal spin 9/2. Note that as the SU(3)-symmetry (and G parity) is restored, we have λ 's = σ 's = 0.

 $B \to K_1 \gamma$ DECAYS IN THE LIGHT- ...

- [1] T.E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 84, 5283 (2000).
- [2] M. Nakao et al. (Belle Collaboration), Phys. Rev. D 69, 112001 (2004).
- [3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 112006 (2004).
- [4] K. Abe et al. (Belle Collaboration), arXiv:hep-ex/ 0408138; H. Yang et al., Phys. Rev. Lett. 94, 111802 (2005); E. Barberio et al. (Heavy Flavor Averaging Group), arXiv:0704.3575 and online update at http:// www.slac.stanford.edu/xorg/hfag.
- [5] T. Altomari, Phys. Rev. D 37, 677 (1988).
- [6] S. Veseli and M. G. Olsson, Phys. Lett. B 367, 309 (1996).
- [7] A. S. Safir, Eur. Phys. J. direct C 3, 1 (2001).
- [8] H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004).
- [9] J. P. Lee, Phys. Rev. D 69, 114007 (2004).
- [10] Y.J. Kwon and J.P. Lee, Phys. Rev. D 71, 014009 (2005).
- [11] Y.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
- [12] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 97, 051802 (2006).
- [13] K. Abe et al. (Belle Collaboration), arXiv:0706.3279.
- [14] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 241803 (2007).
- [15] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 261801 (2007).
- [16] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 100, 051803 (2008).
- [17] K.C. Yang, Phys. Rev. D **72**, 034009 (2005); **72**, 059901 (E) (2005).
- [18] C. H. Chen, C. Q. Geng, Y. K. Hsiao, and Z. T. Wei, Phys. Rev. D 72, 054011 (2005).
- [19] G. Nardulli and T. N. Pham, Phys. Lett. B 623, 65 (2005).
- [20] V. Laporta, G. Nardulli, and T. N. Pham, Phys. Rev. D 74, 054035 (2006); 76, 079903(E) (2007).
- [21] G. Calderón, J. H. Muñoz, and C. E. Vera, Phys. Rev. D 76,

094019 (2007).

- [22] K.C. Yang, Phys. Rev. D **76**, 094002 (2007).
- [23] H. Y. Cheng and K. C. Yang, Phys. Rev. D **76**, 114020 (2007).
- [24] M. Suzuki, Phys. Rev. D **47**, 1252 (1993).
- [25] L. Burakovsky and J. T. Goldman, Phys. Rev. D 57, 2879 (1998).
- [26] H. Y. Cheng, Phys. Rev. D **67**, 094007 (2003).
- [27] K.C. Yang, Nucl. Phys. **B776**, 187 (2007).
- [28] K. C. Yang, J. High Energy Phys. 10 (2005) 108.
- [29] J.P. Lee, Phys. Rev. D 74, 074001 (2006).
- [30] W. Wang, R. H. Li, and C. D. Lu, arXiv:0711.0432.
- [31] I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Nucl. Phys. B312, 509 (1989).
- [32] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. **B345**, 137 (1990).
- [33] V. M. Belyaev, A. Khodjamirian, and R. Ruckl, Z. Phys. C 60, 349 (1993).
- [34] P. Ball and V.M. Braun, Phys. Rev. D 55, 5561 (1997).
- [35] See, for example, P. Ball and R. Zwicky, Phys. Rev. D 71, 014029 (2005), and references therein.
- [36] C. Greub, T. Hurth, and D. Wyler, Phys. Rev. D **54**, 3350 (1996).
- [37] M. Beneke, T. Feldmann, and D. Seidel, Nucl. Phys. **B612**, 25 (2001); A. Ali and A. Y. Parkhomenko, Eur. Phys. J. C 23, 89 (2002).
- [38] S.W. Bosch and G. Buchalla, Nucl. Phys. **B621**, 459 (2002).
- [39] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, Nucl. Phys. B591, 313 (2000).
- [40] M. Beneke and T. Feldmann, Nucl. Phys. **B592**, 3 (2001).
- [41] P. Ball, G. W. Jones, and R. Zwicky, Phys. Rev. D 75, 054004 (2007).
- [42] D. Becirevic, V. Lubicz, and F. Mescia, Nucl. Phys. **B769**, 31 (2007).
- [43] R. Barate et al. (ALEPH Collaboration), Eur. Phys. J. C. 11, 599 (1999).