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The naive time-reversal-odd (‘‘T-odd’’) parton distribution h?1 , the so-called Boer-Mulders function,

for both up (u) and down (d) quarks is considered in the diquark spectator model. While the results of

different articles in the literature suggest that the signs of the Boer-Mulders function in semi-inclusive

deep inelastic scattering (SIDIS) for both flavors u and d are the same and negative, a previous calculation

in the diquark spectator model found that h?ðuÞ
1 and h?ðdÞ

1 have different signs. The flavor dependence is of

significance for the analysis of the azimuthal cosð2�Þ asymmetries in unpolarized SIDIS and Drell-Yan

processes, as well as for the overall physical understanding of the distribution of transversely polarized

quarks in unpolarized nucleons. We find substantial differences with previous work. In particular, we

obtain half and first moments of the Boer-Mulders function that are negative over the full range in Bjorken

x for both the u and d quarks. In conjunction with the Collins function, we then predict the cosð2�Þ
azimuthal asymmetry for �þ and �� in this framework. We also find that the Sivers u and d quarks are

negative and positive, respectively. As a by-product of the formalism, we calculate the chiral-odd but

‘‘T-even’’ function h?1L, which allows us to present a prediction for the single-spin asymmetry Asinð2�Þ
UL for

a longitudinally polarized target in SIDIS.
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I. INTRODUCTION

Naive time-reversal-odd (‘‘T-odd’’) transverse-momen-
tum-dependent (TMD) parton distributions (PDFs) have
gained considerable attention in recent years.
Theoretically it is expected that they can account for non-
trivial transverse spin and momentum correlations such as
single-spin asymmetries (SSA) in hard scattering processes
when transverse momentum scales are on the order of
intrinsic transverse momentum of quarks in hadron,

namely, PT � k? � ffiffiffiffiffiffi
Q2

p
. Experiments are being per-

formed [1–3] and proposed [4,5] to test these hypotheses
by measuring transverse SSAs (TSSAs) and azimuthal
asymmetries (AAs) in hard scattering processes such as
semi-inclusive DIS (SIDIS) or the Drell-Yan process (DY).
A prominent example of such a T-odd PDF is the Sivers
function f?1T [6,7] which explains the observed SSA in
SIDIS for a transversely polarized proton target by the
HERMES Collaboration [1]. It correlates the intrinsic
quark transverse momentum and the transverse nucleon
spin. The corresponding SSA on a deuteron target mea-
sured by COMPASS [2] vanishes, indicating a flavor de-
pendence of the Sivers function.

Another leading twist T-odd parton distribution, intro-
duced in [8], correlates the transverse spin of a quark with
its transverse momentum within the nucleon, the so-called
Boer-Mulders function h?1 . It describes the distribution of
transversely polarized quarks in an unpolarized nucleon.

Theoretically, twist-2 T-odd PDFs are of particular in-
terest, as they formally emerge from the gauge link struc-

ture of the color gauge invariant definition of the quark-
gluon-quark correlation function [9–11]. This gauge link
not only ensures a color gauge invariant definition of
correlation functions, but it also describes final state inter-
actions (FSIs) [12] and initial state interactions [13] which
are necessary to generate SSA [11,12,14]. Assuming fac-
torization of leading twist SIDIS spin observables in terms
of the ‘‘T-even’’[15] and T-odd TMD PDFs and fragmen-
tation functions (FFs), Ref. [8] shows how spin observables
in SIDIS can be expressed in terms of convolutions of these
functions. Formal proofs of factorization of leading twist
SIDIS spin observables were presented later in Refs. [16–
18].
Apart from the leading twist transverse SSA, measure-

ments were also performed in SIDIS on subleading SSA
(i.e. they are suppressed like 1=Q, whereQ is the virtuality
of the exchanged photon). In particular, the asymmetry for
a longitudinally polarized target was measured by
HERMES [19–22], whereas a nonvanishing beam-spin
asymmetry was reported by CLAS [23,24]. It was shown
that final state interactions contribute also to these types of
single-spin asymmetries [25–28]. Subsequently, this effect
was described by the introduction of heretofore unknown
subleading twist T-odd PDFs [29]; a complete list of these
PDFs was presented in Ref. [30]. These subleading twist
T-odd PDFs discovered in this work were then incorpo-
rated into the tree-level formalism [31] completing the
original work of [15].
In this paper we focus on the flavor dependence of the

leading twist-2 T-odd parton distributions in semi-
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inclusive DIS, i.e. the Boer-Mulders function h?1 , which is
also chirally odd, and the Sivers function f?1T (keeping in
mind that T-odd parton distributions in the Drell-Yan
process flip their sign [9]). The Boer-Mulders function is
particularly important for the analysis of the azimuthal
cosð2�Þ asymmetry in unpolarized SIDIS and Drell-Yan
processes. While in a partonic picture of the unpolarized
cosð2�Þ asymmetry in SIDIS, the Boer-Mulders function
is convoluted with the T-odd (and chiral-odd) Collins
fragmentation function H?

1 [32], the corresponding
cosð2�Þ asymmetry in DY includes a convolution of
the type h?1 � �h?1 [33] (where �h?1 is the Boer-Mulders
function for antiquarks). Although these azimuthal asym-
metries were measured in SIDIS by the ZEUS
Collaboration [34,35] and in DY [36–38], little is known
about the Boer-Mulders function. Of particular interest
is the sign for different flavors u and d since this signifi-
cantly affects predictions for these asymmetries (see
Ref. [39]). The flavor dependence of h?1 was studied in
the MIT-bag model [40] as well as in a spectator diquark
model [41], and a large Nc analysis of TMDs was per-
formed in Ref. [42]. Model calculations of chirally odd
generalized parton distributions (GPDs) [43] and a study
of generalized form factors in lattice QCD [44] give in-
dications about the flavor dependence of h?1 by means
of nonrigorous and model-dependent relations between
GPDs and transverse-momentum-dependent PDFs which
were proposed and discussed in Refs. [45–47]. All of
these theoretical and phenomenological treatments suggest
an equal (and negative) sign for the Boer-Mulders function
for both u and d quarks, with the exception of the calcu-
lation in the diquark spectator model which results in
opposite signs for u and d. The purpose of this paper is
to consider the flavor dependence of h?1 and extend
our earlier work on this subject [48,49]. Additionally, we
consider the flavor dependence of the T-even function h?1L,
which is also of interest in exploring the transverse mo-
mentum and quark spin correlations in a longitudinally
polarized target [50].

II. T-ODD PDFS IN THE SPECTATOR MODEL

Transverse momentum quark distribution and fragmen-
tation functions contain essential nonperturbative informa-
tion about the partonic structure of hadrons. Practically
speaking, their moments are calculable from first prin-
ciples in lattice QCD. A great deal of understanding has
also been gained from model calculations using the spec-
tator framework. In addition to exploring the kinematics
and pole structure of the TMDs [18,51,52], phenomeno-
logical estimates for parton distributions [53] and fragmen-
tation functions [54] for T-even PDFs and for T-odd PDFs
[12–14,28,41,47–49,55] have been performed. We extend
these studies to explore the flavor dependence of the T-odd
PDFs adopting the factorized approach used in
Refs. [49,53,54].

We start (cf. [53]) from the definition of the fully unin-
tegrated, color gauge invariant, quark-quark correlator

�ijðp;P;SÞ¼
X
X

Z d4�

ð2�Þ4 e
ip��hP;Sj � jð0ÞW ½0j1;0; ~0T�jXi

�hXjW ½1;�þ; ~�Tj�� ið�ÞjP;Si; (1)

where the gauge link indicated by the (straight) Wilson line
is given by

W ½ajb� ¼ P exp

�
�ig

Z b

a
ds�A�ðsÞ

�
: (2)

In an arbitrary gauge there is a Wilson line at light-cone
infinity pointing in transverse directions [10,11]. Here, we
work in Feynman gauge where the transverse Wilson line
vanishes [10]. In the definition (1) we insert a complete set
of intermediate states 1 ¼ P

xjXihXj. In the diquark model
the sum over a complete set of intermediate on-shell states
jXi is represented by a single one-particle diquark state
jdq;pdq; �i, where pdq is the diquark momentum and � its

polarization. Since the diquark is ‘‘built’’ from two valence
quarks, it can be a spin 0 particle (scalar diquark) or a spin
1 particle (axial-vector diquark). By applying a translation
on the second matrix element in Eq. (1), we can integrate
out �, perform the momentum integration over the diquark
momentum pdq, and obtain

�ijðp;P; SÞ ¼
X
�

�ððP� pÞ2 �m2
sÞ�ðP0 � p0Þ

ð2�Þ3
� hP; Sj � jð0ÞW ½0j1; 0; ~0T�jdq;P� p; �i
� hdq;P� p; �jW ½1; 0; ~0Tj0� ið0ÞjP; Si:

(3)

The essence of the diquark spectator model is to calculate
the matrix elements in Eq. (3) by the introduction of
effective nucleon-diquark-quark vertices.
For T-even parton distributions such as the unpolarized

PDF f1, one obtains a nonvanishing result at leading order
(in the nucleon-diquark-quark coupling) with a trivial con-
tribution from the Wilson line, i.e. at tree level. In this case
the matrix element hdqj jPi is depicted in the left panel of
Fig. 1. For a scalar and an axial-vector diquark, different
vertices have to be chosen. The most general nucleon-
diquark-quark vertices for off-shell particles were pre-
sented in Ref. [56]. For the matrix elements hdqj jPi,
the nucleon is on shell, which reduces the amount of
structures of the vertices of Ref. [56]. In the following
we work with the nucleon-diquark-quark vertices which
were used in Ref. [53] to compute T-even PDFs. They
read, for a scalar and an axial-vector diquark,

�sðNÞ ¼ gscðp2Þ; ��
axðNÞ ¼ gaxðp2Þffiffiffi

3
p �5

�
�� � Rg

P�

M

�
:

(4)
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gðp2Þ are form factors depending on the quark momentum
p. They are introduced to yield a more realistic description
of the nonperturbative nature of the quark-quark correlator,
and are specified below. Rg is a ratio of coupling constants,

since both structures in the nucleon-(axial-vector)-diquark-
quark coupling can, in principle, have different couplings.

To leading order, the matrix elements are given by the
following expressions for a scalar and axial-vector diquark,

hsdq;P� pj ið0ÞjP; Si ¼ igscðp2Þ ½ðp6 þmqÞuðP; SÞ�i
p2 �m2

q þ i0
;

(5)

hadq;P� p;�j ið0ÞjP; Si

¼ i
gaxðp2Þffiffiffi

3
p "��ðP� p;�Þ

� ½ðp6 þmqÞ�5½�� � Rg
P�

M �uðP; SÞ�i
p2 �m2

q þ i0
; (6)

where the polarization vector of the axial-vector diquark is
given by "�, uðP; SÞ denotes the nucleon spinor, andM and

mq are nucleon and quark masses, respectively. In this

paper we consider the diquark as a particle with mass ms,
and the polarization sum for the axial-vector diquark isX

�

"��ðP� p;�Þ"�ðP� p;�Þ

¼ �g�� þ
ðP� pÞ�ðP� pÞ�

m2
s

: (7)

The unpolarized TMD f1 is obtained by inserting Eqs. (5)
and (6) into Eq. (3) and projecting f1 from the quark-quark
correlator (see e.g. [30,31])

2f1ðx; ~p2
TÞ ¼

1

2

Z
dp�ðTr½�þ�ðp;P; SÞ�

þ Tr½�þ�ðp;P;�SÞ�Þjpþ¼xPþ ; (8)

where the ‘‘þ’’ sign of the �matrix denotes the usual light-

cone component [a	 ¼ 1=
ffiffiffi
2

p ða0 	 a3Þ]. The results for f1
in the scalar and axial-vector diquark sectors read

fsc1 ðx; ~p2
TÞ ¼

1

2ð2�Þ3 jgscðp
2Þj2 ð1� xÞ

½ ~p2
T þ ~m2�2

� ½ ~p2
T þ ðxMþmqÞ2�; (9)

fax1 ðx; ~p2
TÞ ¼

1

6ð2�Þ3
jgaxðp2Þj2

M2m2
sð1� xÞ½ ~p2

T þ ~m2�2
�Rax

1 ðx; ~p2
T;Rg; fMgÞ; (10)

where ~m2 
 xm2
s � xð1� xÞM2 þ ð1� xÞm2

q. To shorten

the notation we introduce a function Rax
1 depending on x

and ~pT , and the model parameters Rg and the set of masses,

i.e. fMg 
 fM;ms;mqg, to be fixed below.

Another T-even function of interest is the distribution of
transversely polarized quarks in a longitudinally polarized
target,

2�Pp
i
Th

?
1Lðx; ~p2

TÞ ¼
M

2

Z
dp�fTr½�þ�i�5�ðp;P; SLÞ�

� Tr½�þ�i�5�ðp;P;�SLÞ�g; (11)

where �P is the target helicity, and SL is the spin 4-vector

in the longitudinal direction, i.e. SL¼½��P
M P

�;�PM P
þ; ~0T�.

By applying the same methods as for f1, we obtain

h?;sc1L ðx; ~p2
TÞ ¼ � jgscðp2Þj2

ð2�Þ3
ð1� xÞMðxMþmqÞ

½ ~p2
T þ ~m2�2 ; (12)

h?;ax1L ðx; ~p2
TÞ ¼

jgaxðp2Þj2
12ð2�Þ3

1

½ ~p2
T þ ~m2�2Mm2

sð1� xÞ
�R?;ax

1L ðx; ~p2
T ;Rg; fMgÞ; (13)

where for brevityRax
1 andR?;ax

1L are given in Appendix C.

By contrast, T-odd PDFs cannot be generated by simply
considering the tree-level diagram in the left panel of
Fig. 1. In the spectator framework the T-odd PDFs [12]
are generated by the gauge link in Eq. (1) [13,14,48,49].
Thus, the leading contribution can be obtained by expand-
ing the exponential of the gauge link up to first order. This
contribution results in a box diagram as shown in the left
panel of Fig. 2, which contains an imaginary part necessary
for T-odd PDFs. We restrict ourselves to the case where
one gluon models the final state interactions. The contri-
bution of the gauge link is represented in the left panel of
Fig. 2 by the double (eikonal) line and the eikonal vertex
yielding a contribution to the box diagram

FIG. 1. Different vertices for the axial-vector diquark. Left panel: Nucleon-diquark-quark vertex. Right panel: Diquark-gluon vertex.
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i

½l � vþ i0� � ð�ieqv�Þ; (14)

where l is the loop momentum, eq is the charge of the

quark, and v is a light-cone vector representing the direc-
tion of the Wilson line. In order to evaluate the box
diagram, we need to specify the gluon-diquark coupling.
With a one-gluon exchange approximation in mind, we use
the gluon-diquark coupling for a scalar diquark, and for an
axial-vector diquark we use a general axial-vector-vector
that models the composite nature of the diquark through an
anomalous magnetic moment 	 [57]. In the notations of
Fig. 1 (right panel) the gluon-diquark vertices read

�
�
s ¼ �iedqðp1 þ p2Þ�; (15)

�
��1�2
ax ¼ �iedq½g�1�2ðp1 þ p2Þ� þ ð1þ 	Þ

� ðg��2ðp2 þ qÞ�1 þ g��1ðp1 � qÞ�2Þ�: (16)

For 	 ¼ �2 the vertex �ax reduces to the standard �WW
vertex. We can now express the matrix elements including
the gauge link in the one-gluon approximation in the
following way:

hsdq;P� pjW ½1; 0; ~0Tj0� ið0ÞjP; Sij1�gl
¼ �ieqedq

Z d4l

ð2�Þ4 gscððlþ pÞ2ÞDscðP� p� lÞ

� ½ðp6 þ l6 þmqÞuðP; SÞ�iv � ð2P� 2p� lÞ
½l � vþ i0�½l2 þ i0�½ðlþ pÞ2 �m2

q þ i0� ;
(17)

hadq;P�p;�jW ½1;0; ~0Tj0� ið0ÞjP;Sij1�gl¼�ieqedq
Z d4l

ð2�Þ4
gaxððpþ lÞ2Þffiffiffi

3
p "�
ðP�p;�ÞDax

��ðP�p� lÞ

� ½g
�v � ð2P� 2p� lÞþ ð1þ	Þðv
ðP�pþ lÞ�þv�ðP�p� 2lÞ
Þ�
½l �vþ i0�½l2þ i0�½ðlþpÞ2�m2

qþ i0�
�
�
ðp6 þ l6 þmqÞ�5

�
���Rg

P�

M

�
uðP;SÞ

�
i
; (18)

where the subscript 1� gl denotes ‘‘one gluon exchange.’’
In these expressionsD denotes the propagator of the scalar
and axial-vector diquark,

D scðP� p� lÞ ¼ i

½ðP� p� lÞ2 �m2
s þ i0� ; (19)

D ax
��ðP� p� lÞ ¼

�iðg�� � ðP�p�lÞ�ðP�p�lÞ�
m2
s

Þ
½ðP� p� lÞ2 �m2

s þ i0� : (20)

The term
ðP�p�lÞ�ðP�p�lÞ�

m2
s

is a crucial difference of our
approach compared to the calculation in Ref. [41], where
the dependence on the proton and spectator momenta in-
side the loop integral is absent. It is shown below that this
leads to various complications when performing the loop
integral.

In a similar fashion as for f1 and h?1L, we extract the
Boer-Mulders function by inserting Eqs. (17) and (18) [and
the tree-matrix elements (5) and (6), i.e. the leading non-
trivial perturbative contribution is the interference term
between tree graph and box graph] into the quark-quark
correlator (3),

2ijT p
j
Th

?
1 ðx; ~p2

TÞ ¼
M

2

Z
dp�ðTr½�unpolðp; SÞi
iþ�5�

þ Tr½�unpolðp;�SÞi
iþ�5�Þjpþ¼xPþ ;

(21)

where ijT 
 �þij and 0123 ¼ þ1.

FIG. 2. Contribution of the gauge link in the one-gluon approximation. Left panel: Box graph. Right panel: Box graph Hermitian
conjugated.
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III. BOER-MULDERS FUNCTION FOR AN AXIAL-VECTOR DIQUARK

We proceed with calculating the Boer-Mulders function in the axial-vector diquark sector. As described above, the
interference term between the tree and box graphs reads

ijT p
j
Th

?;ax
1 ðx; ~p2

TÞ ¼ � eqedq

8ð2�Þ3
1

~p2
T þ ~m2

M

Pþ
Z d4l

ð2�Þ4
�
1

3
gaxððlþ pÞ2Þg�axðp2ÞD��ðP� p� lÞ

�X
�

"�
ðP� p;�Þ"�

� ðP� p;�Þ
� ½g
�v � ð2P� 2p� lÞ þ ð1þ 	Þðv
ðP� pþ lÞ� þ v�ðP� p� 2lÞ
Þ�

½l � vþ i0�½l2 � �2 þ i0�½ðlþ pÞ2 �m2
q þ i0�

� Tr

�
ðP6 þMÞ

�
�� � Rg

P�

M

�
ðp6 �mqÞ�þ�iðl6 þ p6 þmqÞ

�
�� þ Rg

P�

M

�
�5

��
þ H:c: (22)

The momentum of the quark, p, is specified by

p ¼
�
p� ¼ � ~p2

T þm2
s � ð1� xÞM2

2ð1� xÞPþ ; pþ ¼ xPþ; ~pT
�
:

(23)

A. Light-cone integration

Here we comment on the evaluation of the four-
dimensional loop integral in Eq. (22). A convenient way
to simplify the calculation is to sort the numerator in terms
of loop momenta and consider each term separately. Since
the numerator in Eq. (22) contains at most the loop mo-
mentum to the power of 4, we can write it in the following

way:

numerator ¼ X4
i¼1

NðiÞ
�1...�il

�1 . . . l�i þ Nð0Þ: (24)

The (real) coefficients (tensors) NðiÞ
�1...�i depend only on

external momenta P (nucleon momentum) and p (quark
momentum) and can be computed in a straightforward but
tedious calculation. We used the MATHEMATICA package
TRACER [58] for this decomposition (24). The advantage of

this procedure is that we are left with an arbitrary integral
of the form

JðiÞ�1�2...�i 

Z d4l

ð2�Þ4
1
3 gaxððlþ pÞ2Þg�axðp2Þl�1l�2 . . . l�i

½l � vþ i0�½l2 � �2 þ i0�½ðlþ p� PÞ2 �m2
s þ i0�½ðlþ pÞ2 �m2

q þ i0� ; (25)

and the light-cone components of the loop momentum, lþ
and l�, can be integrated out easily.

We sketch the light-cone integration. First, we specify
the vector v to be a light-cone vector v ¼ ½v� ¼ 1; vþ ¼
0; ~vT ¼ 0� representing the Wilson line. Thus, the product
l � v reduces to lþ and does not contribute to the l�
integration. Next, we perform the integral over l� via
contour integration and encounter three poles in the l�
plane from the last three terms in the denominator in
Eq. (25). The integral is nonvanishing when �xPþ<lþ<

ð1�xÞPþ; otherwise all poles are located in the same
complex l� half-plane. For �xPþ < lþ < ð1� xÞPþ the
third factor in the denominator in Eq. (25) always has a
positive imaginary part, while the fourth factor always has
a negative one. The imaginary part of the second factor
becomes positive for lþ < 0 and negative for lþ > 0. We
close the contour of integration in the upper half-plane
which excludes the fourth factor in the denominator, and
the second for lþ > 0. Thus, we obtain

JðiÞ�1...�i ¼ 1

3
i
Z d2 ~lT

ð2�Þ2
Z ð1�xÞPþ

�xPþ

dlþ

2�

1

½lþ þ i0�
� 1

½2lþð2ðlþ � ð1� xÞPþÞðP� � p�Þ þ ½ð~lT þ ~pTÞ2 þm2
s�Þ � 2ðlþ � ð1� xÞPþÞ½~l2T þ �2��

�
� ½2ðlþ � ð1� xÞPþÞ�½gaxððlþ pÞ2Þg�axðp2Þðl�1 . . . l�iÞ�jl�¼P��p�þðð~lTþ ~pT Þ2þm2

s Þ=2ðlþ�ð1�xÞPþÞ
½2ðlþ � ð1� xÞPþÞð2ðlþ þ xPþÞP� � ½ð~lT þ ~pTÞ2 þm2

q�Þ þ 2ðlþ þ xPþÞ½ð~lT þ ~pTÞ2 þm2
s��

� ½2lþ��ð�lþÞ½gaxððlþ pÞ2Þg�axðp2Þðl�1 . . . l�iÞ�jl�¼ð~l2Tþ�2Þ=2lþ

½2lþð2ðlþ þ xPþÞp� � ½ð~lT þ ~pTÞ2 þm2
q�Þ þ 2ðlþ þ xPþÞ½~l2T þ �2��

�
: (26)
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We calculate the lþ integral by adding the complex con-
jugated integral (stemming from the complex conjugated
interference graph). Since 1=ðlþ þ i0Þ is the only propa-
gator remaining with an imaginary part, adding the com-
plex conjugated integral results in a �-function
contribution via the relation

1

lþ þ i0
� 1

lþ � i0
¼ �2�i�ðlþÞ: (27)

We obtain

JðiÞ�1...�i þ ðJðiÞ�1...�iÞ� ¼ 1

3

Z d2 ~lT
ð2�Þ2

�ð�1Þðgaxððlþ pÞ2Þg�axðp2Þ½l�1 . . . l�i�Þjl�¼ðð ~p2
T�ð~lTþ ~pT Þ2Þ=2ð1�xÞPþÞ;lþ¼0

2Pþ½~l2T þ �2�½ð~lT þ ~pTÞ2 þ ~m2�

�
Z ð1�xÞPþ

�xPþ
dlþ

�½ lþ
xPþ��ð�lþÞ�ðlþÞðgaxððlþ pÞ2Þg�axðp2Þ½l�1 . . . l�i�Þjl�¼ð~l2Tþ�2Þ=2lþ

½2ð1� xÞPþ½~l2T þ �2��½~l2T þ �2�
��
: (28)

At this point we are forced to specify the form factor gax
since the second integral in Eq. (28) is potentially ill
defined. This happens when gðp2Þ is a holomorphic func-
tion in p2 (i.e. it contains no poles) and at least one of the
Minkowski indices is lightlike in the minus direction, e.g.
�1 ¼ �, �2; . . . ; �i 2 fþ;?g. In such cases we end up
with an integral of the form

R
dlþ�ðlþÞ�ð�lþÞ, which is

ill defined. This implies that lþ ¼ 0 and l� ¼ 1, which
signals the existence of a light-cone divergence as was
shown in Ref. [55]. While for a scalar diquark one does
not encounter a Minkowski index, �j ¼ �, for twist-2

T-odd PDFs such as the Boer-Mulders function (so that
there are no light-cone divergences in this case), it was
shown in Ref. [55] that for twist-3 T-odd PDFs light-cone
divergences exist for a scalar diquark. However, calculat-

ing the coefficients NðiÞ
�1...�i in Eq. (24) for an axial-vector

diquark, one of the Minkowski indices can be a ‘‘minus’’
(i.e. �j ¼ �). Thus, for an axial-vector diquark we en-

counter a light-cone divergence already for twist-2 T-odd
PDFs. Here it is worth mentioning that such divergences do
not arise in a pQCD-quark-target model where the specta-
tor state is a gluon [59].

From the standpoint of phenomenology one can regard
these light-cone divergences as model artifacts (for the

axial-vector diquark model). It was shown in Ref. [55]
how to regularize these light-cone divergences by introduc-
ing a non-lightlike Wilson line. It was pointed out that one
can also handle the light-cone divergences by introducing
phenomenological form factors with additional poles. Like
the quark propagator in Eq. (22) they introduce additional
factors of lþ in the numerator of the second term in
Eq. (28). We adopt this procedure to model the Boer-
Mulders function and choose a form factor of the following
form:

gaxðp2Þ ¼ Nn�1
ax

ðp2 �m2
qÞfðp2Þ

½p2 ��2 þ i0�n ; (29)

and find that for n � 3 (for n � 2 it is already sufficient for
	 ¼ �2) enough powers of lþ enter the numerator of the
second term in Eq. (28) to compensate the minus compo-
nents l�. The second term then vanishes sinceR
dlþlþn�ðlþÞ�ð�lþÞ ¼ 0 for n � 1. In Eq. (29) fðp2Þ

is then a function without poles to be fixed below, while �
is an arbitrary mass scale to be fixed by phenomenology
(i.e. fitting f1 to data). Nax is a normalization factor.
After performing the light-cone integrations we are then

left with the remaining integral over the transverse loop
momentum (for n ¼ 3),

ijT p
j
Th

?;ax
1 ðx; ~p2

TÞ ¼ � eqedq

8ð2�Þ3N
4
ax

1

3

ð1� xÞ3fðp2Þ
½ ~p2

T þ ~m2
��3m4

s

Z d2 ~lT
ð2�Þ2

f�ððpþ lÞ2Þ
½~l2T þ �2�½ð~lT þ ~pTÞ2 þ ~m2

��3
fijT pjT½ð~l2TÞ2Ap

þ 2ð~lT � ~pTÞ~l2TBp þ ~l2TCp þ 2ð~lT � ~pTÞDp þ Ep� þ ijT l
j
T½ð~l2TÞ2Al þ 2ð~lT � ~pTÞ~l2TBl þ ~l2TCl

þ 2ð~lT � ~pTÞDl þ El� þ rsT l
r
Tp

s
T½ðAlp ~l2T þ 2~lT � ~pTBlpÞðliT þ piTÞ þ ElpðliT þ 2piTÞ�g; (30)

where the coefficients which are functions of x,M,mq, p
2
T ,

	, and Rg are given in Appendix A. ~m2
� replaces ~m2 by

~m2
� ¼ xm2

s � xð1� xÞM2 þ ð1� xÞ�2. We point out that

the vanishing of the coefficient Ep ensures that no IR
divergence appears in the transverse integral (30). This
serves as an important check of the calculation.

B. Transverse integral

The transverse integral (30) can be calculated in a
straightforward manner. We note that the transverse inte-
gral (30) is UV divergent if we choose fðp2Þ ¼ 1. This can
be seen from naive power counting of the integrand. The

UV divergence stems from the term ~l4T , which in turn is a
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consequence of the fact that we took the full numerator of
the axial-vector diquark propagator into account, in con-
trast to Ref. [41] where no UV divergences were reported.
We regularize it by choosing fðp2Þ to be a covariant
Gaussian,

fððlþ pÞ2Þ ¼ e�bjlþpj2 ; (31)

where b is interpreted as the regulator of the high l inte-
gration. Because of the pole contribution lþ ¼ 0, the
Gaussian has no effect on the light-cone integration.
Thus we can write the squared products of the momenta
lþ p and p—after performing the light-cone integra-
tion—as follows,

ðlþ pÞ2 ¼ �ð~lT þ ~pTÞ2 þ xm2
s � xð1� xÞM2

1� x
; (32)

p2 ¼ � ~p2
T þ xm2

s � xð1� xÞM2

1� x
: (33)

Now all that remains is to perform the ~lT integration. After

a shift of the integration variable from ~lT ! ~lT þ ~pT , it is
convenient to use polar coordinates to calculate the inte-
gral, and perform the angular integration first. For this we
choose a coordinate system in such a way that the x axis is
along ~pT , such that ~pT ¼ j ~pTjð1; 0Þ. The integration is

performed with respect to that direction, i.e. ~lT ¼
j~lTjðcos�; sin�Þ. Having fixed the coordinate system in
such a way, the hanging index i can only be 2. We perform
now the angular integration over � by means of the for-
mula

Z �

0

cosðnxÞdx
1þ a cosðxÞ ¼

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

� 1

a

�
n
;

a2 < 1; n � 0:

(34)

We are left with the remaining one-dimensional integrals
(

ffiffiffi
z

p 
 l)

h?;ax1 ðx; ~p2
TÞ ¼ � eqedq

48ð2�Þ4N
4
ax

ð1� xÞ3e�~bð ~p2
Tþ2xm2

s�2xð1�xÞM2Þ

m4
s½ ~p2

T þ ~m2
��3

�Z 1

0

e�~bzdz

½zþ ~m2
��3

½zðAp � 2Al þ BlÞ þ ~p2
TðAp � Al

� 2ðBp � BlÞÞ þ Cp � Cl� þ
Z ~p2

T

0

e�~bzdz

½zþ ~m2
��3

�
z2
Alp

2 ~p2
T

þ z

�
� 1

2
Alp � Dl

~p2
T

þ Elp

2 ~p2
T

�
� 2ðDp �DlÞ � El

~p2
T

�

þ
Z 1

~p2
T

e�~bzdz

½zþ ~m2
��3

�
z
Alp
2

� ~p2
T

Alp
2

þDl þ 1

2
Elp

��
; (35)

where ~b 
 b=ð1� xÞ. These integrals can be expressed in
terms of incomplete � functions,

�ðn; xÞ 

Z 1

x
e�ttn�1dt: (36)

The Boer-Mulders function for an axial-vector diquark
then reads

h?;ax1 ðx; ~p2
TÞ¼� eqedq

48ð2�Þ4N
4
ax

ð1�xÞ3e�~b ~p2
T�2~bðxm2

s�xð1�xÞM2Þ

m4
s½ ~p2

Tþ ~m2
��3

�R?;ax
1 ðx; ~p2

T ;Rg;	;
~b;�;fMgÞ; (37)

where the explicit form of R?
1 is expressed in terms of

incomplete Gamma functions and can be found in
Appendix C.

The Boer-Mulders function for a scalar diquark is much
easier to calculate [48] due to its simpler Dirac-trace
structure. The light-cone divergences we have encountered
in the axial-vector diquark sector do not appear for the
scalar sector. With our choice of the form factor
[cf. Eqs (29) and (31)] the Boer-Mulders function for a
scalar diquark reads

h?;sc1 ðx; ~p2
TÞ ¼

eqedq

4ð2�Þ4N
4
sc

ð1� xÞ5MðxMþmqÞ
~p2
T½ ~p2

T þ ~m2
��3

� e�~bð ~p2
Tþ2xm2

s�2xð1�xÞM2Þ
�~b2
2
e
~b ~m2

�ð�ð0; ~b ~m2
�Þ

��ð0; ~bð ~p2
T þ ~m2

�ÞÞ þ
1� ~b ~m2

�

2 ~m4
�

� 1� ~bð ~p2
T þ ~m2

�Þ
2ð ~p2

T þ ~m2
�Þ2

e�~b ~p2
T

�
: (38)

C. Sivers function in the diquark spectator model

Having obtained the results for the Boer-Mulders func-
tion h?1 , it is straightforward to apply the procedure de-
scribed above to calculate the Sivers function f?1T . The
Sivers function can be extracted from the following trace
of the quark-quark correlator (3) (see e.g. [30,31]),

2SiT
ij
T p

j
Tf

?
1Tðx; ~p2

TÞ ¼
M

2

Z
dp�ðTr½�þ�ðp;P; STÞ�

� Tr½�þ�ðp;P;�STÞ�Þjpþ¼xPþ :

(39)
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It is well known [48] that in the scalar diquark spectator
sector the Boer-Mulders function and the Sivers function
coincide, so the scalar Sivers function is given by the left-
hand side of Eq. (38). By contrast the different Dirac
structure for the chiral even Sivers function and the
chiral-odd Boer-Mulders function in the axial-vector di-
quark sector, Eqs. (21) and (22), respectively, leads to

different coefficients in the decomposition NðiÞ
�1...�i in

Eq. (24). So, whereas the form of the Sivers function

f?;ax1T is the same as the form of h?;ax1 given in Eq. (37),

the coefficients Ap, Bp, Cp, Dp, Ep, Al, Bl, Cl, Dl, El, Alp,

Blp, Elp differ. They are given for f?;ax1T explicitly in

Appendix B.

IV. ASYMMETRIES IN SIDIS

A. Azimuthal cosð2�Þ asymmetry in unpolarized SIDIS

Almost 30 years ago it was pointed out that both kine-
matic [60] and dynamical effects [61,62] could give rise to
a cos2� azimuthal asymmetry going like p2

T=Q
2 (whereQ

is a hard scale) when transverse momentum scales are on
the order of the intrinsic momentum scales of partons,
PT � pT . However, when transverse momentum is on the
order of the hard scale, PT �Q, these nonperturbative
effects are expected to decrease relative to perturbative
contributions [63,64]. By contrast, taking into account
the existence of T-odd TMDs and fragmentation functions,
it was pointed out by Boer and Mulders [8] that at leading
twist a convolution of the Boer-Mulders and the Collins
functions would give rise to nontrivial azimuthal asymme-
tries in unpolarized SIDIS.

Having explored the flavor dependence of the h?1 , we are
now in a position to extend early phenomenological work
on T-odd contributions to azimuthal asymmetries in SIDIS
performed under the approximation of scalar diquark
dominance [49]. In particular, we consider the spin-
independent double T-odd cos2� asymmetry for �þ and
�� production.

The general form of the cross section for an unpolarized
target reads [31]

d


dxdydzd�hdP
2
h?

�2��2

xyQ2

��
1�yþ1

2
y2
�
FUU;T

þð1�yÞFUU;Lþð2�yÞcosð�hÞFcos�
UU

þð1�yÞcosð2�hÞFcos2�h

UU

�
; (40)

where the structure function Fcos2�h

UU is of the most interest
for the purpose of this paper. At leading twist it factorizes
into a convolution of the Boer-Mulders and Collins frag-
mentation function [16,31],

Fcos2�h

UU ¼ C
�
� 2ĥ � kTĥ � pT � kT � pT

MMh

h?1 H
?
1

�
: (41)

The convolution integral C is given by

C½wfD� ¼ x
X
a

e2a
Z
d2pTd

2kT�
ð2ÞðpT � kT � Ph?=zÞ

� wðpT; kTÞfaðx; p2
TÞDaðz; k2TÞ; (42)

where summation runs over quarks and antiquarks. pT , kT
are the intrinsic transverse momenta of the active and
fragmenting quarks, respectively, and Ph is the transverse
momentum of the fragmenting hadron with respect to the

photon momentum q. ĥ is defined as Ph?=jPh?j.
We have fixed most of the model parameters, such as

masses and normalizations, by comparing the model result
for the unpolarized T-even PDF f1 for u and d quarks
[Eqs. (9) and (10)] to the leading order (LO) low-scale
(�2 ¼ 0:26 GeV) data parametrization of Glück, Reya,
and Vogt (GRV) [65]. Note that PDFs for u and d quarks
are given by linear combinations of PDFs for an axial
vector and scalar diquark, u ¼ 3

2 f
sc þ 1

2 f
ax and d ¼ fax

[41,53]. The best model approximation to the GRV data
parametrization for u and d of [65] is shown in Fig. 3, and
corresponds to a set of parameters mq ¼ 0 GeV, ms ¼
1:0 GeV, max ¼ 1:3 GeV, �¼1:3GeV, M¼0:94GeV�
fixed, and Rg ¼ 5=4. For T-odd PDFs such a procedure for

fixing the model parameters is not sufficient since it does
not determine the sign and the strength of the final state
interactions. In our case the final state interactions are
described effectively in the one-gluon exchange approxi-
mation by the product edqeq, the charges of the diquark and

quark, respectively. We need to fix the value of this prod-
uct. For that reason we calculated the Sivers function for u
and d quarks in the diquark model and compared our
results in Fig. 3 for the ‘‘one-half’’ moment,

f?ðq;1=2Þ
1T ðxÞ ¼

Z
d2pT

j ~pTj
M

f?ðqÞ
1T ðx; ~p2

TÞ; (43)

as well as the first moment,

f?ðq;1Þ
1T ðxÞ ¼

Z
d2pT

~p2
T

2M2
f?ðqÞ
1T ðx; ~p2

TÞ; (44)

with the existing data parametrizations where q represents
the quark flavor (see Refs. [66–70]). In such a way we are
able to fix edqeq=4� ¼ CF�s ¼ 0:2671 with a color factor,

CF ¼ 4=3. We display the one-half and first moments for

u- and d-quark Sivers functions f?ðqÞ
1T and Boer-Mulders

functions h?ðqÞ
1 (where q ¼ u, d) along with the unpolar-

ized u- and d-quark PDFs in Figs. 4 and 5. The one-half
and first moments of the u- and d-quark Sivers functions
are negative and positive, respectively, while the u- and

1This is in agreement with the value �s used in [71] to explore
the T-odd fragmentation functions. It is worth noting that the
running coupling extrapolated to the ‘‘low-scale’’ �2 in [65] is
different than the coupling that characterizes the FSIs in the one-
gluon exchange approximation.

GAMBERG, GOLDSTEIN, AND SCHLEGEL PHYSICAL REVIEW D 77, 094016 (2008)

094016-8



d-quark Boer-Mulders functions are both negative over the
full range in Bjorken x. These results are in agreement with
the large Nc predictions [42], the bag model results re-
ported in [40], the impact parameter distortion picture of
Burkardt [45], and recent studies of nucleon transverse
spin structure in lattice QCD [44].2 Also, we explored
the relative dependence of the d-quark to u-quark Sivers
functions; see Fig. 4. For example, choosing a value of 	 ¼

�0:333 as was determined in Ref. [57], we find the
d-quark Sivers function is smaller than the u-quark one.
Choosing 	 ¼ 1 we find reasonable agreement with ex-
tractions reported in [66]. It is worth noting (see Fig. 4) that
the resulting u-quark Sivers function and Boer-Mulders
function are nearly equal, even with the inclusion of the
axial-vector spectator diquark. An exact equality was first
noted in the simpler scalar diquark dominance approxima-
tion in [48].
Our model input for the Collins functions is based on

very recent work in [71] where the Collins function was
calculated in the spectator framework. Therein it was

assumed that H?ðdis�favÞ
1 � �H?ðfavÞ

1 in the pion sector,

thereby satisfying the Schäfer-Teryaev sum rule [72] lo-
cally. We use those results along with the results of this

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

xf
(x

)

xh1
⊥ (u,1/2)

xh1
⊥ (d,1/2)

xf1
(u)

xf1
(d)

0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

xf
(x

)

xf1T
⊥ (u,1/2)

xf1T
⊥ (d,1/2)

xf1
(u)

xf1
(d)

0.2 0.4 0.6 0.8 1

x

-0.2

-0.1

0

0.1

0.2

xf
(x

)

xf1T
(1/2,u)

xf1T
 (1/2,d) 

xh1⊥
(1/2,u)

xh1⊥
(1/2,d)

κ = 1.0

0.2 0.4 0.6 0.8 1

x

-0.2

-0.1

0

0.1

0.2

xf
(x

)

xf1T
(1/2,u)

xf1T
 (1/2,d) 

xh1⊥
(1/2,u)

xh1⊥
(1/2,d)

κ =  - 0.333

FIG. 4 (color online). Top panels: The half-moments of the Boer-Mulders (left) and Sivers (right) functions versus x compared to the
unpolarized u- and d-quark distribution functions. Bottom panels: The half-moments of the Boer-Mulders and Sivers functions,
	 ¼ 1:0 (lower left), 	 ¼ �0:333 (lower right), versus x, extractions from data were presented in Refs. [66–70] for the Sivers
function.
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FIG. 3 (color online). Left panel: The unpolarized u- and d-quark distributions functions versus x compared to the low-scale
parametrization of the unpolarized u- and d-quark distributions [65]. Right panel: The half-moment of the Sivers functions and the
unpolarized u and d distributions versus x compared to the low-scale parametrization of the unpolarized u- and d-quark distributions
(	 ¼ 1:0).

2It is interesting to note that the approximate agreement for the
flavor dependence of h?1 among such models probably arises
because our input quark and diquark wave functions share the
same SU(4) flavor-spin dependence as the bag and other specta-
tor models. Additionally SU(4) symmetric baryon wave func-
tions are compatible with large-Nc counting rules.
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paper for h?1 to estimate the azimuthal asymmetry Acos2�
UU

[cf. Eq. (41)], where

Acos2�
UU 


R
d�cos2�d
R

d�d

(45)

and d� is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2�
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E� <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E� < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry A
sinð2�Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2�Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2�Þ asymmetry

for treating the leading twist observable Asinð2�Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d
UL
dxdydzd�hdP

2
h?

� 2��2

xyQ2
Sk½ð1� yÞ sinð2�hÞFsinð2�Þ

UL

þ ð2� yÞ ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
sinð�hÞFsin�

UL �;
(46)

where Sk is the projection of the spin vector on the direc-

tion of the virtual photon. In a partonic picture the structure

function Fsinð2�Þ
UL is a leading twist object (while Fsin�

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2�Þ
UL ¼ C

�
� 2ĥ � kTĥ � pT � kT � pT

MMh

h?1LH
?
1

�
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð�Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2�Þ
UL and Fsinð�Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2�Þ
UL in Fig. 8 using the kinematics of the upcoming
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FIG. 6 (color online). Left panel: The cos2� asymmetry for �þ and �� as a function of PT at JLab 12 GeV kinematics. Right
panel: The cos2� asymmetry for �þ and �� as a function of PT for HERMES kinematics.
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FIG. 5 (color online). The first moment of the Boer-Mulders
and Sivers functions versus x for 	 ¼ 1:0.
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JLab 12 GeV upgrade. We note that the �� asymmetry is
large and positive due to the model assumption

H?ðdis�favÞ
1 � �H?ðfavÞ

1 . This asymmetry has been mea-

sured at HERMES for longitudinally polarized protons
[19] and deuterons [21]. The data show that for the proton
target and HERMES 27.5 GeV kinematics both�þ and��
asymmetries are consistent with 0 down to a sensitivity of
about 0.01. That is to say, these asymmetries could be
nonzero, but with magnitudes less than 0.01 or 0.02.
These results are considerably smaller than our predictions
for the JLab upgrade. For the deuteron target the results are
consistent with 0 for �þ and ��. There is one �0 point at
x� 0:2 that could be positive at about 0.03. This SIDIS
data for polarized deuterons could reflect the near cancel-
lation of u- and d-quark h?1L functions and/or the large
unfavored Collins function contributions. There are also
CLAS preliminary data [78] at 5.7 GeV that show slightly
negative asymmetries for �þ and �� and lead to the

extraction of a negative xh?ðuÞ
1L . This suggests that the

unfavored Collins function (for d! �þ) is not contribut-
ing much here, unlike the inference from the HERMES
data. Data from the upgrade should help resolve these
phenomenological questions.

V. CONCLUSIONS

In this paper we performed calculations of transverse-
momentum-dependent parton distributions, including the
Boer-Mulders function h?1 , the Sivers function f?1T , and

h?1L in the diquark spectator model, taking into account
both axial-vector and scalar contributions. The calculation
of these functions in both sectors allowed us to explore
their flavor dependence, i.e. to compute their u-quark
and d-quark contributions. For T-even distributions like
h?1L, a nontrivial contribution could already have been
obtained from a tree-level diagram. By contrast, final state
interactions or, equivalently, contributions from the gauge
link had to be taken into account for the T-odd Boer-
Mulders and Sivers functions, requiring the calculation of
a loop (box) diagram. It was found that the loop integrals
for f?1T and h?1 show light-cone divergences and UV di-
vergences in the axial-vector diquark sector, in contrast
to the scalar diquark sector. We regularized these diver-
gences by choosing specific types of the phenomenologi-
cally motivated nucleon-diquark-quark form factors. By
comparing the model expression for the unpolarized parton
distribution, f1, with the low-scale parametrizations of
that function obtained from data, it is possible to fix most
of the parameters of the model, masses, normalization
and Rg, the ratio of axial diquark couplings to the nucleon.

In order to fix the sign and size of the final state interactions
specific for T-odd distributions, we calculated the Sivers
function and compared the result to parametrizations of
SIDIS data already determined in a global fit for f?1T .
In such a way, the remaining parameters could be fixed,
and predictions were presented for the flavor dependence
of the Boer-Mulders function h?1 for a u quark and a d
quark. We find that the kT half and first moments of
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this function are negative for both flavors. This result is
in contrast to that in [41]. Our sign result is in agreement

with other approaches that predict negative h?ðuÞ
1 and

h?ðdÞ
1 .

We also note that the resulting u-quark Sivers function
and Boer-Mulders function are nearly equal, even with the
inclusion of the axial-vector spectator diquark. This near
equality h?1 � f?1T was obtained from models without axial
diquarks, hinting at some more general mechanism that
preserves the relation.

We used our result for h?1 as one ingredient in the

factorized formula for the azimuthal asymmetry Aðcosð2�ÞÞ
UU

in unpolarized semi-inclusive lepto-production of posi-
tively and negatively charged pions. We also used our
h?1L as an ingredient in the single-spin asymmetry

Aðsinð2�ÞÞ
UL for a longitudinally polarized target in semi-

inclusive DIS. Another key ingredient for determining
such asymmetries is the Collins fragmentation function
H?

1 . For this function we used the most current expressions

that were obtained in a similar spectator model.

We provide estimates for Aðcosð2�ÞÞ
UU and Aðsinð2�ÞÞ

UL . The
latter has already been measured at HERMES and prelimi-
narily by CLAS. There are important differences in the
kinematic regions explored, but there remain discrepancies
that may be resolved in the future at Jefferson Lab, for
which our model gives striking predictions of relatively
large asymmetries. The nontrivial �� asymmetry is driven

in large part by the model assumption H?ðdis�favÞ
1 �

�H?ðfavÞ
1 in the pion sector. We note that our result for

Aðsinð2�ÞÞ
UL is the first phenomenological treatment in the

spectator framework of this observable.

The former unpolarized asymmetry, Aðcosð2�ÞÞ
UU , was mea-

sured at HERA, but for very small x and extremely high
Q2. Again, this will be measured in the future at JLab. We
predict that those results should correspond to the opposite
sign asymmetries for opposite charged pions.

In summary, a refined diquark spectator model, includ-
ing axial-vector diquarks, leads to both u- and d-quark
T-odd TMDs and provides the ingredients for predicting
a range of asymmetries for future experiments. The ap-
proach we have been taking is to use and refine a model for
the soft regime that makes sense in QCD and can be
applied broadly to a range of measurable phenomena. We
have fixed the parameters in the model to approach the
inferred structure of the lowest order asymmetries.
Combined with the recent determination of the fragmenta-
tion functions, we have predicted new SIDIS results. The
spirit of this work is to understand the dynamics of pro-
cesses like SIDIS by refining a robust and flexible model
for the T-odd functions that compares with existing data.
While a global fit to all the data eventually can be per-
formed, the underlying mechanism is likely to be revealed
by honing in on more sophisticated and inclusive models,
as we have done here.
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APPENDIX A: AXIAL DIQUARK CONTRIBUTION
TO THE BOER-MULDERS FUNCTION

The coefficients appearing in the calculation of the
Boer-Mulders function for the axial-vector diquark (see
text) read

Ap ¼ ð1� xÞ½ð2Mmq þ ð2� RgÞM2 þ Rgm
2
qÞð3þ 2	Þ

þ Rgm
2
sð7þ 4	Þ�; (A1)

Bp ¼ ð1� xÞ½ð2Mmq þ ð2� RgÞM2 þ Rgm
2
qÞð3þ 2	Þ

þ Rgm
2
sð11þ 6	Þ�; (A2)

Cp ¼ 2m2
sð1� xÞ½2Mmqð�1þ 2xð2þ 	ÞÞ

þ Rgðm2
s þ 6 ~p2

Tð2þ 	Þ þm2
qð3þ 2	ÞÞ

þM2ð�2þ 4xð2þ 	Þ
þ Rgð1� 2xð2� xÞð2þ 	ÞÞÞ�; (A3)

Dp ¼ 2m2
sð1� xÞ½2Mmqð�1þ 2xð2þ 	ÞÞ

þ Rgðm2
s þ 2 ~p2

Tð2þ 	Þ þm2
qð3þ 2	ÞÞ

þM2ð�2þ 4xð2þ 	Þ
þ Rgð1� 2xð2� xÞð2þ 	ÞÞÞ�; (A4)

Ep ¼ 0; (A5)

Al ¼ �Rgð3þ 2	Þ
2M

½Rgmqðm2
s � ~p2

TÞ
þM2mqð2� RgÞð1� xÞ2 þ xð1� xÞ2RgM3

þMðð2� RgÞxm2
s � ~p2

Tð2� xRgÞÞ�; (A6)

Bl ¼ � Rg
2M

�
ð3þ 2	Þ

�
M2mqð2� RgÞð1� xÞ2

þ xð1� xÞ2RgM3 þmqRg

�
� ~p2

T þm2
s

7þ 4	

3þ 2	

��

þM½� ~p2
Tð2� xRgÞð3þ 2	Þ þm2

sð4ð2þ 	Þ
þ xð6� 7Rg þ 4	ð1� RgÞÞÞ�

�
; (A7)
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Cl ¼ � 1

2M
½ð1� xÞ3ð3þ 2	ÞM4mqð�4þ ð4� RgÞð1� xÞRgÞ � ð1� xÞ3xð3þ 2	ÞM5Rgð2� ð1� xÞRgÞ

þmqR
2
gð8m2

s ~p
2
Tð2þ 	Þ þ ðm2

s � ~p2
TÞðm2

s þ ~p2
TÞð3þ 2	ÞÞ þMRgðxm4

sð2� RgÞð3þ 2	Þ
� ~p4

Tð2� xRgÞð3þ 2	Þ � 2m2
s ~p

2
Tð�17þ xþ 8xRg � 8	þ 4xRg	Þ þ 2m2

qð1� xÞðm2
s þ ð3þ 2	Þ ~p2

TÞÞ
þ 2ð1� xÞM2mqð ~p2

Tð3þ 2	Þð2þ ð1� xÞRgð2� RgÞÞ þm2
sð4ð2þ 	Þ � xð6þ 4	ÞÞÞ

þ 2ð1� xÞM3ð�m2
qð2� RgÞð1� xÞ2ð3þ 2	Þ þ ~p2

Tð2� Rg þ xð1� xÞR2
gÞð3þ 2	Þ

þ xm2
sð2þ Rgð6� 7xþ 4	ð1� xÞÞÞÞ�; (A8)

Dl ¼ m2
s

M
½�mqR

2
gðm2

s þ ~p2
TÞ þ ð1� xÞ2M2mqRgð2� RgÞ þM3ð1� xÞ2ðxR2

g þ 4ð2þ 	Þ � 2Rgð1þ xÞð2þ 	ÞÞ
þMRgðm2

sð2	� xð2� Rg þ 2	ÞÞ þ ~p2
Tðxð4þ Rg þ 2	Þ � 2ð3þ 	ÞÞÞ�; (A9)

El ¼ m2
s

M
½�mqR

2
gð ~p2

T þm2
sÞ2 þM4mqð1� xÞ3ð�4þ ð1� xÞð4� RgÞRg þ 8xð2þ 	ÞÞ � xð1� xÞ3M5Rgð2� ð1� xÞRg

� 4xð2þ 	ÞÞ � 2M2mqð1� xÞðm2
sð4þ ð1� xÞð2� RgÞRg � 2xð3þ 2	ÞÞ þ ~p2

Tð�2� ð1� xÞð2� RgÞRgÞ
þ 4xð2þ 	ÞÞÞ þMRgð�xð2� RgÞm4

s þ 2m2
s ~p

2
Tð2	� 1� xð1� Rg þ 2	ÞÞ þ 2m2

qð1� xÞðm2
sð1þ 2	Þ

� ~p2
Tð3þ 2	ÞÞ þ ~p4

Tðxð8þ Rg þ 4	Þ � 2ð5þ 2	ÞÞÞ � 2ð1� xÞM3ð�m2
qð1� xÞ2ð2� RgÞð3þ 2	Þ

þ xm2
sð6� 8xþ Rgð�2þ Rg þ 3x� xRgÞ � 2x	ð2� RgÞÞ þ ~p2

Tð�xð1� xÞR2
g

þ Rgð5þ 2	� 4xð2þ 	ÞÞ þ 2ð�5� 2	þ 4xð2þ 	ÞÞÞÞ�; (A10)

Alp ¼ Blp ¼ �4Rgm
2
sð1� xÞð2þ 	Þ; (A11)

Elp ¼ 4ð1� xÞm2
sð2Mmqð1� xÞð2þ 	Þ

þM2ð1� xÞð2� Rgð1� xÞÞð2þ 	Þ
þ Rgð	m2

s � ~p2
Tð2þ 	ÞÞÞ: (A12)

APPENDIX B: AXIAL DIQUARK CONTRIBUTION
TO THE SIVERS FUNCTION

For the Sivers function the corresponding coefficients
read

ASiv
p ¼ �ð1� xÞð3þ 2	Þ

�
2Mmq þ ð2� RgÞM2 þ Rgm

2
q

þ Rgm
2
s

7þ 4	

3þ 2	

�
; (B1)

BSiv
p ¼ �ð1� xÞð3þ 2	Þ

�
2Mmq þ ð2� RgÞM2 þ Rgm

2
q

þ Rgm
2
s

11þ 6	

3þ 2	

�
; (B2)

CSiv
p ¼ �2ð1� xÞm2

s½2Mmqð�1þ 2xð2þ 	ÞÞ
þ Rgðm2

s þ 6 ~p2
Tð2þ 	Þ þm2

qð3þ 2	ÞÞ
þM2ð�2þ 4xð2þ 	Þ
þ Rgð1� 2xð2� xÞð2þ 	ÞÞÞ�; (B3)

DSiv
p ¼ �2ð1� xÞm2

s½2Mmqð�1þ 2xð2þ 	ÞÞ
þ Rgðm2

s þ 2 ~p2
Tð2þ 	Þ þm2

qð3þ 2	ÞÞ
þM2ð�2þ 4xð2þ 	Þ
þ Rgð1� 2xð2� xÞð2þ 	ÞÞÞ�; (B4)

ESiv
p ¼ 0; (B5)

ASiv
l ¼ 3þ 2	

2M
Rg½Rgmqðm2

s � ~p2
TÞ

þM2mqð2� RgÞð1� xÞ2 þ xð1� xÞ2RgM3

þMðxm2
sð2� RgÞ � ~p2

Tð2� xRgÞÞ�; (B6)

BSiv
l ¼ Rg

2M

�
ð3þ 2	ÞðM2mqð2� RgÞð1� xÞ2

þM3Rgxð1� xÞ2 þmqRg

�
� ~p2

T þm2
s

7þ 4	

3þ 2	

�

�M ~p2
Tð2� xRgÞÞ þMm2

sð4ð2þ 	Þ
þ xð6� 7Rg þ 4	ð1� RgÞÞÞ

�
; (B7)
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CSiv
l ¼ 1

2M
½�ð1� xÞ3M4mqð4� ð4� RgÞRgð1� xÞÞð3þ 2	Þ � xð1� xÞ3M5Rgð2� ð1� xÞRgÞð3þ 2	Þ

þmqR
2
gð8m2

s ~p
2
Tð2þ 	Þ þ ðm2

s � ~p2
TÞðm2

s þ ~p2
TÞð3þ 2	ÞÞ þMRgðxm4

sð2� RgÞð3þ 2	Þ
� ~p4

Tð2� xRgÞð3þ 2	Þ þ 2m2
s ~p

2
Tð17� x� 8xRg þ 8	� 4xRg	Þ þ 2m2

qð1� xÞðm2
s þ ~p2

Tð3þ 2	ÞÞÞ
� 2M2mqð1� xÞð� ~p2

Tð2þ ð2� RgÞRgð1� xÞÞð3þ 2	Þ �m2
sð4ð2þ 	Þ � xð6þ 4	ÞÞÞ

þ 2M3ð1� xÞð�m2
qð2� RgÞð1� xÞ2ð3þ 2	Þ þ ~p2

Tð2� Rg þ xð1� xÞR2
gÞð3þ 2	Þ

þ xm2
sð2þ Rgð6� 7xþ 4	ð1� xÞÞÞÞ�; (B8)

DSiv
l ¼ �m2

s

M
½�mqR

2
gðm2

s þ ~p2
TÞ þmqM

2ð1� xÞ2Rgð2� RgÞ þ ð1� xÞ2M3ðxR2
g þ 4ð2þ 	Þ � 2Rgð1þ xÞð2þ 	ÞÞ

þMRgðm2
sðxð�2þ Rg � 2	Þ þ 2	Þ þ ~p2

Tð�2ð3þ 	Þ þ xð4þ Rg þ 2	ÞÞÞ�; (B9)

ESiv
l ¼ �m2

s

M
½�mqðm2

s þ ~p2
TÞ2R2

g þM4mqð1� xÞ3ð�4þ ð4� RgÞRgð1� xÞ þ 8xð2þ 	ÞÞ
�M5Rgxð1� xÞ3ð2� ð1� xÞRg � 4xð2þ 	ÞÞ þ 2M2mqð1� xÞð ~p2

Tð2þ ð2� RgÞRgð1� xÞ � 4xð2þ 	ÞÞ
þm2

sð2xþ 4x	� ð2� RgÞRgð1� xÞÞÞ þMRrð�xm4
sð2� RgÞ þ 2m2

s ~p
2
Tð2	� 1� xð1� Rg þ 2	ÞÞ

þ 2m2
qð1� xÞðm2

sð1þ 2	Þ � ~p2
Tð3þ 2	ÞÞ þ ~p4

Tð�2ð5þ 2	Þ þ xð8þ Rg þ 4	ÞÞÞ
� 2M3ð1� xÞð�m2

qð2� RgÞð1� xÞ2ð3þ 2	Þ þ xm2
sð2� 4x� Rgð2� Rg � 3xþ xRgÞ

� 2ð2� RgÞx	Þ þ ~p2
Tð�xð1� xÞR2

g þ Rgð5þ 2	� 4xð2þ 	ÞÞ � 2ð5þ 2	� 4xð2þ 	ÞÞÞ�; (B10)

ASiv
lk ¼ BSiv

lk ¼ ESiv
lk ¼ 0: (B11)

APPENDIX C: R FUNCTIONS

The R functions appearing in the text are defined in the following. The R function for the unpolarized PDF f1 for an
axial-vector diquark reads

Rax
1 ðx; ~p2

T;Rg; fMgÞ (C1)

¼ M2½ð ~p2
TÞ2 þ 2ð1� xð1� xÞÞm2

s ~p
2
T þ x2m4

s þ 6xð1� xÞ2mqMm
2
s þ ð1� xÞ2M2ð ~p2

T þ 2x2m2
s þ ð1� xÞ2m2

qÞ
þm2

qð1� xÞ2ð ~p2
T þ 2m2

sÞ� þ Rg½M2ð�ð ~p2
TÞ2 � x2m4

s þ ð1� ð4� xÞxÞm2
s ~p

2
T � ð1� xÞ2m2

qð ~p2
T �m2

sÞ
�M2ð1� xÞ2ð ~p2

T � x2m2
s þ ð1� xÞ2m2

qÞ þmqMðxð ~p2
T þm2

sÞ2 þ 2xð1� xÞ2M2ð ~p2
T �m2

s þ xð1� xÞ4M2ÞÞ�
þ R2

g

�
1

4
ð ~p2

T þ ðms � ð1� xÞMÞ2Þð ~p2
T þ ðxM�mqÞ2Þð ~p2

T þ ðms þ ð1� xÞMÞ2Þ
�
: (C2)

The corresponding R function for h?;ax1L reads

R?;ax
1L ðx; ~p2

T ;Rg; fMgÞ (C3)

¼ �mqR
2
gðm2

s þ ~p2
TÞ2 þ 2mqM

2ð1� xÞð ~p2
T½2þ Rgð1� xÞð2� RgÞ þm2

s½2ð2� xÞ � Rgð1� xÞð2� RgÞ�Þ
�M4mqð1� xÞ3½4� ð4� RgÞRgð1� xÞ� � xð1� xÞ3M5Rgð2� ð1� xÞRgÞ þMRgðm2

s þ ~p2
TÞ½2ð1� xÞm2

q

� xm2
sð2� RgÞ � ~p2

Tð2� xRgÞ� þ 2ð1� xÞM3ð�m2
qð1� xÞ2ð2� RgÞ þ xm2

sð2þ Rgð2� ð1� xÞRg � 3xÞÞ
þ ~p2

Tð2� Rg þ xð1� xÞR2
gÞ: (C4)

The R function for the T-odd functions h?1 and f?1T is more complicated and contains incomplete Gamma functions (see
text) with a 
 ~b ~m2

�, c 
 ~bð ~p2
T þ ~m2

�Þ, d 
 ~b ~p2
T ,
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R?;ax
1 ðx; ~p2

T ;Rg; 	;
~b;�; fMgÞ (C5)

¼ R?;ax
1T ðx; ~p2

T ;Rg; 	;
~b;�; fMgÞ

¼ ðAp � 2Al þ BlÞ
�
�~bea

�
1þ a

2

�
�ð0; aÞ þ

~b

2

1þ a

a

�
þ ð ~p2

T½Ap � Al � 2ðBp � BlÞ� þ Cp � ClÞ
�~b2
2
ea�ð0; aÞ

þ ~b2
1� a

2a2

�
þ Alp

2 ~p2
T

��
1þ 2aþ a2

2

�
eað�ð0; aÞ � �ð0; cÞÞ � 3þ a

2
� e�d

a2ð1� cÞ � 4ac

2c2

�

þ
�
�Alp

2
� Dl

~p2
T

þ Elp

2 ~p2
T

��
�~bea

�
1þ a

2

�
ð�ð0; aÞ � �ð0; cÞÞ þ

~b

2

1þ a

a
�

~b

2c2
e�dð2c� að1� cÞÞ

�

þ
�
�2ðDp �DlÞ � El

~p2
T

��~b2
2
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