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We perform simulations of an effective theory of SU(2) Wilson lines in three dimensions. We include a

nonperturbative ‘‘fuzzy-bag’’ contribution, which is added to the one-loop perturbative potential for the

Wilson line. We confirm that, at moderately weak coupling, this leads to eigenvalue repulsion in a finite

region above the deconfining phase transition, which shrinks in the extreme weak-coupling limit. A

nontrivial ZðNÞ symmetric vacuum arises in the confined phase.
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I. INTRODUCTION

In QCD at very high temperature, the pressure is due to
weakly interacting quasiparticle gluons. (Here, we ignore
contributions from quarks and focus on the pure gauge
theory.) It can be calculated from an effective theory in
three dimensions1

L eff ¼ 1
2 trG

2
ij þ trjDiA0j2 þm2

DtrA
2
0 þ � � � ; (1)

see [1,2] and references therein. Gij is the magnetic field

strength associated with the spatial components of the
vector potential A, mD is the Debye mass, and the dots
represent self interactions of A0. The effective theory (1) is
valid as long as fluctuations in A0 are small; that is, the
expectation value of the Polyakov loop in the original four-
dimensional theory, which is given by the trace of the
thermal Wilson line,

‘ðxÞ ¼ 1

N
trLðxÞ; (2)

L ðxÞ ¼ Z�1
R P exp

�
ig

Z 1=T

0
d�A0ðx; �Þ

�
; (3)

should be close to one of the N roots of unity, where N is
the number of colors. We have indicated explicitly that in
the four-dimensional theory, A0ðx; �Þ depends on
Euclidean time �, and that Polyakov loops have to be
renormalized to obtain a nonzero continuum limit [3,4].
The renormalization constant ZR depends on the represen-
tation of L, taken here to be the fundamental representa-
tion; thus, L represents the propagator of an infinitely
heavy test quark. Also, we always consider normalized
traces and divide by the dimension of the representation.

The Polyakov loop represents an order parameter for the
spontaneous breaking of the global ZðNÞ center symmetry
corresponding to gauge transformations that are periodic in
� only up to an element of ZðNÞ. In the high-temperature
deconfined phase, the Polyakov loop acquires a nonvanish-

ing expectation value but vanishes in the confined phase
[5]. As a consequence of the ZðNÞ symmetry in the original
four-dimensional theory, when A0=T is large (of order
1=g), the effective electric field in three dimensions is
not simply EiðxÞ ¼ DiðxÞA0ðxÞ [1,6].
For two colors, the phase transition is of second order

[7,8] and so, h‘iðTdÞ ¼ 0 vanishes continuously (the theory
is in the Zð2Þ universality class [9]). Hence, in the imme-
diate vicinity of Td at least, the Polyakov loop is clearly far
from unity. For N ¼ 3, the transition is first order [10] and
h‘i is discontinuous at Td. If the SU(3) gluon plasma was
perturbative all the way down to Tþ

d [in the electric sector,

h‘iðTþ
d Þ � 1], then (1) might have applied even for T just

above Td. However, lattice measurements [3,4] indicate
that h‘iðTþ

d Þ & 0:5, which is rather far from unity.

Moreover, the ratio of screening masses defined from
two-point correlation functions of the real and the imagi-
nary part of the Polyakov loop, respectively, increases from
� 3:2 (which is the LO result from perturbation theory) at
high temperature to � 3 near Td [11]. Also, resummations
of perturbation theory work very well at high T but appear
to fail to reproduce the pressure or the entropy density [12]
below � 3Td. Finally, the interaction measure ðe�
3pÞ=T4 for both two [7] and three [10] colors is rather
large up to T � 3Td.
These observations may suggest that at temperatures not

very far above Td, that even at weak coupling, the theory is
nonperturbative in the sense that A0=T is large. If so, it is
useful then to construct an effective theory in terms of the
Wilson line L rather than A0 [1,2,13,14]. This Lagrangian
can also incorporate the global ZðNÞ symmetry for the
Polyakov loop.
As shown in Ref. [1], the electric field in the three-

dimensional theory for arbitrary A0 is given by

EiðxÞ ¼ T

ig
LyðxÞDiðxÞLðxÞ: (4)

The classical Lagrangian in three dimensions then be-
comes

1That is, all fields in (1) are functions of x only, and the action
is given by an integral of the Lagrangian over space, divided by
temperature.
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L eff
cl ¼ 1

2
trG2

ij þ
T2

g2
trjLyDiLj2: (5)

Contrary to sigma models with left-right symmetry, for
loops there is also a potential. It can be written as an infinite
sum over all ZðNÞ neutral loops [15]. For the present
purposes, however, we rather write it in terms of powers
of the fundamental Wilson line. To one loop and for
constant L, [16]

L eff
1�loop ¼ � 2

�2
T4

X
n�1

1

n4
jtrLnj2: (6)

This potential is evidently minimized by the perturbative
vacuum hLi ¼ 1 (times a phase), for any T. To generate a
phase transition in infinite volume, Ref. [1] suggested to
add nonperturbative contributions, such as

L eff
non�pert ¼ BfT

2jtrLj2; (7)

with Bf a ‘‘fuzzy-bag’’ constant (see, also, Refs. [17,18]).

At sufficiently low temperature, (7) dominates over the
perturbative potential (6) and induces a transition to a
confined phase with htrLi ¼ 0. It was further suggested
in [1] that terms such as (7) lead to ‘‘repulsion’’ of the
eigenvalues of the Wilson line in some temperature range
above Td. If so, then the distribution of eigenvalues should
deviate from a sharp peak near 1 for nonasymptotic tem-
peratures. Our numerical results confirm this idea in the
regime where the nearest-neighbor coupling �� 1=g2 is
not so large as to suppress fluctuations of the Wilson lines
in space.

In this paper, we perform Monte Carlo simulations of an
effective theory motivated by (5)–(7) on a three-
dimensional lattice. The theory is defined with a spatial
cutoff on the order of the inverse temperature as (5) is
nonrenormalizable in three dimensions and is valid only
over distance scales larger than 1=T.2 We shall focus, in
particular, on measuring the eigenvalue distribution both
above and at the (de-)confining phase transition, thereby
testing the presence of eigenvalue repulsion in the phase
transition region. We presently employ several approxima-
tions that simplify the simulations drastically. Most impor-
tantly, the present simulations neglect the magnetic sector

Ai ¼ 0: (8)

Hence, the gauge theory is essentially reduced to a sigma
model. A precise matching of the couplings in the effective
theory to correlation functions measured in the continuum
limit of the original four-dimensional theory is beyond the
scope of this paper. Furthermore, we neglect all but the n ¼

1 term in (6), which can then be combined with the non-
perturbative potential (7).
It should be noted, in particular, that the matrix model

studied below is in a different universality class than four-
dimensional SU(2) Yang-Mills theory (for a recent discus-
sion of the latter, see Ref. [8]). Therefore, near the tran-
sition, long-distance properties will not match. Never-
theless, we introduce (9) here as a simple realization of a
matrix model that allows us to study the distribution of
eigenvalues of L in the plane of nearest-neighbor matrix
coupling � and fuzzy-bag constant (or temperature) m2.

II. THE LATTICE ACTION

Our general three-dimensional lattice action includes
kinetic (nearest-neighbor interaction) and mass terms

S ¼ � 1

2
�
X
hiji

trðLiL
y
j þ H:c:Þ �m2

X
i

jtrLij2; (9)

where L denotes SU(2) Wilson lines in the fundamental
representation, i labels sites, and hiji labels links. We
employ periodic boundary conditions. The kinetic term is
invariant under global SULð2Þ � SURð2Þ transformations,
while the mass term breaks it to SU(2). The weak-coupling
limit of the original four-dimensional theory corresponds
to large �. The partition function involves an integral over
the invariant SU(2) measure [dL] at each site,

Z ¼
Z Y

n

½dLn�e�S : (10)

III. MEAN-FIELD APPROXIMATION

The mean-field approximation for the matrix model has
been discussed in detail in Refs. [4,15,20,21]. We briefly
review the main steps and results as required for our
present purposes.
Replace all 2d nearest neighbors of any given site in (9)

by a fixed matrix �L, where d ¼ 3 is the number of spatial
dimensions. This defines a single-site free energy

e�Nd
sF ssð �LÞ ¼ ZNd

s
ss ; (11)

where Ns is the number of sites per spatial dimension and

Z ss ¼
Z
½dL� exp½d� trðL �Ly þ H:c:Þ þm2jtrLj2�:

(12)

Consistency requires that

hðLÞ�lki ¼
1

d�

@

@ð �LÞlk
logZssð �LÞ (13)

be equal to

ð �LÞ�lk ¼
@

@ð �LÞlk
ð �LÞ�lkð �LÞlk: (14)

2A related renormalizable theory has been formulated in
Refs. [2,13]. Reference [19] derived the relations between lattice
and continuum theories to leading order in lattice perturbation
theory.
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It follows that �L minimizes a mean-field free energy
defined as

0 ¼ @

@ �L
F mfð �LÞ; (15)

F mfð �LÞ ¼ F ssð �LÞ þ d� tr �Ly �L: (16)

To proceed, we assume that �L is proportional to the unit

matrix, �L ¼ �‘1 (for two colors, �‘ can be chosen to be real),
so that

e�F ssð �‘Þ ¼
Z
½dL� exp½2d� �‘ trðLþLyÞ þm2jtrLj2�:

(17)

The action is a function only of the trace of the integration
variable, so that we can write

L ¼ exp diagði�;�i�þ 2�inÞ; (18)

with n an arbitrary integer, and employ Weyl’s parameteri-
zation

½dL� � d�j�ð�Þj2 ¼ d�sin2�; (19)

where �ð�Þ denotes the Vandermonde determinant. Up to
an overall constant then,

e�F ssð �‘Þ ¼
Z 1

�1
d cos� exp

�
4d� �‘ cos�þ 4m2cos2�

þ 1

2
logð1� cos2�Þ

�
: (20)

This integral could now be evaluated analytically in a
saddle-point approximation. However, we have found
that for d ¼ 3, the analytical result is too inaccurate to
be useful in practice, in particular, in the interesting region
of � and m2. Therefore, we have rather tabulated (20) as a

function of �‘. The expectation value ‘0 of trL=2 is then
given by the location of the minimum of

F mfð �‘Þ ¼ F ssð �‘Þ þ 2d� �‘2: (21)

IV. RESULTS

A. The model with global SULð2Þ � SURð2Þ symmetry

We begin with the pure nearest-neighbor interaction
model with no loop potential, corresponding to Eqs. (9)
and (10), with m2 ¼ 0 [20]:

S ¼ � 1

2
�
X
hiji

trðLiL
y
j þ H:c:Þ: (22)

Note that in (22) the basic degrees of freedom are the
Wilson line matrices, or their eigenvalues; the model there-
fore differs from others that deal exclusively with the trace

of L such as S ���
PðtrLi trL

y
j þ c:c:Þ [22]. Al-

ternatively, one may consider nearest-neighbor interactions

between Polyakov loops in arbitrary representations
[4,15,23].
We expect that for small � there is a phase where the

adjoint fields

~‘ aðxÞ ¼ 1

2i
trLðxÞ�a (23)

as well as the singlet field (which is actually the Polyakov
loop)

‘ðxÞ ¼ 1
2trLðxÞ (24)

are massive.3 Furthermore, the expectation value of the
‘‘length’’ of �L,

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr �Ly �L=2

q
; u0 ¼ hui; (25)

should vanish also. The bar stands for the average over the
volume for any given configuration:

�L ¼ 1

N3
s

X
i

Li; (26)

while h�i is the average over configurations. Note that

tr �Ly �L=2 ¼ 2ðtr �L=2Þ2 � tr �L2=2 	 �‘2 � �‘2, where ‘2 is
the Polyakov loop with ZðNÞ charge two [24] (which is
neutral when N ¼ 2).
For sufficiently large �, on the other hand, the Wilson

lines at different sites have to align in order to minimize the
action (22). Hence, for a given configuration (resp.
Metropolis time) �L should be nonzero. However, its direc-
tion in group space will rotate from configuration to con-
figuration, implying h �Li ¼ 0. To monitor the transition to
an ordered phase at large �, we therefore use hui rather
than htr �Li as order parameter [20]. Alternatively, one could
add a weak background field �h trL, which is then taken
to zero after the extrapolation to infinite volume has been
performed.
The regimes where hui ¼ 0 and hui � 0, respectively,

are separated by a second-order phase transition at some
critical �c [20], which we determine numerically. This
transition is associated with spontaneous breaking of the
SULð2Þ � SURð2Þ symmetry to SUVð2Þ, where three
Goldstone modes appear.
The ensemble average denoted by h�i should be per-

formed over statistically independent configurations. It is
therefore necessary to determine the autocorrelation time
of the Monte Carlo algorithm as a function of �. This is
done via the ‘‘rebinning method’’ [25] as follows. First, we
group the sequence Oi of measurements of a given opera-
tor4 into Nbs bins of size Nb,

3We assume Hermitian generators normalized according to
tr�a�b ¼ 2�ab.

4We take O ¼ u defined in Eq. (25).
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O jðNbÞ ¼ 1

Nb

Xðjþ1ÞNb�1

i¼jNb

Oi; (27)

where j ¼ 0 � � �Nbs � 1 labels the bins. Hence, OjðNbÞ is
simply the mean over the measurements belonging to the
bin j. We then determine the variance of the new sequence
OjðNbÞ

�2
Nb

¼ 1

Nbs

XNbs�1

j¼0

ðOjðNbÞ � hOiÞ2: (28)

hOi denotes the average of O over all configurations. The
integrated autocorrelation time corresponding to the bin-
size Nb is given by

�intðNbÞ ¼
�2

Nb

�2
; (29)

where �2 denotes the variance of the original sequence of
measurements. We then plot �intðNbÞ versus Nb, which
eventually approaches a flat plateau (up to rapid oscilla-
tions). This defines �int, which is shown in Fig. 1 as a
function of �. In the vicinity of the critical point, the
Metropolis update algorithm displays the well-known criti-
cal slowing down phenomenon; �int diverges in the infinite-
volume limit. The measurements obtained on Ns ¼ 24, 36,

48 lattices can be fitted with the form �int � N1=��
s , with the

scaling exponent

�� ¼ 0:72ð4Þ: (30)

Away from �c, the autocorrelation time decreases. Notice,
however, that it increases with the volume even above the
critical point, while it exhibits the standard behavior for
�< �c.

In practice, our simulations are performed as follows.
The initial configuration of SU(2) matrices is chosen ran-
domly. We then perform a number of thermalization steps,
which is larger than the autocorrelation time �int (deter-

mined beforehand in a prerun) of the order parameter.
Subsequently, measurements are performed in time inter-
vals slightly larger than �int. We employ a standard
Metropolis update [25], where all N3

s sites are scanned in
sequence. Typically, we summed on the order of a thou-
sand configurations for each set of couplings.
Figure 2 shows the expectation value of the order pa-

rameter (25) as a function of � on lattices of various sizes.
Statistical error bars are smaller than the size of the sym-
bols. There is, clearly, a order-disorder transition at �c ’
0:9. As expected, finite-size effects are visible around the
transition point (� ’ �c). We have verified that u0 ap-
proaches 1 for � 
 1.
To estimate the infinite-volume limit of �c, we proceed

as follows. We first determine the temperature susceptibil-
ity �ð�Þ ¼ @u0=@�, as shown in Fig. 3. The location of the
maximum defines �c for any given lattice size.
Extrapolating linearly to 1=Ns ¼ 0, we obtain

FIG. 1 (color online). The integrated autocorrelation time as a
function of the coupling � for various lattices.

FIG. 2 (color online). The length of the Oð4Þ-like order
parameter from Eq. (25) as a function of the coupling � for
various lattices.

FIG. 3 (color online). The derivative of the order parameter
from Eq. (25) with respect to � as a function of the coupling �
on various lattices.
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�c ¼ 0:942ð5Þ: (31)

We have verified that the derivative of the average kinetic

energy per link E� RehtrLy
i Liþ1i with respect to � also

peaks at the same value of the coupling, which is somewhat
larger than the estimate from Ref. [20], who employed
smaller lattices and lower statistics.

In Fig. 4 we show two time sequences for the Polyakov
loop just below and far above �c. It is clear that below the
phase transition, there are only small fluctuations about 0,
which decrease on larger lattices. On the other hand, at

large �, the Wilson lines partly align and j �‘j is far from 0
for long time intervals. However, the above-mentioned
slow rotation of �L in group space (in the absence of a
background field) is clearly visible. We emphasize that
Fig. 4 depicts two particular runs that were much shorter
than those used for measurement.

Next, we consider two-point matrix-matrix correlation
functions of the form

C LðrÞ ¼ 1

3

1

N3
s

X
r̂;r0

1

2
htrLyðr0ÞLðr0 þ rÞi: (32)

The vector r is allowed to point in any of the three principal
directions of the lattice (in the positive direction only), over
which we average. Also, its length is restricted to <Ns=2
due to the periodic boundary conditions.

Having determined the two-point function CðrÞ and its
statistical error, we perform a �2 fit to the functional form

C LðrÞ � 1

rm	

e�rm	 þ const (33)

to extract the inverse spatial correlation length m	. The fits

were restricted to r � 4 (in lattice units) such that
�2=dof ’ 1.

Figure 5 displays m	ð�Þ for lattices of various sizes.

Deep in the disordered phase, correlations extend only over
a few lattice sites, and m	 is therefore independent of the

volume. This confirms that both the ~‘a and the Polyakov
loop ‘ are massive. Long-range correlations do develop
near �c, and m	 drops to nearly zero, up to finite-size

effects. A fit of the form m	ð�cÞ � N
�1=�	
s (Ns ¼ 24, 36,

48 lattices only) gives the scaling exponent

�	 ¼ 0:938ð5Þ: (34)

Quite clearly, there are massless modes (again, up to finite-
size effects) even above �c, and hence m	 remains small.

These observations are in line with the behavior of the
integrated autocorrelation time �int for �>�c mentioned
above. We have also measured the correlation lengths for

Polyakov loops and for the adjoint ~‘a fields via fits of the
form (33) to the two-point functions

C ‘ðrÞ �
X
r̂;r0

h‘ðr0Þ‘ðr0 þ rÞi; (35)

C ~‘ðrÞ �
X
r̂;r0

h~‘ðr0Þ � ~‘ðr0 þ rÞi: (36)

We refrain from showing the results here, since they
closely resemble m	ð�Þ from Fig. 5. The fact that the

correlation length for ‘ appears to diverge even above �c

is probably due to mixing with the Goldstone modes.
Finally, we determine the distribution of eigenvalues of

the Wilson lines. For any given configuration (i.e.
Metropolis time t), we compute the eigenvalues 
1 and

2 of the Wilson lines L at each lattice site. We introduce
their difference and average

�1ðt; xÞ ¼ 1
2j
1ðt; xÞ � 
2ðt; xÞj;

�2ðt; xÞ ¼ 1
2j
1ðt; xÞ þ 
2ðt; xÞj:

(37)

The ensemble of �1ðt; xÞ defines its probability distribution
P1ð�1Þ, and similarly for P2ð�2Þ. These can be turned into
effective potentials for the sum and difference of eigenval-
ues, respectively, via

FIG. 5 (color online). The inverse spatial correlation length as
a function of the coupling � for various lattices.

-1

-0.5

 0

 0.5

 1

 0  30000  60000  90000

tr
 L —

  / 
2

t

β=10.0
β=0.9

FIG. 4 (color online). Time evolution of the volume-averaged
Polyakov loop below and far above �c; Ns ¼ 12 lattice.
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Veffð�1Þ ¼ � logP1ð�1Þ; Veffð�2Þ ¼ � logP2ð�2Þ:
(38)

Figures 6 and 7 depict the probability distributions
Pð�1Þ, Pð�2Þ, and the corresponding effective potentials
for � ¼ 1. We have also determined these quantities below
the transition (� ¼ 0:5) but obtained very similar curves.
The potential shows evidence for a logarithmic divergence
at �1 ! 0 (or �2 ! 1); this is expected as the group
integration measure leads to logarithmic repulsion of the
eigenvalues, compare to Eqs. (19) and (20). Aside from the
effects of the Vandermonde determinant, however, the
eigenvalue distribution (or the potential) for �2 	
ð1=2ÞjtrLj is entirely flat. This is illustrated in Fig. 7, which
compares the pure Vandermonde potential logð1� �2

2Þ�1=2

with the actually measured Vð�2Þ. The flat eigenvalue
distribution is consistent with the free global rotations of
�L observed above.

B. Action with SUð2Þ symmetry

In this section, we add a mass term for the Polyakov loop
‘ ¼ trL=2,

S ¼ � 1

2
�
X
hiji

trðLiL
y
j þ H:c:Þ �m2

X
i

jtrLij2; (39)

which explicitly breaks SULð2Þ � SURð2Þ to SUð2Þ, L !
�yL�, and also respects the Zð2Þ symmetry for the
Polyakov loop, ‘ ! �‘. We study the phase structure as
a function of m2 at fixed �. The order parameter for the
deconfining phase transition is given by the ensemble and

volume-averaged Polyakov loop hj �‘ji ¼ hjtr �L=2ji, where
�L is defined in Eq. (26).5 In this section, hj �‘ji will also be
denoted as ‘0.
In Fig. 8, we show the integrated autocorrelation time

for the Polyakov loop in the model (39) at � ¼ 1 as a
function of m2. It indicates that the transition occurs in the
vicinity ofm2 ’ 0, where �int grows with the lattice volume
(critical slowing down). However, contrary to Fig. 1, above
the transition point �int is independent of the volume. This
confirms to our expectation that long-range correlations in
Metropolis time should not appear for m2 � 0. A fit of the

form �int � N1=��
s to the Ns ¼ 24, 36, 48 data gives

�� ¼ 1:3ð4Þ (40)

at m2 ¼ 0. As before, all subsequent measurements were
performed with configurations that were separated by a
time interval of �int (at least).
Figures 9 and 10 show the expectation value of the

Polyakov loop, and its derivative with respect to the cou-
pling, in a narrow window about the deconfining phase
transition. Within errors, we find that the critical coupling
is

FIG. 6 (color online). The probability distributions of the
difference (�1) and sum (�2) of eigenvalues of the Wilson
line for � ¼ 1 obtained on a Ns ¼ 48 lattice.

FIG. 7 (color online). The effective potentials for the differ-
ence (�1) and sum (�2) of eigenvalues of the Wilson line for
� ¼ 1 obtained on a Ns ¼ 48 lattice. The pure integration
measure in terms of �2, which is given by logð1� �2

2Þ�1=2,

is shown by the points.

FIG. 8 (color online). The integrated autocorrelation time at
� ¼ 1 as a function of the coupling m2 for various lattices.

5Taking the absolute value of �‘ before performing the en-
semble average is required due to the Zð2Þ symmetry.
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m2
c ¼ 0:000ð2Þ: (41)

The transition in terms of m2 is evidently rather sharp.
Nevertheless, the scaling of �int with the lattice size men-
tioned above suggests a second-order phase transition in
infinite volume. This is confirmed also by the behavior of
the inverse correlation lengthm	ðm2Þ shown in Fig. 11.m	

has been determined by the same procedure outlined in
Eqs. (32) and (33), from the previous section, and appears

to vanish at m2 ¼ 0, Ns ! 1; fitting m	 � N
�1=�	
s (to the

Ns ¼ 24, 36, 48 data) gives the scaling exponent

�	 ¼ 2:28ð8Þ: (42)

In the deconfined phase at m2 > 0, the correlation length
decreases rapidly to about one (in lattice units). It de-
creases also as one goes to negative values of m2, into
the confined phase, but less rapidly. There, a weak volume
dependence remains even from Ns ¼ 36 to Ns ¼ 48.

The expectation value of the Polyakov loop is shown
again in Fig. 12 over a broader range of m2. We also
compare with the mean-field prediction (only for � ¼ 1)
discussed in Sec. III, which has been shifted to the right by
�m2 ¼ 0:94 to match the data far above the transition.
Such a shift is expected by analogy to the tadpole contri-
bution in a scalar theory, for example. Not surprisingly,
mean-field theory works well for large jm2j * 0:5 (far
from the transition, to both sides), when the effective
masses are large and fluctuations are suppressed. Close to
the phase transition, critical fluctuations invalidate the
mean-field approximation.
The transition becomes extremely sharp when� is large,

switching almost instantly from the confined phase to a
perturbative deconfined phase with ‘0 ’ 1. This behavior is
in line with the discussion in Secs. I and II: positivem2 and

FIG. 9 (color online). The expectation value of the Polyakov
loop as a function of the coupling m2 (at � ¼ 1) for various
lattices.

FIG. 10 (color online). The derivative of the Polyakov loop
with respect to m2 as a function of the coupling m2 (at � ¼ 1)
on various lattices.

FIG. 11 (color online). The inverse spatial correlation length
as a function of the coupling m2 (at � ¼ 1) for various lattices.

FIG. 12 (color online). The expectation value of the Polyakov
loop as a function of the coupling m2 at various �. Monte Carlo
results obtained on a Ns ¼ 12 lattice are indicated by the
symbols. The line indicates the mean-field prediction for � ¼
1, shifted horizontally by m2

mf ¼ m2 � 0:94.
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large � corresponds to the weak-coupling limit of the four-
dimensional theory in the deconfined phase. It can also be
readily understood from the expression (39) for the action:
at large � the Wilson lines at neighboring sites are forced

to align such that trLiL
y
j =2 � 1. The potential only deter-

mines the direction of alignment: when m2 > 0, the pre-
ferred direction is the unit matrix (eigenvalue attraction);
when m2 < 0, the Wilson lines instead live in the subspace
spanned by the Pauli matrices (eigenvalue repulsion).

Figure 12 also shows that the deconfining phase transi-
tion is shifted to m2 > 0 when �<�c. In this limit, the
alignment of the Wilson lines is enforced by the upside-
down potential rather than the nearest-neighbor
interaction.

Figure 13 depicts the eigenvalue distribution at � ¼ 1
and m2 ¼ 0:15, which exceeds the critical m2

c for decon-
finement (since ‘0 ’ 0:6) but is still far from asymptotic.
Here, the perturbative potential (6) is partly cancelled by
the fuzzy-bag term (7) and the eigenvalue distributions are
rather broad. This result demonstrates that the fuzzy-bag
term can generate eigenvalue repulsion in the deconfined
phase, in the regime � � �c corresponding to moderately
weak coupling in the underlying four-dimensional theory.

In the confined phase at m2 < 0 and �>�c, the Wilson
lines fluctuate about the nontrivial vacuum Lc ¼ i�3, or
SU(2) rotations thereof [1,17,26]; this was shown in Fig. 6
already. As expected, the fluctuations diminish with in-
creasing �, see Fig. 14. They are visible mostly in the
distribution of the average eigenvalue �2, while Pð�1Þ is
rather sharp. This can be understood easily by parameter-
izing the fluctuations about i�3, asL� i diagðei�;�e�i�Þ,
with � � 0. Then,

�1 ¼ j cos�j ’ 1��2

2
; (43)

�2 ¼ j sin�j ’ j�j: (44)

For large m2 one of course approaches the perturbative
vacuum, as shown in Fig. 15. The distribution for �2 ¼ j‘j
peaks near 1, while that for the difference of eigenvalues is
broader. In the perturbative regime, fluctuations can be
parameterized as L� diagðexpi�; exp�i�Þ, with � � 0.
Hence, the fluctuations of �1 ¼ j sin�j are much bigger
than those of �2 ¼ j cos�j ’ 1��2=2. The fact that
Pð�1Þ ! 0 as �1 ! 0, and Pð�2Þ ! 0 as �2 ! 1, is again
due to the integration measure, see Eq. (19). For even
larger m2, both distributions get sharper, and their maxima
move further toward �1 ¼ 0 and �2 ¼ 1, respectively. In
all, far above the transition the eigenvalue distributions
qualitatively exhibit the behavior appropriate for the per-
turbative weak-field regime.

V. SUMMARYAND CONCLUSIONS

We have performed Monte Carlo simulations of an
effective theory of SU(2) Wilson lines in three dimensions.
The main purpose of this work was a study of eigenvalue
repulsion in the deconfined phase of a SU(2) matrix model.
We considered the action

FIG. 13 (color online). Eigenvalue distributions for m2 ¼
0:15 and � ¼ 1; Ns ¼ 48 lattice.

FIG. 14 (color online). Eigenvalue distributions for m2 ¼
�0:05 and � ¼ 3; Ns ¼ 48 lattice.

FIG. 15 (color online). Eigenvalue distributions for m2 ¼ 0:8
and � ¼ 1; Ns ¼ 48 lattice.
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S ¼ � 1

2
�
X
hiji

trðLiL
y
j þ H:c:Þ �m2

X
i

jtrLij2; (45)

without gauge fields Aa
i ¼ 0. The kinetic term exhibits a

global SULð2Þ � SURð2Þ symmetry, which is broken ex-
plicitly to SUð2Þ by the loop potential. Note that a L !
�LL�R transformation changes the eigenvalues of L,
while L ! �yL� does not.

The phase diagram is sketched in Fig. 16. In the absence
of a potential, at m2 ¼ 0, (45) is essentially a standard
spin-model. At small �, the effective mass of the Wilson
lines is large, and they fluctuate independently from site to
site. Confinement is realized in a trivial way, since �L ! 0
for each configuration, where �L denotes the volume-
averaged Wilson line. This remains true for small jm2j.
To deconfine, a large upside-down potential (m2 > 0) is
required to align theWilson lines to the unit matrix. Hence,
for small � the phase transition arises due to the effective
loop potential, in a regime where SULð2Þ � SURð2Þ is
broken strongly.

There is a second-order phase transition at �c ’ 0:942
(and m2 ¼ 0), where the masses (inverse correlation
lengths) of the Polyakov loop ‘ ¼ trL=2 and of the adjoint

fields ~‘a ¼ �i trL�a=2 vanish. This is associated with
spontaneous breaking of SULð2Þ � SURð2Þ to SU(2),
where three Goldstone modes appear. We have confirmed
that the length u2 ¼ tr �Ly �L=2 of �L aquires a nonzero
expectation value for �>�c. Hence, we expect that a
weak background field �h trL, h ! 0, shifts the phase
boundary to m2 < 0 as indicated in Fig. 16.

Very large lattice coupling � 
 1 corresponds to the
extreme weak-coupling limit of the original four-
dimensional theory; the effective theory can nevertheless

confine, because it incorporates the global ZðNÞ symmetry
for the Polyakov loop. At large �, fluctuations are sup-
pressed, and the Wilson lines are again forced to align, this
time by the nearest-neighbor interaction (kinetic term).
The direction of alignment is determined by the loop
potential. A standard potential with positive curvature
(m2 < 0) is minimized by Wilson lines with no singlet
component, hence, eigenvalues repel, and the theory con-
fines.6 On the other hand, an upside-down potential (m2 >
0) leads to LðxÞ � 1 and so to eigenvalue attraction and
deconfinement. For � 
 1 even a weak potential suffices
to trigger the locking into (or out of) the center of the
group. This leads to a sharp transition directly to a pertur-
bative deconfined phase without eigenvalue repulsion.
We have measured the distributions of the eigenvalues of

the Wilson line in the nonperturbative deconfined phase
above, but close to�c. They show clearly the emergence of
eigenvalue repulsion even for ‘‘temperatures’’ (i.e. m2) not
extremely close to the phase boundary. It is only relatively
deep in the deconfined phase (m2 * 1) that the distribution
of eigenvalues peaks near 1, which corresponds to the
perturbative vacuum. These results confirm the suggestion
of Ref. [1] that eigenvalue repulsion in the deconfined
phase does arise at intermediate values of the nearest-
neighbor coupling �, due to fluctuations of the Wilson
lines, provided that the nonperturbative fuzzy-bag term
approximately cancels the perturbative loop potential.
Such a fuzzy-bag contribution in the effective theory
makes it possible to reach the region of small m2 in the
phase diagram.
In the confined phase at �>�c, the volume-averaged

Wilson line �L approaches the center-symmetric vacuum
[1,17,26]

L c ¼ diagð1; z; z2; � � � ; zN�1Þ; ðz 	 e2�i=NÞ; (46)

which for two colors corresponds to Lc ¼ i�3 (up to an
overall SU(2) rotation). This is due to the fact that the
Wilson lines align at large�, andm2 < 0 favors a direction
orthogonal to unity. We repeat that this is not the case when
� is small, where instead �L ! 0 for m2 ’ 0.
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FIG. 16 (color online). Schematic sketch of the phase diagram
in the ��m2 plane, for infinite volume. The presence of an
infinitesimal background field �h trL is assumed.

6We expect that the phase boundary is shifted from m2 ¼ 0 to
some smaller value, if an infinitesimal background field is
applied.
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Hübner, and O. Kaczmarek, arXiv:0711.2251.

[4] A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos, and R.D.
Pisarski, Phys. Rev. D 70, 034511 (2004).

[5] L. D. McLerran and B. Svetitsky, Phys. Lett. 98B, 195
(1981).

[6] D. Diakonov and M. Oswald, Phys. Rev. D 68, 025012
(2003); 70, 105016 (2004).

[7] J. Engels, J. Fingberg, K. Redlich, H. Satz, and M. Weber,
Z. Phys. C 42, 341 (1989); J. Engels, F. Karsch, and
K. Redlich, Nucl. Phys. B435, 295 (1995); J. Engels, S.
Mashkevich, T. Scheideler, and G. Zinovev, Phys. Lett. B
365, 219 (1996).

[8] A. Velytsky, arXiv:0711.0748.
[9] B. Svetitsky and L.G. Yaffe, Nucl. Phys. B210, 423

(1982).
[10] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,

M. Lutgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[11] A. Dumitru and R.D. Pisarski, Phys. Rev. D 66, 096003
(2002); R. Falcone, R. Fiore, M. Gravina, and A. Papa,
Nucl. Phys. B785, 19 (2007).

[12] See, for example, J. O. Andersen and M. Strickland, Ann.
Phys. (N.Y.) 317, 281 (2005); Y. Schröder, Proc. Sci.
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