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We present a new computation of S-wave color-singlet nonrelativistic QCD matrix elements for the
J= and the �c. We compute the matrix elements of leading order in the heavy-quark velocity v and the
matrix elements of relative order v2. Our computation is based on the electromagnetic decay rates of the
J= and the �c and on a potential model that employs the Cornell potential. We include relativistic
corrections to the electromagnetic decay rates, resumming a class of corrections to all orders in v, and find
that they significantly increase the values of the matrix elements of leading order in v. This increase could
have important implications for theoretical predictions for a number of quarkonium decay and production
processes. The values that we find for the matrix elements of relative order v2 are somewhat smaller than
the values that one obtains from estimates that are based on the velocity-scaling rules of nonrelativistic
QCD.
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I. INTRODUCTION

In the nonrelativistic quantum chromodynamics
(NRQCD) factorization formalism [1], heavy-quarkonium
decay and production rates are expressed as sums of short-
distance coefficients times NRQCD operator matrix ele-
ments. The matrix elements in these sums scale as powers
of v, the typical heavy-quark (or antiquark) velocity in the
quarkonium rest frame. Hence, the sum in the NRQCD
factorization expression can be thought of as an expansion
in powers of v. The term that is proportional to the matrix
element of leading order in v often gives the dominant
contribution in decay and production processes. The
leading-order matrix element involves the production or
annihilation of a heavy quark-antiquark (Q �Q) pair in a
color-singlet state. The term that is proportional to the
matrix element of relative order v2 gives the first relativ-
istic correction. This order-v2 matrix element also involves
the production or annihilation of a heavy Q �Q pair in a
color-singlet state.

In the vacuum-saturation approximation [1] for decay
matrix elements, one keeps only the vacuum intermediate
state, while, in the vacuum-saturation approximation for
production matrix elements, one keeps only the heavy Q �Q
intermediate state. The vacuum-saturation approximation
is valid up to corrections of relative order v4 [1]. In this
approximation, the color-singlet decay matrix elements are
equal to color-singlet production matrix elements. These
vacuum-saturation matrix elements are also the relevant
ones for purely electromagnetic decay and production
processes and for exclusive decay and production pro-
cesses. The vacuum-saturation matrix element at leading
order in v is proportional to the square of the quarkonium
wave function at the origin. In this paper, we compute the

vacuum-saturation matrix elements of leading order in v
and of relative order v2 for the J= and �c states.

The analysis of these matrix elements for the J= state
differs in several respects from a previous one involving
some of the authors [2]. In that analysis, the matrix element
at leading order in v was obtained by comparing the
theoretical expression for the decay width ��J= !
e�e��with the experimental measurement. The theoretical
expression that was used in that analysis included the
order-�s correction, but not the relativistic corrections. In
the present paper, we include those relativistic corrections.
The matrix element of relative order v2 is determined from
a potential-model calculation [2] that uses the leading-
order matrix element as an input. The relativistic correc-
tions to ��J= ! e�e�� in turn depend upon that order-v2

matrix element. Hence, the leading-order and order-v2

matrix elements are related through a coupled pair of
nonlinear equations, which we solve numerically.

We obtain values for the �c matrix elements in two
different ways and average the results. First, we obtain a
set of values by making use of the comparison between
theory and experiment for the width ���c ! ���. This
comparison gives one nonlinear equation for the matrix
elements. As in the J= case, we make use of a potential-
model calculation of the order-v2 matrix element to obtain
a second nonlinear equation, and we solve the coupled
nonlinear equations numerically to obtain a set of values
for the �c matrix elements. We obtain a second set of
values by making use of the fact that, because of the
approximate heavy-quark spin symmetry of NRQCD [1],
the �c and J= matrix elements are equal, up to correc-
tions of relative order v2. We define this second set of
values for the �c matrix elements simply by taking the
values that we obtain for the J= matrix elements and
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appending additional error bars that take into account the
order-v2 corrections to the heavy-quark-spin-symmetry
relation.

Because the two sets of values for the �c matrix ele-
ments that we obtain in this way have input parameters
(such as the heavy-quark mass and the string tension) in
common, the uncertainties in these matrix elements are
highly correlated between sets and between matrix ele-
ments within a set. Therefore, we carry out a covariance-
matrix analysis to compute the average. The J= and �c
matrix elements are also highly correlated. Such correla-
tions could be important in applications of our results to
calculations involving both the J= and the �c and/or
order-v2 corrections. Therefore, we present tables showing
the variations of each of the matrix elements with respect to
the various sources of uncertainty and also give the covari-
ance matrix that corresponds to these variations.

A further refinement that we include in this work is to
resum a class of relativistic corrections [2] to ��J= !
e�e�� and ���c ! ���. First, we consider all corrections
that arise from matrix elements involving only color-
singlet Q �Q Fock states. By making use of a generalization
of the Gremm-Kapustin relation [2,3], we can determine
all of these matrix elements, up to corrections of relative
order v2, from the leading-order and order-v2 matrix ele-
ments. The simple expressions that result can easily be
summed to all orders in v. This resummation is equivalent
to retaining all of the relativistic corrections that are con-
tained in a potential-model Q �Q wave function, up to the
ultraviolet cutoff of the NRQCD matrix elements.

Because the expressions for the matrix elements of order
v2 and higher are accurate only up to corrections of relative
order v2, the uncertainty in the resummed expression is of
order v4 relative to the leading-order expression. That is,
the nominal accuracy in v is no higher than that of a fixed-
order calculation through relative order v2. However, if the
relativistic corrections to a given process that arise from
the Q �Q Fock-state wave function have particularly large
coefficients in the v expansion, then the use of the re-
summed expression may improve the numerical accuracy.
Furthermore, the resummation may give an indication of
the rate of convergence of the v expansion. In any case, it is
generally desirable to include in a calculation a well-
defined, if incomplete, set of contributions whenever
possible.

The remainder of this paper is organized as follows. In
Sec. II, we review the definitions of the S-wave NRQCD
matrix elements at the leading and higher orders in v, and
we give the relations of these matrix elements to the
quarkonium wave functions. We also introduce the gener-
alized Gremm-Kapustin relation for an S-wave quark-
onium state, which expresses matrix elements of higher
order in v in terms of the matrix element of leading order in
v and the binding energy. The generalized Gremm-
Kapustin relation allows us to resum a class of relativistic

corrections to quarkonium decay to all orders in v. In
Sec. III, we present the resummed formulas for the elec-
tromagnetic decay widths of the J= and the �c.
Section IV contains a description of the potential-model
method that we use to compute the binding energy of the
S-wave states and, through the generalized Gremm-
Kapustin relation, the NRQCD matrix elements of higher
order in v. In Sec. V, we compute the numerical values of
the NRQCD matrix elements for the J= and the �c. We
compare our results for the matrix elements with those
from previous determinations in Sec. VI. Finally, we sum-
marize our results in Sec. VII.

II. NRQCD MATRIX ELEMENTS

A. Decay and production matrix elements

In the cases of the inclusive decays of spin-singlet and
spin-triplet S-wave quarkonium states, such as the �c and
the J= , the matrix elements at the leading power in v are
 

hO1�
1S0�iH � hH�

1S0�j 
y��y jH�1S0�i; (1a)

hO1�
3S1�iH � hH�

3S1�j 
y�� � �y� jH�3S1�i; (1b)

where H is a quarkonium state, 2s�1SJ is the standard
spectroscopic notation for a state with spin angular mo-
mentum s, orbital angular momentum zero, and total an-
gular momentum J,  is a two-component Pauli spinor that
annihilates a heavy quark, � is a two-component Pauli
spinor that creates a heavy antiquark, and �i is a Pauli
matrix. The subscript 1 on a NRQCD operator O indicates
that it is a color-singlet operator.

Similarly, in the case of the inclusive production of spin-
singlet and spin-triplet S-wave quarkonium states, the
matrix elements at the leading power in v are
 

hOH
1 �

1S0�i � h0j�
y 
� X
X;pol:

jH�1S0� � XihH�
1S0� � Xj

�

	  y�j0i; (2a)

hOH
1 �

3S1�i � h0j�
y�i 

� X
X;pol:

jH�3S1� � XihH�
3S1� � Xj

�

	  y�i�j0i; (2b)

where the sum is over the light degrees of freedom X and
the 2J� 1 quarkonium polarizations.

In the vacuum-saturation approximation [1], which is
valid up to corrections of relative order v4, the decay
matrix elements in Eq. (1) and 1=�2J� 1� times the pro-
duction matrix elements in Eq. (2) both reduce to
 

hO1�
1S0�i

VS
H � jh0j�

y jH�1S0�ij
2; (3a)

hO1�
3S1�i

VS
H � jh0j�

y� jH�3S1�ij
2

� jh0j�y� � �
 jH�3S1�ij
2; (3b)

in the spin-singlet and spin-triplet cases, respectively. In
Eq. (3b), the quarkonium polarization vector is denoted by
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�, and there is no sum over the polarization states of the
quarkonium. In the cases of purely electromagnetic decay
or production or exclusive decay or production, the matrix
elements in Eq. (3) are the relevant ones at leading order in
v.

The first relativistic corrections to inclusive S-wave
decay and production involve operators that are analogous
to those in Eqs. (1) and (2), but that contain a factor of
�� i

2D
$
�2 between either  y and � or �y and  . Here, D

$
is

the spatial part of the covariant derivative acting to the left
and right antisymmetrically: �yD

$
 � �y�D � �

�D��y . These operators are of order v2 relative to those
in Eqs. (1) and (2). The corresponding matrix elements
reduce in the vacuum-saturation approximation to
 

hP 1�
1S0�i

VS
H � Re

�
hH�1S0�j 

y�j0i

	

�
0

���������y
�
�
i
2
D
$
�

2
 
��������H�1S0�

��
; (4a)

hP 1�
3S1�i

VS
H � Re

�
hH�3S1�j 

y� � ��j0i

	

�
0

���������y� � �

�
�
i
2
D
$
�

2
 
��������H�3S1�

��
:

(4b)

In the cases of purely electromagnetic production or decay
or exclusive production or decay, the matrix elements in
Eq. (4) are the relevant ones.

Corrections of still higher orders in v2 involve, among
other matrix elements, those in which higher powers of
�� i

2D
$
�2 appear. It is convenient to define ratios of these

matrix elements to the matrix elements of lowest order in
v:
 

hq2riH�1S0�
�
h0j�y�� i

2D
$
�2r jH�1S0�i

h0j�y jH�1S0�i
; (5a)

hq2riH�3S1�
�
h0j�y� � �
�� i

2D
$
�2r jH�3S1�i

h0j�y� � �
 jH�3S1�i
; (5b)

where q is half the relative three-momentum of the Q and
�Q in the quarkonium rest frame.

In this paper, we compute the quantities hO1�
1S0�i

VS
�c and

hO1�
3S1�i

VS
J= , which are given by Eq. (3), and the quantities

hq2ri�c and hq2riJ= , which are given by Eq. (5). As we
shall see, the higher-order ratios in Eq. (5) can be related to
the lowest-order ones by making use of a generalization of
the Gremm-Kapustin relation [2,3].

As is discussed in Ref. [2], the higher-order matrix
elements in Eq. (5) contain power ultraviolet divergences
and require regularization. In this paper, we regulate these
power divergences dimensionally at the one-loop level.
One-loop dimensional regularization of the matrix ele-
ments is appropriate for use in conjunction with one-loop
calculations of the short-distance coefficients.

B. Relations of NRQCD matrix elements to
quarkonium wave functions

In the rest frame of an S-wave heavy quarkonium H in a
spin-singlet (1S0) or spin-triplet (3S1) state, one can express
the wave function at the origin of the leading Q �Q Fock
state in terms of the color-singlet NRQCD matrix elements
[1]:
 

 H�1S0�
�0� �

Z d3q

�2��3
~ H�1S0�

�q�

�
1���������
2Nc
p h0j�y jH�1S0�i; (6a)

� H�3S1�
�0� � �

Z d3q

�2��3
~ H�3S1�

�q�

�
1���������
2Nc
p h0j�y� jH�3S1�i: (6b)

~ H�q� is the momentum-space wave function for the lead-
ing Q�q� �Q��q� Fock state of the quarkonium. The wave
function is, of course, gauge dependent. Throughout this
paper, we work in the Coulomb gauge. The normalization
factor 1=

���������
2Nc
p

accounts for the traces in the SU(2)-spin
and SU(3)-color spaces.

Relativistic corrections to the production and decay rates
for a heavy quarkonium involve matrix elements that are
related to derivatives of the wave function at the origin:
 

 �2r�
H�1S0�

�0� �
Z d3q

�2��3
q2r ~ H�1S0�

�q�

�
1���������
2Nc
p h0j�y

�
�
i
2
r
$
�

2r
 jH�1S0�i; (7a)

� �2r�
H�3S1�

�0� � �
Z d3q

�2��3
q2r ~ H�3S1�

�q�

�
1���������
2Nc
p h0j�y�

�
�
i
2
r
$
�

2r
 jH�3S1�i: (7b)

Usually, these operator matrix elements are written in
terms of the covariant derivative D

$
(Ref. [1]), as in

Eqs. (4) and (5), rather than r
$

. However, in the Coulomb
gauge, the difference between theD

$
andr

$
is suppressed as

v2 (Ref. [1]). We emphasize again that the derivatives of
the wave function at the origin, as defined in Eq. (7), are
ultraviolet-divergent quantities, which must be regulated.
We also note that  �2r�H �0� is different from the expectation
value of q2r:

  �2r�H �0� �
Z d3q

�2��3
q2r ~ 
H�q� ~ H�q�: (8)

Comparing Eq. (7) with Eq. (5), we see that

 hq2riH �
 �2r�H �0�

 H�0�
�1�O�v2��: (9)

One can also define matrix elements of powers of the
heavy-quark velocity in terms of matrix elements of
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powers of the heavy-quark momentum:

 hv2riH � hq
2riH=m2r

Q ; (10)

where mQ is the heavy-quark mass.

C. The generalized Gremm-Kapustin relation

From the effective field theory known as potential
NRQCD (pNRQCD) [4], it follows that one can compute
the wave functions at the origin and derivatives of wave
functions at the origin in Eq. (9), up to errors of relative
order v2, from the Schrödinger wave function for a heavy
Q �Q pair interacting through the leading (static) spin-
independent Q �Q potential. It was shown in Ref. [2] that,
in the case of a spin-independent potential and for dimen-
sionally regulated matrix elements, the ratios in Eq. (9) are
related through the generalized Gremm-Kapustin relation:

 hq2riH � �m�nS�r�1�O�v2��; (11)

where �nS is the binding energy of the Q �Q pair in the
quarkonium state H with principal quantum number n and
orbital angular momentum S, and m is the heavy-quark
mass in the effective theory pNRQCD. The relation (11)
follows from the equations of motion of the Q �Q pair and
from dimensional regularization of the matrix elements at
the one-loop level, provided that the potential is parame-
trized as a sum of constants times powers of the Q �Q
separation. The Cornell potential [5], which we will em-
ploy later in this paper, is parametrized in this way. We note
that Eq. (11) implies that

 hq2riH � hq
2irH; (12)

up to corrections of relative order v2.
We will use Eq. (11) to determine the quantities hq2ri�c

and hq2riJ= . In order to evaluate the ground-state binding
energy �1S, we will make use of a potential model that is
based on the Cornell potential.

III. FORMULAS FOR ELECTROMAGNETIC
DECAYS OF S-WAVE HEAVY QUARKONIA

In this section, we present the NRQCD factorization
expressions for the electromagnetic decay widths
��H�3S1� ! e�e�� and ��H�1S0� ! ���. In subsequent
parts of this paper, we will apply these formulas to the
decays J= ! e�e� and �c ! ��.

A. ��H�3S1� ! e�e��

The NRQCD factorization formula for the amplitude for
the decay H�3S1� ! e�e� is

 A �H�3S1� ! e�e�� �
����������
2mH

p X
n

dn�3S1�h0jOnjH�3S1�i;

(13)

where mH is the quarkonium mass, the dn�3S1� are short-

distance coefficients, and the On are NRQCD operators.
The prefactor

����������
2mH
p

compensates for the fact that the
hadronic NRQCD operator matrix elements conventionally
have nonrelativistic normalization, while we choose the
amplitude on the left side of Eq. (13) to have relativistic
normalization.

Now we approximate the formula (13) by retaining only
those operator matrix elements that connect the vacuum to
the color-singlet, Q �Q Fock state of the quarkonium H.
Then, we have
 

A�H�3S1�! e�e���
����������
2mH

p X
n

cin�
3S1�

	

�
0

���������y
�
�
i
2
D
$
�

2n
�i 

��������H�3S1�

�
;

(14)

where the short-distance coefficients cin�3S1� are a subset of
the short-distance coefficients dn in Eq. (13). We will
clarify the meaning of the approximation that we have
taken to arrive at Eq. (14) below.

Because the cin�3S1� are insensitive to the long-distance
nature of the hadronic state, we can calculate them by
replacing the initial hadronic state

����������
2mH
p

jH�3S1�i in
Eq. (14) with a perturbative spin-triplet S-wave Q �Q state:
 

A�Q �Q1�
3S1� ! e�e��

�
X
n

cin�3S1�

�
0

���������y
�
�
i
2
D
$
�

2n
�i 

��������Q �Q1�
3S1�

�
: (15)

The factor
����������
2mH
p

is absent in Eq. (15) because we use the
same (relativistic) normalization for the Q �Q state on both
sides of Eq. (15).

In the rest frame of the quarkonium, the perturbative
amplitude on the left side of Eq. (15) at order �0

s is [6]
 

A�Q �Q1�
3S1� ! e�e�� �

���������
2Nc

p
2E�q�

e2eQ
m2
H

L � �

	

�
1�

q2

3E�q��E�q� �mQ�

�
;

(16)

where e is the electromagnetic coupling constant, eQ is the
electric charge of the heavy quark, � is the polarization
vector for the spin-triplet state, L is the leptonic current,

and E�q� �
������������������
m2
Q � q

2
q

. In the expression (16), we have

neglected the electron mass in comparison with the quark-
onium mass. The factor 1=m2

H arises from the photon
propagator. The perturbative matrix elements on the right
side of Eq. (15) are given by

 

�
0

���������y
�
�
i
2
D
$
�

2n
�i 

��������Q �Q1�
3S1�

�
�

���������
2Nc

p
2E�q�q2n�i:

(17)

The factor 2E�q� arises from the relativistic normalization
of the Q �Q state. By comparing Eqs. (15) and (16), one can
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read off the short-distance coefficients cin�3S1�:
 

cin�3S1��
e2eQ
m2
H

Li
�

1

n!

�
@

@q2

�
n
�

1�
q2

3E�q��E�q��mQ�

��
q2�0

:

(18)

Substituting the cin�3S1� in Eq. (18) into Eq. (14), using
Eq. (12), and including the order-�s correction to the
amplitude [7,8], we obtain
 

A�H�3S1� ! e�e��

�
����������
2mH

p e2eQ
m2
H

Li
�

1� f�hq2iH=m2
Q� � 2CF

�s
�

�
	 h0j�y�i jH�3S1�i; (19)

where f�x� is defined by

 f�x� �
x

3�1� x�
������������
1� x
p

�
: (20)

Now we can clarify the meaning of the approximation
that was taken to arrive at Eq. (14). Suppose that we
specialize to the Coulomb gauge. Then, we can drop the
gauge fields in covariant derivatives in the matrix elements
in Eq. (14), making errors of relative order v2. The matrix
elements are then proportional to derivatives of the
Coulomb-gauge color-singlet Q �Q quarkonium wave func-
tion at the origin [1]. (See Sec. II B.) That is, they are
proportional to the moments of the momentum-space wave
function with respect to the wave-function momentum (the
relative momentum of theQ and �Q). From Eq. (18), we see
that the short-distance coefficients cin�

3S1�, when con-
tracted into �i, are the coefficients of the Taylor expansion
of A�Q �Q1�

3S1� ! e�e��=�
���������
2Nc
p

2E�q�� with respect to
the wave-function momentum. Hence, Eq. (14) has the
interpretation of the convolution of the short-distance am-
plitude with the momentum-space quarkonium wave func-
tion, where the short-distance coefficients have been
Taylor expanded with respect to the wave-function mo-
menta. Therefore, we see that the approximate NRQCD
expansion in Eq. (14) includes all of the relativistic cor-
rections that are contained in the color-singlet Q �Q quark-
onium wave function, up to the ultraviolet cutoff of the
NRQCD matrix elements.1

We note that, in the quarkonium rest frame, the square of
the spatial part of the leptonic factor L, summed over
lepton spins, is given by

 

X
spins

LiL
j � 2m2
H��

ij � k̂ik̂j�; (21)

where k̂ � k=jkj and k is the three-momentum of the e� in

the quarkonium rest frame. The temporal parts ofP
spinsL

	L

 vanish in the quarkonium rest frame.
We obtain the leptonic decay width of the spin-triplet

S-wave heavy quarkonium by taking the square of the
amplitude (19), summing over lepton spins using
Eq. (21), averaging over the H�3S1� polarization states,
and multiplying by the two-body phase space and the
normalization �2mH�

�1. The result is [6,9]

 

��H�3S1� ! e�e��

�
8�e2

Q�
2

3m2
H

�
1� f�hq2iH=m

2
Q� � 2CF

�s
�

�
2
hO1iH; (22)

where � � e2=�4��. In Eq. (22), the explicit relativistic
corrections are contained in the term �f�hq2=m2

QiH�. In
addition, there are implicit relativistic corrections that are
contained in the factors mH. Strictly speaking, if one were
to compute the decay amplitude completely with the
framework of NRQCD, then mH would be written as
2E�q� and expanded in powers of jqj=mQ to obtain addi-
tional relativistic corrections. (See, for example,
Refs. [6,10].) However, we note that the factor 1=m2

H in
Eq. (22) is clearly identifiable as arising from the photon
propagator and the leptonic current, and, so, it is not
necessary to treat that factor within the framework of
NRQCD. We choose not to apply the nonrelativistic ex-
pansion of NRQCD to the factor 1=m2

H. That is, we apply
NRQCD only to the heavy-quark factor in the amplitude.
This choice reduces the theoretical uncertainties by mak-
ing use of the fact that the quarkonium masses are known
very precisely.

The order-�2
s corrections to ��H�3S1� ! e�e��

(Refs. [11,12]) contain a strong dependence on the
NRQCD factorization scale. If one were to include those
corrections in the expression (22) and use it to determine
hO1iH, then hO1iH would also contain a strong dependence
on the NRQCD factorization scale. If one were to make use
of hO1iH in calculating other quarkonium decay and pro-
duction processes, then the factorization-scale dependence
would cancel only if the short-distance coefficients for
those processes were calculated through relative order
�2
s . Generally, short-distance coefficients for quarkonium

processes have not been calculated beyond relative order
�s. For this reason, we have chosen to omit the order-�2

s
corrections to the leptonic width in Eq. (22).

B. ��H�1S0� ! ���

Employing a method analogous to that which is given in
Sec. III A, one can obtain the NRQCD factorization for-
mula for the relativistic corrections to the two-photon
decay of a spin-singlet S-wave quarkonium state H�1S0�.

The NRQCD factorization formula for the amplitude for
the decay H�1S0� ! �� is

1We note that, in the case of dimensionally regulated NRQCD
matrix elements, pure power ultraviolet divergences in the
matrix elements are set to zero. Hence, the effects of purely
power-divergent contributions are absent in the resummation.
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 A �H�1S0� ! ��� �
����������
2mH

p X
n

dn�
1S0�h0jOnjH�

1S0�i;

(23)

where the dn�1S0� are short-distance coefficients. We ap-
proximate this expression by keeping only those matrix
elements that connect the vacuum to the color-singlet Q �Q
Fock state in the quarkonium. Then, we have
 

A�H�1S0� ! ��� �
����������
2mH

p X
n

cn�1S0�

	

�
0

���������y
�
�
i
2
D
$
�

2n
 
��������H�1S0�

�
:

(24)

As in the spin-triplet case, this modified NRQCD factori-
zation formula retains all of the relativistic corrections that
are contained in a potential-model Q �Q wave function, up
to the ultraviolet cutoff of the NRQCD matrix elements.

We can calculate the short-distance coefficients cn�1S0�
by replacing the initial hadronic state

����������
2mH
p

jH�1S0�i in
Eq. (24) with a perturbative spin-singlet S-wave Q �Q state:
 

A�Q �Q1�
1S0�!����

X
n

cn�
1S0�

	

�
0

���������y
�
�
i
2
D
$
�

2n
 
��������Q �Q1�

1S0�

�
:

(25)

In the rest frame of the quarkonium, the perturbative
amplitude on the left side of Eq. (25) at order �0

s is given
by [6]
 

A�Q �Q1�
1S0� ! ��� �

���������
2Nc

p
e2e2

Q
k1 � �



1 	 �



2

jk1j

mQ

jqj

	 log
E�q� � jqj
E�q� � jqj

; (26)

where ki and �i are the momentum and the polarization of
the ith photon. The perturbative NRQCD matrix elements
on the right side of Eq. (25) are given by

 

�
0

���������y
�
�
i
2
D
$

!
2n

 
��������Q �Q1�

1S0�

�
�

���������
2Nc

p
2E�q�q2n:

(27)

By comparing Eqs. (25) and (26), one can read off the
short-distance coefficients cn�1S0�:

 cn�1S0� � e2e2
Q
k1 � �



1 	 �



2

jk1j

�
1

n!

�
@

@q2

�
n mQ

2E�q�jqj

	 log
E�q� � jqj
E�q� � jqj

�
q2�0

: (28)

Substituting the cn�1S0� in Eq. (28) into Eq. (24), using
Eq. (12), and including the order-�s correction to the
amplitude [13–15], we obtain

 

A�H�1S0� ! ��� �

����������
2mH
p

mQ
e2e2

Q
k1 � �



1 	 �



2

jk1j

	

�
1� g�hq2iH=m2

Q�

�
20� �2

8
CF

�s
�

�
h0j�y jH�1S0�i;

(29)

where g�x� is defined by

 g�x� � 1�
1

2
������������������
x�1� x�

p log
� ������������

1� x
p

�
���
x
p������������

1� x
p

�
���
x
p

�

� 1�
1

2
������������������
x�1� x�

p log�1� 2
������������������
x�1� x�

p
� 2x�: (30)

Squaring the amplitude (29), summing over the photon
polarizations, multiplying by the phase space and 1=2!
for the two identical particles in the final state, and dividing
by the normalization 2mH, we obtain the two-photon decay
width of a spin-singlet S-wave heavy quarkonium:
 

��H�
1S0� ! ��� �

2��2e4
Q

m2
Q

�
1� g�hq2iH=m2

Q�

�
20� �2

8
CF

�s
�

�
2
hO1iH: (31)

In the formula (31), we have omitted the order-�2
s

corrections to the decay amplitude [16]. As we discussed
in the case of the leptonic width of a spin-triplet S-wave
quarkonium, the order-�2

s corrections contain a depen-
dence on the NRQCD factorization scale and can only be
used consistently in conjunction with calculations of other
quarkonium processes through order �2

s .

IV. POTENTIAL MODEL

As we have explained earlier, in order to compute the
higher-order matrix elements that appear in Eq. (5), we
need to compute the ground-state binding energy �1S that
appears in the generalized Gremm-Kapustin relation (11).
In this section, we describe briefly the potential model that
we use to compute �1S. For details of the model, we refer
the reader to Refs. [2,5].

The model makes use of the Cornell potential [5], which
parametrizes the Q �Q potential as a linear combination of
the Coulomb and linear potentials:

 V�r� � �
�
r
� �r; (32)

where � is a dimensionless model parameter for the
Coulomb strength and � is the string tension, which is of
mass dimension two. In the original formulation of the
Cornell potential model [5], the strength of the linear
potential was given in terms of a parameter a, where

 a � 1=
����
�
p

: (33)
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By varying the parameters in the Cornell potential, one can
obtain good fits to lattice measurements of the Q �Q static
potential [17]. Therefore, we assume that the use of the
Cornell parametrization of the Q �Q potential results in
errors that are much less than the order-v2 errors (about
30%) that are inherent in the leading-potential approxima-
tion to NRQCD.

The Schrödinger equation for the radial wave function
Rn‘�r� with the radial and orbital angular-momentum
quantum numbers n and ‘ is

 

�
�

1

mr2

d
dr

�
r2 d
dr

�
�
‘�‘� 1�

mr2 � V�r�
�
Rn‘�r�

� �n‘Rn‘�r�; (34)

where m is the quark mass and �n‘ is the binding energy of
the n‘ state. We treat m as a parameter of the potential
model and note that it is, in general, different from the
heavy-quark mass mQ, which appears in the short-distance
coefficients of NRQCD factorization formulas. As usual,
for an S-wave state, the wave function is  nS�r� �
RnS�r�=

�������
4�
p

.
Introducing the scaled radius � and scaled coupling 

[5],
 

� � ��m�1=3r; (35a)

 �
�

��=m2�1=3
; (35b)

which are dimensionless, one can rewrite the radial equa-
tion (34) as [5]

 

�
d2

d�2 �
‘�‘� 1�

�2 �

�
� �� �n‘

�
un‘��� � 0; (36)

where un‘��� and �n‘ are the dimensionless radial wave
function and the dimensionless energy eigenvalue of the n‘
state. The relation between Rn‘�r� and un‘��� is

 Rn‘�r� �
��������
�m
p un‘���

�
; (37)

where the wave functions are normalized according to

 

Z 1
0
jun‘���j

2d� �
Z 1

0
jRn‘�r�j

2r2dr � 1: (38)

The binding energy is related to the dimensionless eigen-
value �n‘ as

 �n‘ � ��
2=m�1=3�n‘��: (39)

Now let us specialize to the S-wave case. In order to
compute �nS from Eq. (39), we must fix the model parame-
ters �,m, and  and solve Eq. (36), with ‘ � 0, for �nS��.
Our strategy is to fix � from lattice measurements and to
use the measured 1S-2S mass splitting and j nS�0�j2, as
determined from the electromagnetic decay widths, to
solve for m and . Using Eq. (39), we can express m in
terms of the 1S-2S mass splitting:

 m�� � �2

�
�2S�� � �1S��
m2S �m1S

�
3
: (40)

For S-wave states, the wave function at the origin  nS�0� �
RnS�0�=

�������
4�
p

can be expressed as [5]

 j nS�0�j
2 �

m
4�

Z
d3rj nS�r�j

2 @V�r�
@r

�
�m��

4�
�1� FnS���; (41)

where FnS�� is the expectation value of 1=�2 for the nS
state:

 FnS�� �
Z 1

0

d�

�2 junS���j
2: (42)

The first equality in Eq. (41) can be obtained by multi-
plying the radial Schrödinger equation (34) on the left by
R
nS�r� and integrating by parts.

For purposes of computation of the NRQCD matrix
elements, it is convenient to express those matrix elements
in terms of the potential-model parameters. From Eqs. (39)
and (41) and the generalized Gremm-Kapustin relation
(11), we find that
 

hO1iH � 2Ncj �0�j
2 �

�Ncm��
2�

�1� F1S���; (43a)

hq2iH � m���1S�� � ��m���
2=3�1S��; (43b)

where m�� is given in Eq. (40) and F1S�� is given in
Eq. (42).

V. COMPUTATION OF THE NRQCD MATRIX
ELEMENTS

In this section, we determine the numerical values of the
NRQCD matrix elements for the J= and the �c. In this
and subsequent discussions, we drop the superscript VS on
hO1i

VS
H because other sources of uncertainty, which we will

describe, are much larger than the error in the vacuum-
saturation approximation.

A. Method of computation

Were it not for the relativistic corrections in the decay
widths in Eqs. (22) and (31), we could simply solve those
equations for hO1iH. Then we could use the value for
hO1iH that we would obtain to solve Eq. (43a) for  and
use that value of  to solve Eq. (43b) for hq2iH. Because the
relativistic corrections in Eqs. (22) and (31) couple those
equations weakly to Eq. (43b), we must carry out the more
difficult task of solving Eq. (22) or Eq. (31) simultaneously
with Eqs. (43a) and (43b).

First, we express ��J= ! e�e�� and ���c ! ��� in
terms of the potential-model parameters by substituting
Eq. (43) into Eqs. (22) and (31), respectively. We equate
those expressions to the experimental values of the elec-
tromagnetic widths [18]:
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��J= ! e�e�� � 5:55� 0:14� 0:02 keV; (44a)

���c ! ��� � 7:2� 0:7� 2:0 keV: (44b)

Then, we solve the resulting equations numerically for the
model parameter . In computing the solution, we express
the eigenvalues �1S�� and �2S�� and the expectation value
F1S�� [Eq. (42)] as functions of  by fitting interpolating
polynomials to computations of the eigenvalues and ex-
pectation value at fixed values of . Once we have obtained
a value for , we substitute it into Eq. (43) to obtain values
for the NRQCD matrix elements.

In carrying out the numerical computation, we need
values for the charm-quark mass mc, the string tension
�, and the 1S-2S mass splitting. In order to maintain
consistency with the calculations of the electromagnetic
decay widths of the J= and the �c at NLO in �s, we take
mc to be the pole mass. The specific numerical value that
we use is2

 mc � 1:4� 0:2 GeV: (45)

We fix the string tension � by making use of lattice
measurements. From Ref. [19], we find that �a2

L �
0:0114�2� at a lattice coupling � � 6:5, where aL is the
lattice spacing. Lattice calculations of the hadron spectrum
at � � 6:5 yield values for 1=aL of 3.962(127) GeV
(Refs. [20,21]) and 3.811(59) GeV (Refs. [20,22]). These
result in values for the string tension of � � 0:1790�
0:0119 GeV2 and � � 0:1656� 0:0059 GeV2, respec-
tively. Combining these two values, we obtain

 � � 0:1682� 0:0053 GeV2: (46)

For the 1S-2S mass splitting, we take the mass difference
between the J= and  �2S� [18]:

 m2S �m1S � 589:177� 0:036 MeV: (47)

We use mJ= � 3:096 916 GeV and m�c � 2:9798 GeV
[18]. We also need values for �s. In the case of J= !
e�e�, we choose the scale of �s to be that of the momen-
tum transfer at the virtual-photon-charm-quark vertex,
namely,mJ= . In the case of �c ! ��, we choose the scale
of �s to be that of the momentum transfer at either of the
photon-charm-quark vertices, namely, m�c=2.3 In order to
take into account uncertainties in the scale and omitted
corrections to the decay rates of next-to-next-to-leading
order (NNLO) in �s, we attach an uncertainty to �s whose
relative size is �s. Then, we have

 

�s�mJ= � � 0:25� 0:06; (48a)

�s�m�c=2� � 0:35� 0:12: (48b)

We choose the scales for the running QED coupling � to be
the same as those for �s:
 

��mJ= � �
1

132:6
; (49a)

��m�c=2� �
1

133:6
; (49b)

where we ignore the uncertainties in �.
In the case of the �c matrix elements, we actually make

use of two methods of computation. One method is to
compute the �c matrix elements from ���c ! ���, as
we have outlined above. A second method is to equate
the �c matrix elements to the J= matrix elements that we
determine from ��J= ! e�e��. Owing to the approxi-
mate heavy-quark spin symmetry of NRQCD [1], this
equality is valid up to corrections of relative order v2. By
combining these two methods of determining the�c matrix
elements, we can reduce the uncertainties. This approach is
useful because the experimental result for ���c ! ���
[Eq. (44b)] has a relative uncertainty that is comparable
to the corrections to the spin-symmetry relation, which are
of order v2  30%. In principle, we could apply a similar
approach to the J= matrix elements, but we would not
gain a significant reduction in the uncertainties because the
relative uncertainty in the experimental result for ��J= !
e�e�� [Eq. (44a)] is small compared to the corrections to
the spin-symmetry relation. In averaging the two sets of �c
matrix elements, we must take into account the fact that
many of the uncertainties are correlated between the two
sets. We describe the procedure that we use for doing this
in detail in the next section.

B. Sources of uncertainties

Let us now list the various uncertainties that enter into
the calculations of the matrix elements. There is a theo-
retical uncertainty in the value of hq2iH that arises from the
fact that the leading-potential approximation is accurate
only up to corrections of relative order v2. For the compu-
tation that is based on ��J= ! e�e��, we denote this
uncertainty by �hq2iJ= , and for the computation that is
based on ���c ! ���, we denote this uncertainty by
�hq2i�c . We take these uncertainties to be v2  30% times
the central values. The uncertainties that arise from the
scale uncertainties in �s and from neglecting NNLO cor-
rections to the J= and �c electromagnetic widths are
denoted by �NNLOJ= , �NNLO�c , respectively. As we
have explained above, we parametrize these uncertainties
as uncertainties in �s [Eq. (48)]. However, we take
�NNLOJ= and �NNLO�c , to be uncorrelated. There are
also uncertainties that are associated with the charm-quark
mass mc [Eq. (45)], the string tension � [Eq. (46)], and the

2The most recent compilation of the Particle Data Group [18]
suggests that the actual uncertainty in mc may be a factor of 2
smaller than the uncertainty that we use here. However, since it
is not clear that the systematic errors are well understood in the
various determinations that enter into that compilation, we make
a conservative choice of error bars.

3We compute �s and � at each scale by making use of the
code GLOBAL ANALYSIS OF PARTICLE PROPERTIES
(GAPP) [23].
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uncertainties in the experimental measurements of
��J= ! e�e�� and ���c ! ��� [Eqs. (44a) and (44b)].
We denote these uncertainties by �mc, ��, ��J= , and
���c , respectively. When we combine the values of the �c
matrix elements that we obtain from ���c ! ��� with
those that we obtain from ��J= ! e�e�� by invoking
the heavy-quark spin symmetry, there is an uncertainty
from corrections to the spin symmetry, which applies to
the latter set of matrix elements. We take it to be v2  30%
times the values of that set of matrix elements. Since
hq2iJ= already has an uncertainty �hq2iJ= of order v2,
we apply this additional order-v2 uncertainty only to
hO1iJ= . We denote it by �v2.

In making these uncertainty estimates, we have assumed
that the standard NRQCD power-counting (velocity-
scaling) rules [1] hold. Various alternatives to the
NRQCD power-counting rules have been suggested
[4,24,25]. Application of these alternative rules would
affect our estimate of the correction to the heavy-quark
spin symmetry, �v2, and our estimates of the corrections to
the static potential, �hq2iJ= and �hq2i�c . In the standard
NRQCD power-counting rules, �v2 is of relative order v2.
In the strong-coupling regime of Refs. [4,24] and in the
power-counting rules of Ref. [25], �v2 is of relative order
�QCD=mc, which is actually smaller numerically than v2.
The leading correction to the static potential is denoted by
V�1�=m (Ref. [4]). In the standard NRQCD power-counting
rules, V�1�=m is suppressed as v2 relative to the static
potential. In the strong-coupling regime of Refs. [4,24]
and in the power-counting rules of Ref. [25], V�1�=m is of
the same order as the static potential [24,26]. In the lattice
calculation of Ref. [27], V�1�=m corrects the string tension
by about 17%, which is numerically smaller than v2. Other
lattice calculations [28–30] also suggest that terms of
higher order in the standard NRQCD power counting are
suppressed at least as much as would be expected from the
standard power counting. Therefore, we believe that the
standard NRQCD power-counting rules give an upper
bound on the uncertainties, and we use them for our
uncertainty estimates. One could implement the alternative
power-counting rules by equating �v2 to �QCD=mc times
the central value and by equating �hq2iJ= and �hq2i�c to
100% of the central value.

C. Numerical results

1. Computations using ��J= ! e�e�� and ���c ! ���

The results of our computations of matrix elements from
��J= ! e�e�� and ���c ! ��� are shown in Tables I
and II, respectively. In each table, in the first row below the
headings, we give the central values for the potential-
model parameter , the matrix element hO1iH, and the
ratio hq2iH. Subsequent rows contain the values for , the
matrix element, and the ratio that result from shifting each
uncertain quantity in the calculation by plus or minus its

uncertainty. We put a superscript �� on the matrix element
and the ratio for the �c that are shown in Table II, in order
to specify that these numbers are the result of a fit to
���c ! ���.

The matrix elements and ratios of matrix elements,
along with their uncertainties, are as follows:
 

hO1iJ= � 0:440�0:009�0:011�0:003�0:064�0:011
�0:010�0:008�0:003�0:053�0:011 GeV3

� 0:440�0:067
�0:055 GeV3; (50a)

hq2iJ= � 0:441�0:132�0:003�0:041�0:018�0:004
�0:132�0:004�0:040�0:022�0:004 GeV2

� 0:441�0:140
�0:140 GeV2; (50b)

TABLE II. The potential-model parameter , the NRQCD
matrix element hO1i�c , and the ratio hq2i�c , as obtained from
���c ! ���. The first row below the headings contains the
central values for , the matrix element, and the ratio.
Subsequent rows contain the maximum and minimum values
for these quantities that are obtained by varying them with
respect to each uncertainty.

Case  hO1i
��
�c (GeV3) hq2i

��
�c (GeV2)

central 1.234 0.434 0.443
��hq2i�c 1.291 0.476 0.576
��hq2i�c 1.175 0.393 0.310
��mc 1.340 0.517 0.415
��mc 1.129 0.364 0.467
��� 1.195 0.446 0.481
��� 1.276 0.422 0.406
��NNLO�c 1.340 0.517 0.415
��NNLO�c 1.134 0.368 0.466
����c 1.374 0.546 0.405
����c 1.041 0.315 0.484

TABLE I. The potential-model parameter , the NRQCD ma-
trix element hO1iJ= , and the ratio hq2iJ= , as obtained from
��J= ! e�e��. The first row below the headings contains the
central values for , the matrix element, and the ratio.
Subsequent rows contain the maximum and minimum values
for these quantities that are obtained by varying them with
respect to each uncertainty.

Case  hO1iJ= (GeV3) hq2iJ= (GeV2)

central 1.243 0.440 0.441
��hq2iJ= 1.256 0.450 0.573
��hq2iJ= 1.230 0.430 0.308
��mc 1.233 0.433 0.443
��mc 1.258 0.451 0.437
��� 1.191 0.443 0.482
��� 1.297 0.437 0.400
��NNLOJ= 1.325 0.504 0.419
��NNLOJ= 1.166 0.387 0.459
���J= 1.258 0.451 0.437
���J= 1.228 0.429 0.444
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hO1i
��
�c � 0:434�0:042�0:083�0:012�0:083�0:112

�0:040�0:069�0:012�0:066�0:118 GeV3

� 0:434�0:169
�0:158 GeV3; (51a)

hq2i
��
�c � 0:443�0:133�0:024�0:038�0:023�0:041

�0:133�0:028�0:037�0:028�0:038 GeV2

� 0:443�0:148
�0:149 GeV2: (51b)

In the first equalities in Eqs. (50) and (51), the uncertainties
are presented in the same order as in Tables I and II. In the
last equalities in each of these equations, we have added
the uncertainties in quadrature. However it must be kept in
mind for many applications that the individual uncertain-
ties are correlated between the matrix elements. The cor-
relations can be determined from the tabulations in Tables I
and II.

From Eqs. (10), (50), and (51) and the uncertainty in mc
in Eq. (45), it can be deduced that
 

hv2iJ= � 0:225�0:106
�0:088; (52a)

hv2i
��
�c � 0:226�0:123

�0:098: (52b)

The central values of these results are somewhat smaller
than an estimate, based on the NRQCD velocity-scaling
rules [1], that hv2i should be equal approximately to v2 
0:3. However, they are consistent with being of order v2.

We can see the effect of resummation by repeating our
analysis, but keeping only the order-v2 corrections in the
formulas for the decay rates in Eqs. (22) and (31). The
results are that the central values are shifted to hO1iJ= �

0:446 269 GeV3, hq2iJ= � 0:438 520 GeV2, hO1i
��
�c �

0:459 867 GeV3, and hq2i
��
�c � 0:433 879 GeV2. Hence,

the effects of the resummation on these quantities are
�1:4%, �0:5%, �5:7%, and �2:1%, respectively. The
small effects from resummation suggest that the v expan-
sion of NRQCD converges well for the widths ��J= !
e�e�� and ���c ! ���.

2. Average values of �c matrix elements

Because some of the uncertainties in Tables I and II are
correlated, we must take care in combining the results in
these tables to obtain average values for the �c matrix
element and the �c ratio of matrix elements. First, we
construct a two-by-two covariance matrix for the quantities
hO1iJ= and hO1i

��
�c from the deviations from the central

values that correspond to the uncertainties listed in Tables I
and II. Then, we use the inverse of the covariance matrix to
construct �2 for the deviation of the average value of
hO1i�c from the two input values. We fix the average value
of hO1i�c by minimizing this �2 with respect to it. The
minimum value of �2 is 8:9	 10�4. This small value of �2

reflects the fact that hO1iJ= and hO1i
��
�c are much closer in

value than one would expect from the velocity-scaling
rules of NRQCD. Once we have obtained the average value
of hO1i�c , we use it as an input to the potential model to
compute the average value of hq2i�c . We carry out this
computation of the average values of hO1i�c and hq2i�c for
values of the input parameters that correspond to each of
the uncertainties that we have described. (The effect of the
uncertainty �hq2i�c on the average value of hO1i�c has
already been taken into account through the inputs to that
average. We obtain the effect of �hq2i�c on the average
value of hq2i�c by varying the central value of the average
value of hq2i�c by v2  30%.) The average values of
hO1i�c and hq2i�c that result from these computations are
shown in Table III. The first row after the headings in
Table III gives the central values of the averages of the
�c matrix element hO1i�c and ratio of �c matrix elements
hq2i�c . Subsequent rows show the effects of the various
uncertainties on the average values. The central values and
uncertainties in Table III can be summarized as follows:

 

hO1i�c � 0:437�0:024�0:033�0:007�0:036�0:006�0:073�0:037�0:050
�0:023�0:025�0:007�0:029�0:006�0:073�0:029�0:053 GeV3 � 0:437�0:111

�0:105 GeV3; (53a)

hq2i�c � 0:442�0:132�0:009�0:040�0:010�0:002�0:026�0:010�0:018
�0:132�0:011�0:039�0:012�0:002�0:025�0:013�0:017 GeV2 � 0:442�0:143

�0:143 GeV2: (53b)

In the first equalities in Eq. (53), the uncertainties are presented in the same order as in Table III. In the last equalities, we
have added the uncertainties in quadrature. As we have mentioned, it must be kept in mind for many applications that the

TABLE III. Average values of the NRQCD matrix element
hO1i�c and the ratio hq2i�c . The method of averaging is de-
scribed in the text. The first row below the headings contains the
central values for the matrix element and the ratio. Subsequent
rows contain the maximum and minimum values for these
quantities that are obtained by varying them with respect to
each uncertainty.

Case hO1i�c (GeV3) hq2i�c (GeV2)

central 0.437 0.442
��hq2i�c 0.461 0.574
��hq2i�c 0.414 0.309
��mc 0.470 0.430
��mc 0.413 0.450
��� 0.444 0.482
��� 0.431 0.403
��NNLOJ= 0.473 0.429
��NNLOJ= 0.408 0.452
���J= 0.443 0.440
���J= 0.431 0.444
��v2 0.511 0.417
��v2 0.364 0.467
��NNLO�c 0.474 0.429
��NNLO�c 0.408 0.452
����c 0.487 0.425
����c 0.385 0.460
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individual uncertainties are correlated between the matrix elements. The correlations can be determined from the
tabulations in Table III.

The correlated errors can also be expressed conveniently in terms of a correlation matrix. We construct a (symmetric)
correlation matrix whose rows and columns correspond to hO1iJ= , hq2iJ= , hO1i�c , and hq2i�c , respectively, taking the
deviations from the central values from Tables I and III. The result is

 C1 �

3:71	 10�3 1:64	 10�4 1:94	 10�3 8:18	 10�4

1:64	 10�4 1:96	 10�2 2:84	 10�3 1:93	 10�2

1:94	 10�3 2:84	 10�3 1:16	 10�2 �3:71	 10�4

8:18	 10�4 1:93	 10�2 �3:71	 10�4 2:04	 10�2

0BBB@
1CCCA; (54)

where the quantity in ith row and jth column is expressed in units of GeVni�nj , with n1 � n3 � 3 and n2 � n4 � 2. In
charmonium decay and production processes, the NRQCD short-distance coefficients typically depend on mc. Hence,
there may be correlations between the matrix elements and short-distance coefficients with respect to the uncertainty inmc.
Therefore, we also give the correlation matrix for hO1iJ= , hq2iJ= , hO1i�c , and hq2i�c , respectively, in which we omit the
uncertainties that arise from mc:

 C2 �

3:63	 10�3 1:93	 10�4 2:21	 10�3 7:27	 10�4

1:93	 10�4 1:96	 10�2 2:75	 10�3 1:94	 10�2

2:21	 10�3 2:75	 10�3 1:08	 10�2 �8:86	 10�5

7:27	 10�4 1:94	 10�2 �8:86	 10�5 2:03	 10�2

0BBB@
1CCCA; (55)

where the dimensions of the elements ofC2 are the same as
those of the corresponding elements of C1 in Eq. (54). We
note that both correlation matrices C1 and C2 contain large
off-diagonal elements that correspond to a correlation
between the uncertainty in hq2iJ= and the uncertainty in
hq2i�c . Most of this correlation arises from the uncertainty
in the string tension �.

VI. COMPARISONS WITH PREVIOUS
CALCULATIONS

Our results for the matrix elements can be compared
with those in Ref. [10]. In that paper, the values hO1i

BL
J= �

0:335� 0:024 GeV3 and hO1i
BL
�c � 0:297� 0:032 GeV3

are given. In the case of hO1iJ= , our result is 31% larger
than that in Ref. [10]. Approximately 6% of that change is
the result of the change in the experimental value of
��J= ! e�e�� from 5:26� 0:37 keV [31] to 5:55�
0:14� 0:02 keV [18]. An implicit relativistic correction
of about 22% arises from the use ofmJ= in Eq. (22), rather
than 2mc. The use of ��mJ= � � 1=132:6 [Eq. (49a)],
rather than � � 1=137, decreases hO1iJ= by approxi-
mately 6%. The remaining change of about 9% is the result
of including the explicit relativistic corrections in Eq. (22).
In the case of hO1i

��
�c , our result in Eq. (51) is 46% larger

than the value hO1i
BL
�c � 0:297� 0:032 GeV3 that is given

in Ref. [10]. In this case, there is a decrease in the value of
hO1i

��
�c of 4%, owing to the change in the experimental

value of ���c ! ��� from 7:5� 0:8 keV [31] to 7:2�
0:7� 2:0 keV [18]. The use of ��m�c=2� � 1=133:6
[Eq. (49b)], rather than � � 1=137, decreases hO1i

��
�c by

approximately 5%. The use of �s�m�c=2� � 0:35

[Eq. (48b)], rather than �s�mJ= � � 0:25 [Eq. (48a)],
which is used for the process �c ! �� in Ref. [10], en-
hances the matrix element by approximately 14%. The
remaining change of about 41% arises from the relativistic
corrections in Eq. (31).

In Ref. [10], the values hq2iJ= � 0:43 GeV2 and
hq2i

��
�c � 0:25 GeV2 were obtained by making use of the

Gremm-Kapustin [3] relation for the physical quarkonium
mass and mc. While these results are not far from those in
Eqs. (50) and (51), the uncertainties given in Ref. [10] are
on the order 100%, owing to the uncertainty in mc. In our
calculation, we have been able to reduce the uncertainties
significantly by making use of the Gremm-Kapustin rela-
tion (11) for the binding energy in the potential model. This
leads to much smaller uncertainties than the use of the
Gremm-Kapustin relation for the physical quarkonium
mass and mc because we compute the binding energy
directly in the potential model, instead of expressing it as
a difference between mH and 2mc.

In Ref. [2], the result hq2iJ= � 0:50� 0:09�
0:15 GeV2 was obtained from a potential-model calcula-
tion, which also made use of the Cornell potential. That
result agrees, within errors, with the result in Eq. (50). In
Ref. [2], the value of the matrix element hO1iJ= was taken
from Ref. [10], in which the relativistic correction to
��J= ! e�e�� was not taken into account. The inclusion
of that correction in the present work, along with a more
precise determination of the potential-model parameter ,
accounts for the difference in the value of hq2iJ= between
Ref. [2] and Eq. (50).

We can also compare our results with those in Ref. [32].
In that work, the following values are reported:
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hO1i
HFC
J= � 0:573 GeV3, hO1i

HFC
�c � 0:432 GeV3, and

hP 1i
HFC
J= =m

2
c � hP 1i

HFC
�c =m2

c � 0:0514 GeV3. These val-
ues were obtained by comparing the theoretical formulas
for ��J= ! e�e��, ���c ! ���, and ��J= !
light hadrons� with the experimental results and by assum-
ing that hP 1i

HFC
�c � hP 1i

HFC
J= . In the case of ��J= !

light hadrons�, processes involving an intermediate virtual
photon were excluded in both the theoretical formula and
the experimental rate. The theoretical expressions that
were used in Ref. [32] to obtain these results contain the
QCD corrections of relative order �s and the relativistic
corrections of order v2. Taking mc � 1:5 GeV, which is
the value that is used in Ref. [32], we find that the results
given in Ref. [32] yield hq2iHFC

J= � 0:202 GeV2 and

hq2iHFC
�c � 0:268 GeV2. These values are considerably be-

low the values in Eqs. (50) and (51) and considerably
below the expectations from the velocity-scaling rules of
NRQCD. The small values of hq2iHFC

J= and hq2iHFC
�c are

traceable to the use of the theoretical expression for
��J= ! light hadrons�. In that expression, the coefficient
of the contribution that is proportional to hq2iJ= =m

2
c is

about �5:32 relative to the leading contribution. Because
of this large negative coefficient, the quantity hq2iJ= must
be much less than the values that we obtain in order for the
decay width to be positive. We regard this as an indication
that the v expansion is not reliable for the rate ��J= !
light hadrons�. It is possible that the resummation methods
that we have used in the present work could be used to tame
the v-expansion for ��J= ! light hadrons�. The value of
hO1i

HFC
J= is about 30% larger than the value in Eq. (50)

while the value of hO1i
HFC
�c is about 1% smaller than the

value in Eq. (51). Some of this difference is accounted for
by the smaller values of hq2iJ= and hq2i�c in Ref. [32].
Reference [32] also makes use of slightly different
values of mc (1.5 GeV) and �s (0.26) than those employed
in the present work. A further difference is that the ex-
pressions for ��J= ! e�e�� and ���c ! ��� in
Ref. [32] are expanded to first order in �s and v2, rather
than expressed as exact squares of amplitudes, as in
Eqs. (22) and (31).

Finally, there are quenched lattice computations
[28] of the ground-state S-wave charmonium matrix
elements that yield hO1iJ= -�c � 0:3312� 0:0006�
0:0030�0:0681

�0:0483 GeV3 and hq2iJ= -�c � 0:07–0:82 GeV2. In
hO1iJ= -�c , the first error bar is from lattice statistics, the
second error bar is from lattice systematics, and the third
error bar is from the uncertainty in the one-loop perturba-
tive computation that relates the lattice-regulated matrix
elements to the continuum MS matrix elements. The lattice
computations do not distinguish between the J= state and
the �c state. The lattice results are in agreement with our
results, within uncertainties, but the lattice uncertainties
are much larger than ours. These large uncertainties arise

from the uncertainty in the perturbative conversion from
lattice to continuum MS matrix elements.

VII. SUMMARY

For many S-wave heavy-quarkonium decay and produc-
tion processes, the color-singlet S-wave NRQCD matrix
elements of leading order in v enter into the dominant
theoretical contribution. The first relativistic corrections
to these processes involve the matrix elements of relative
order v2.

We have computed the color-singlet S-wave NRQCD
matrix elements of leading order and next-to-leading order
in v2 for the J= and the �c. For each of these quarkonium
states, we have determined the values of these matrix
elements by comparing the theoretical expressions for the
electromagnetic decay rates (��J= ! e�e�� or ���c !
���) with the experimental measurements and by using a
potential model to compute the matrix elements of relative
order v2. If the static, spin-independent Q �Q potential were
known exactly, then the potential-model calculation would
be accurate up to corrections of relative order v2. We made
use of the Cornell potential and fixed its parameters by
using as inputs the lattice measurements of the string
tension, the J= - �2S�mass splitting, and the quarkonium
wave function at the origin, which corresponds to the
NRQCD matrix element of leading order in v. Because
the potential-model calculation of the order-v2 matrix
element depends on the leading-order NRQCD matrix
element and the decay widths depend on both of these
matrix elements, we obtained the matrix elements for the
J= and the �c by solving, in each case, two coupled
nonlinear equations.

In the theoretical expressions for the electromagnetic
decay widths, we made use of the generalized Gremm-
Kapustin relation (11) (Ref. [2]) to resum a class of rela-
tivistic corrections. This resummation includes all of the
relativistic corrections that are contained in the leading-
potential approximation to the quarkonium Q �Q color-
singlet wave function, up to the ultraviolet cutoff of the
NRQCD matrix elements.

There are many sources of uncertainties in our calcula-
tion. Some of these are correlated among the matrix ele-
ments. Therefore, we reported the variations of the matrix
elements with respect to each source of uncertainty.

The experimental measurement of the width ���c !
��� has relatively large uncertainties, which translate
into large uncertainties in the �c matrix elements. Owing
to the heavy-quark spin symmetry [1], the J= and �c
matrix elements are equal, up to corrections of relative
order v2. Therefore, we were able to reduce the uncertain-
ties in the �c matrix elements by averaging the values that
we obtained from ���c ! ��� plus the potential model
with the values that we obtained from ��J= ! e�e��
plus the potential model. In performing this average, we
took into account the additional uncertainty of relative
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order v2 that arises from equating �c matrix elements to
J= matrix elements.

Our principal results are given in Tables I, II, and III and
are summarized in Eqs. (50), (51), and (53) for the matrix
elements that were determined from ��J= ! e�e��, the
matrix elements that were determined from ���c ! ���,
and the average of the two, respectively. We consider the
results in Table III and Eq. (53) to be our best values for the
�c matrix elements. In applying these results to calcula-
tions of quarkonium decay and production rates, it should
be kept in mind that the uncertainties are highly correlated
between matrix elements and that there are correlations
between matrix elements and short-distance coefficients
with respect to the uncertainties in mc. Therefore, it may
be necessary to use all of the information that is contained
in Tables I, II, and III, rather than to rely on the summaries
in Eqs. (50), (51), and (53).

Our results in Tables I and II and Eqs. (50) and (51)
conform to the expectation, from the heavy-quark spin
symmetry, that the J= and �c matrix elements are equal,
up to corrections of relative order v2  30%. In fact, the
leading-order matrix elements differ by about 1.5%, while
hq2iJ= and hq2i

��
�c differ by only about 0.5%. The velocity-

scaling rules of NRQCD [1] state that the quantities
hv2iH � hq

2iH=m2
c should be of order v2  0:3. From

Eq. (52), it can be seen that our results satisfy this expec-
tation, although they are somewhat smaller than the nomi-
nal value of v2.

As we have discussed in Sec. V C 1, the effects from
resummation on our results are small, ranging from�5:7%
for hO1i

��
�c to 2.1% for hq2i

��
�c . The small effects from

resummation suggest that the v expansion of NRQCD
converges well for the widths ��J= ! e�e�� and
���c ! ���.

Our results for hO1iJ= and hO1i
��
�c are considerably

larger than those in Ref. [10], primarily because we have
included relativistic corrections to the electromagnetic
decay rates in the present work. The changes in the values
of these matrix elements would significantly increase the
rate for the process e�e� ! J= � �c that is calculated in
Ref. [10].

Our result for hq2iJ= agrees, within uncertainties, with
that in Ref. [2], but is slightly smaller. Most of this differ-
ence arises from the fact that, in Ref. [2], the value of
hO1iJ= was taken from Ref. [10].

In Ref. [32], a much smaller value for hq2iJ= was
reported. (hq2i�c was assumed to be equal to hq2iJ= in
this work.) The smallness of hq2iJ= in Ref. [32] can be

traced to the use of the width ��J= ! light hadrons� to
constrain the matrix elements. The theoretical expression
for that width contains large order-v2 corrections that, in
our opinion, make the reliability of the expression suspect.
It is possible that the resummation technique that we have
employed in this paper could be used to bring the v
expansion for ��J= ! light hadrons� under control.

Our results for hO1iJ= and hq2iJ= are in agreement
with those from lattice calculations [28], although the
lattice uncertainties are much larger than ours.

We believe that the values that we have obtained for the
J= and �c color-singlet NRQCD matrix elements are the
most precise ones that are available to date. The new values
for the matrix elements of leading order in v should have a
significant impact on the calculations of a number of
charmonium decay and production processes [33]. For
quite a few charmonium processes, it is clear that relativ-
istic corrections are important. Within the framework of
NRQCD, the matrix elements of order v2 are essential
ingredients in calculating those corrections. We have also
attempted to quantify all of the significant theoretical un-
certainties in our determination of the J= and �c color-
singlet matrix elements. Our treatment of uncertainties
could provide the basis for more reliable estimates of
theoretical uncertainties in future calculations of charmo-
nium decay and production rates.
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