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We calculate the next-to-next-to-leading orderOð�4
s Þ one-loop squared corrections to the production of

heavy quark pairs in quark-antiquark annihilations. These are part of the next-to-next-to-leading order

Oð�4
sÞ radiative QCD corrections to this process. Our results, with the full mass dependence retained, are

presented in a closed and very compact form, in the dimensional regularization scheme. We have found

very intriguing factorization properties for the finite part of the amplitudes.
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I. INTRODUCTION

There was recently much activity in the phenomenology
of hadronic heavy quark pair production in connection with
the Tevatron and the CERN Large Hadron Collider (LHC)
which will have its startup this year. There will be much
experimental effort dedicated to the discovery of the Higgs
boson. There will also be studies of the copious production
of top quarks and other heavy particles, which also serve as
a background to Higgs boson searches as well as to pos-
sible new physics beyond the standard model. Therefore, it
is mandatory to reduce the theoretical uncertainty in phe-
nomenological calculations of heavy quark production
processes as much as possible.

Several years ago the next-to-next-to-leading order
(NNLO) contributions to hadron production were calcu-
lated by several groups in massless QCD (see e.g. [1] and
references therein). The completion of a similar program
for processes that involve massive quarks requires much
more dedication and work, since the inclusion of an addi-
tional mass scale dramatically complicates the whole
calculation.

Until very recently there was the belief that the next-to-
leading order (NLO) description of heavy charm and bot-
tom production in hadronic collisions considerably under-
estimates the experimental results. In recent, more refined
analyses [2–4] it was shown that a NLO analysis does in
fact properly describe the latest charm and bottom quark
production data [5]. The authors of [2–4] deal very differ-
ently with the problem of large mass logarithms which
constitute the central problem in the heavy quark phe-
nomenology. Data on top quark pair production also agree
with the NLO prediction within theoretical and experimen-
tal errors (see e.g. [6]). In all of these NLO calculations
there remains, among others, the problem that the renor-

malization and factorization scale dependence of the NLO
calculations render the theoretical results quite uncertain.
This calls for a NNLO calculation of heavy quark produc-
tion in hadronic collisions which is expected to consider-
ably reduce the scale dependence of the theoretical
prediction.
At the lower energies of Tevatron II, top quark pair

production is dominated by q �q annihilation (85%). The
remaining 15% come from gluon fusion. At the higher
energy LHC, gluon fusion dominates the production pro-
cess (90%) with 10% left for q �q annihilation (percentage
figures from [6]). This shows that both q �q annihilation and
gluon fusion have to be accounted for in the calculation of
top quark pair production.
In general, there are four classes of contributions that

need to be calculated for the NNLO corrections to the
hadronic production of heavy quark pairs. The first class
involves the pure two-loop contribution, which has to be
folded with the leading order (LO) Born term. The second
class of diagrams consists of the so-called one-loop
squared contributions (also called loop-by-loop contribu-
tions) arising from the product of one-loop virtual matrix
elements. This is the topic of the present paper. Further,
there are the one-loop gluon emission contributions that
are folded with the one-gluon emission graphs. Finally,
there are the squared two-gluon emission contributions that
are purely of tree-type.
Bits and pieces of the NNLO calculation are now being

assembled. The recent two-loop calculation of the heavy
quark vertex form factor [7] can be used as one of the many
building blocks in the first class of processes. In this
context we would also like to mention the recent work
[8] on the NNLO calculation of two-loop virtual ampli-
tudes performed in the domain of high energy asymptotics,
where the heavy quark mass is small compared to the other
large scales. In this calculation mass power corrections are
left out, and only large mass logarithms and finite terms
associated with them are retained. The authors of the
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present paper have been involved in a systematic effort to
calculate all the contributions from the second class of
processes, the one-loop squared contributions. We shall
describe the present status of this program in the next
paragraph. In the work [9] the full, exact NLO corrections
to t�tþ jet are presented. When integrating over the full
phase space of the jet (or gluon), this calculation can be
turned into a NNLO calculation of heavy hadron produc-
tion of the third class. To our knowledge there does not
exist a complete calculation of the fourth class of pro-
cesses, the squared two-gluon emission contributions.

Let us briefly describe the status of our effort to calculate
the one-loop squared contributions for the second class of
processes. The highest singularity in the one-loop ampli-
tudes from infrared (IR) and mass singularities (M) is, in
general, proportional to ð1="2Þ. This in turn implies that the
Laurent series expansion of the one-loop amplitudes has to
be taken up to Oð"2Þ when calculating the one-loop
squared contributions. In fact, it is the Oð"2Þ terms in the
Laurent series expansion that really complicate things [10]
since the Oð"2Þ contributions in the one-loop amplitudes
involve a multitude of multiple polylogarithms of maximal
weight and depth 4 [11]. All scalar master integrals needed
in this calculation have been assembled in [10,11].
Reference [10] gives the results in terms of so-called L
functions, which can be written as one-dimensional inte-
gral representations involving products of log and dilog
functions, while [11] gives the results in terms of multiple
polylogarithms. The divergent and finite terms of the one-
loop amplitude q �q ! Q �Q were given in [12]. The remain-
ing Oð"Þ and Oð"2Þ amplitudes have been written down in
[13]. Squaring the one-loop amplitudes leads to the results
of the present paper. In a recent work [14] we have pre-
sented closed-form, one-loop squared results for heavy
quark production in the fusion of real photons.

In this paper we report on a calculation of the NNLO
one-loop squared matrix elements for the process q �q !
Q �Q. The calculation is carried out in the dimensional
regularization scheme [15] with space-time dimension n ¼
4� 2". In sequels to this paper we shall present results on
the square of hadroproduction amplitudes originating from
the gluon fusion subprocess gg ! Q �Q and photoproduc-
tion amplitudes �g ! Q �Q.

In our presentation we shall make use of our notation for
the coefficient functions of the relevant scalar one-loop
master integrals calculated up toOð"2Þ in [10]. For the case
of gluon-gluon and quark-antiquark collisions, one needs
all the scalar integrals derived in [10], e.g. the one scalar
one-point function A; the five scalar two-point functions
B1, B2, B3, B4, and B5; the six scalar three-point functions
C1, C2, C3, C4, C5, and C6; and the three scalar four-point
functions D1, D2, and D3. Taking the complex scalar four-
point function D2 as an example, we define successive

coefficient functions DðjÞ
2 for the Laurent series expansion

of D2. One has

D2 ¼ iC"ðm2Þ
�
1

"2
Dð�2Þ

2 þ 1

"
Dð�1Þ

2 þDð0Þ
2 þ "Dð1Þ

2

þ "2Dð2Þ
2 þOð"3Þ

�
; (1.1)

where C"ðm2Þ is defined by

C"ðm2Þ � �ð1þ "Þ
ð4�Þ2

�
4��2

m2

�
"
: (1.2)

We use this notation for both the real and the imaginary
parts of D2, i.e. for ReD2 and ImD2. Similar expansions
hold for the scalar one-point function A, the scalar two-
point functions Bi, the scalar three-point functions Ci, and
the remaining four-point functions Di. The coefficient
functions of the various Laurent series expansions were
given in [10] in the form of so-called L functions, and in
[11] in terms of multiple polylogarithms of maximal
weight and depth 4. It is then a matter of choice which of
the two representations are used for the numerical evalu-
ation. The numerical evaluation of the L functions in terms
of their one-dimensional integral representations is quite
straightforward using conventional integration routines,
while there exists a very efficient algorithm to numerically
evaluate multiple polylogarithms [16].
Let us summarize the main features of the scalar master

integrals. The master integrals A, B1, B3, B4, C2, C3, and
D3 are purely real, whereas B2, B5, C1, C4, C5, C6,D1, and
D2 are truly complex. From the form ðAB� þ BA�Þ ¼
2ðReAReBþ ImA ImBÞ it is clear that the imaginary parts
of the master integrals must be taken into account in the
one-loop squared contribution. The master integrals B2,
B5, C1, C4, C5, and C6 are ðt $ uÞ symmetric, where the
kinematic variables t and u are defined in Sec. II.
The paper is organized as follows. Section II contains an

outline of our general approach and discusses renormal-
ization procedures. Section III presents NLO results for the
quark-antiquark annihilation subprocess. In Sec. IV one
finds a discussion of the singularity structure of the
NNLO squared matrix element for the quark-antiquark
annihilation subprocess. In Sec. V we discuss the structure
of the finite part of our result. Our results are summarized
in Sec. VI. In the Appendix we write down expressions for
the building blocks of that part of the finite result that
originates from the square of box diagrams.

II. NOTATION

The heavy flavor hadroproduction proceeds through two
partonic subprocesses: gluon fusion and light quark-
antiquark annihilation. The first subprocess is the most
challenging one in QCD from a technical point of view.
It has three production topologies already at the Born level.
Here we consider the second subprocess, where there is
only one topology at the Born term level (see Fig. 1).
Irrespective of the partons involved, the general kinematics
is, of course, the same in both processes. In particular, for
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the quark-antiquark annihilation, Fig. 1, we have

qðp1Þ þ �qðp2Þ ! Qðp3Þ þ �Qðp4Þ: (2.1)

The momenta directions correspond to the physical
configuration; e.g. p1 and p2 are ingoing whereas p3 and
p4 are outgoing. With m being the heavy quark mass, we
define

s � ðp1 þ p2Þ2; t � T �m2 � ðp1 � p3Þ2 �m2;

u � U�m2 � ðp2 � p3Þ2 �m2; (2.2)

so that the energy-momentum conservation reads sþ tþ
u ¼ 0.

We also introduce the overall factor

C ¼ ðg4sC"ðm2ÞÞ2; (2.3)

where gs is the renormalized strong coupling constant and
C"ðm2Þ is defined in (1.2).

As shown e.g. in [12,13] the self-energy and vertex
diagrams contain ultraviolet (UV) and infrared and col-
linear (IR/M) poles even after heavy mass renormalization.
The UV poles need to be regularized.

Our renormalization procedure is carried out as follows:

when dealing with massless quarks we work in the MS
scheme, while heavy quarks are renormalized in the on-
shell scheme, where the heavy quark mass is the pole mass.
For completeness we list the set of one-loop renormaliza-
tion constants that we have used:

Z1 ¼ 1þ g2s
"

2

3
fðNC � nlÞC"ð�2Þ � C"ðm2Þg;

Zm ¼ 1� g2sCFC"ðm2Þ 3� 2"

"ð1� 2"Þ ; Z2 ¼ Zm;

Z1F ¼ Z2 � g2s
"
NCC"ð�2Þ; Z1f ¼ 1� g2s

"
NCC"ð�2Þ;

Z3 ¼ 1þ g2s
"

��
5

3
NC � 2

3
nl

�
C"ð�2Þ � 2

3
C"ðm2Þ

�

¼ 1þ g2s
"

�
ð�0 � 2NCÞC"ð�2Þ � 2

3
C"ðm2Þg;

Zg ¼ 1� g2s
"

�
�0

2
C"ð�2Þ � 1

3
C"ðm2Þ

�
; (2.4)

with �0 ¼ ð11NC � 2nlÞ=3. nl is the number of light
quarks, CF ¼ 4=3, and NC ¼ 3 is the number of colors.
The arbitrary mass scale � is the scale at which the
renormalization is carried out. The above renormalization
constants are as follows: Z1 for the three-gluon vertex, Zm

for the heavy quark mass, Z2 for the heavy quark wave
function, Z1F for the ðQ �QgÞ vertex, Z1f for the ðq �qgÞ
vertex, Z3 for the gluon wave function, and Zg for the

strong coupling constant �s. Note that Z1 is not actually
needed in the present application, but we have presented it
for completeness. For the massless quarks there is no mass
and wave function renormalization.
The above coefficients (except for Zg) are needed if one

renormalizes graph by graph. However, one could choose
another route. From the field-theoretical point of view, the
renormalized matrix element is obtained from the unrenor-
malized one by

Mren ¼
Y
n

Z�1=2
fn

Mbareðgbare ! Zggs; mbare ! ZmmrÞ;

(2.5)

where Zfn are the wave function renormalization constants

for all the external on-shell particles under consideration. If
one formally expands Mbare (e.g. Mbare ¼ M0 þ g2sM1 þ
. . . ) and the renormalization parameters Zfn as a series of

powers in the coupling constant to the requisite order, one
arrives at the one-loop order result

M1;ren ¼
Y
n

Z�1=2
fn;1

M0ðgbare ! Zggs; mbare ! ZmmrÞ

þ g2sM1ðgs;mrÞ; (2.6)

where now the Zfn;1 correspond to the one-loop renormal-

ization constants for the external particles. In our case one
has Zf1;1 ¼ Zf2;1 ¼ 1 and Zf3;1 ¼ Zf4;1 ¼ Z2. Thus, one

could apply inverse wave function renormalization for
external legs and then replace the bare coupling constant
gbare ! Zggs (as the mass parameter m does not explicitly

enter the leading order Born term matrix element, it is not
renormalized at that order). We have verified that, in both
ways, we arrive at the same renormalized result.
In order to fix our normalization we write down the

differential cross section for q �q ! Q �Q in terms of the
squared amplitudes jMj2. One has

d�q �q!Q �Q ¼ dðPSÞ2
2s

1

4N2
C

jMj2
q �q!Q �Q

; (2.7)

where the n-dimensional two-body phase space is given by

dðPSÞ2 ¼ m�2"

8�s

ð4�Þ"
�ð1� "Þ

�
tu� sm2

sm2

��"
�ðsþ tþ uÞdtdu

(2.8)

p1

p2

p3

p4

q

q

Q

Q

FIG. 1. The lowest order Feynman diagram representing light
quark-antiquark annihilation. Normal solid lines represent the
light quarks, the curly line represents the gluons, and the thick
solid lines correspond to the heavy quarks.
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and we explicitly show flux ð4p1p2Þ�1 ¼ ð2sÞ�1, initial
quark and antiquark spin ð2sf þ 1Þ�2 ¼ 1=4, and color

N�2
C averaging factors. Then, at the leading Born term

order for q �q ! Q �Q, we have

1

g4s
jMj2LO ¼ 16

�
t2 þ u2

s2
þ 2

m2

s
� "

�
� B: (2.9)

III. NEXT-TO-LEADING ORDER RESULT

Folding the one-loop matrix elements depicted in Fig. 2
with the LO Born term, Fig. 1, one obtains the virtual part
of the NLO result. Although NLO virtual corrections to
heavy flavor hadroproduction were calculated before for
the q �q ! Q �Q case, one cannot find explicit results for this
subprocess in the literature. We have therefore recalculated
the virtual NLO contribution to q �q annihilation. In fact, we
have calculated the virtual NLO results up to Oð"2Þ. As it
turns out, the expressions for the NLO virtual "1 and "2

contributions considerably simplify the presentation of the
corresponding NNLO results, in as much as they appear as
important building blocks in the NNLO results.

First, we write down a few abbreviations that we shall
use throughout the paper:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

q
; D ¼ m2s� tu; z2 ¼ sþ 2t;

z2u ¼ sþ 2u; zt ¼ 2m2 þ t; zu ¼ 2m2 þ u:

(3.1)

Note that D is not the space-time dimension. We further
define the functions:

FðjÞ
1 ¼ 2

9
ðnl þ 1Þ þ 28NC

9
�NC

�2

�BðjÞ
2

�
3CF � 3

2
NC þ 1��2

3

�

�BðjÞ
5

�
3CF � 5NC

3
þ 2nl

3
� NC

2�2

�

þCðjÞ
1 NC

m2

�2
� fCðjÞ

4 s�CðjÞ
6 ð2m2 � sÞg

� ð2CF �NCÞ; (3.2)

FðjÞ
2 ¼ 2ðs�2ð2CF�NCÞ�12m2NCÞ�BðjÞ

2 s�2ð2CF�NCÞ
þBðjÞ

5 ð8m2þ sÞNCþCðjÞ
1 6m2sNC; (3.3)

a b c

d e f

g h i

j k

FIG. 2. One-loop Feynman diagrams contributing to the subprocess q �q ! Q �Q. The loop with the dotted line in (g) represents the
gluon, ghost, and light and heavy quarks.

J. G. KÖRNER, Z. MEREBASHVILI, AND M. ROGAL PHYSICAL REVIEW D 77, 094011 (2008)

094011-4



FðjÞ
3 ¼ 56

3

�
2

�
8m2

�
1

t
� z2

s2�2

�
� BðjÞ

1

2

t

�
m2 þD

s

�
� BðjÞ

5

2zu
s�2

þ CðjÞ
1

�
4t2

s
� z2

8m4 � s2

s2�2

�
� CðjÞ

3 2t

�
1þ 2

T

s

�

þ ðCðjÞ
4 �DðjÞ

2 tÞ 1
s
ð2Dþ s2 þ 2t2Þ

�
þ "

�
�8m2

�
3

t
� 2z2

s2�2

�
þ BðjÞ

1 2

�
3zt
t
þ 2t

s

�
� BðjÞ

5 2

�
2þ z2

s�2

�

� CðjÞ
1

�
8m2 þ 4sþ 8m2tþ s2

s�2
þ 2

m2s2 þ 2t3

D

�
þ CðjÞ

3 2
t

s

�
s� 4t� 2st

s� t

D

�

� ðCðjÞ
4 �DðjÞ

2 tÞ
�
3sþ 4tþ 2st

s� t

D

��
þ "2

3s2

D

�
CðjÞ
1 zt þ CðjÞ

3

2t2

s
þ CðjÞ

4 t�DðjÞ
2 t2

��
; (3.4)

FðjÞ
4 ¼ 16

3

�
2

�
8m2

�
1

u
� z2u

s2�2

�
� BðjÞ

1u

2

u

�
m2 þD

s

�
� BðjÞ

5

2zt
s�2

þ CðjÞ
1

�
4u2

s
� z2u

8m4 � s2

s2�2

�
� CðjÞ

3u2u

�
1þ 2

U

s

�

þ ðCðjÞ
4 �DðjÞ

2uuÞ
1

s
ð2Dþ s2 þ 2u2Þ

�
þ "

�
�8m2

�
1

u
þ 2z2u

s2�2

�
þ BðjÞ

1u2

�
zu
u
� 2u

s

�
� BðjÞ

5 2

�
1� 2zu

s�2

�

þ CðjÞ
1

�
4zu þ 8m2uþ s2

s�2
þ 2m2s

z2u
D

�
þ CðjÞ

3u2
u

s

�
3sþ 4u� 2

stu

D

�
� ðCðjÞ

4 �DðjÞ
2uuÞ

�
2
m2s2

D
� s� 4u

��

� "2
3s2

D

�
CðjÞ
1 zu þ CðjÞ

3u

2u2

s
þ CðjÞ

4 u�DðjÞ
2uu

2

��
: (3.5)

The additional subscript ‘‘ u’’ in some of the scalar

coefficient functions in the expression for FðjÞ
4 (such as

BðjÞ
1u) is to be understood as an operational definition pre-

scribing a ðt $ uÞ interchange in the argument of that

function, i.e. Bð0Þ
1u ¼ Bð0Þ

1 jt$u, etc. Note that Bj
5, C

j
1, and

Cj
4 are intrinsically ðt $ uÞ symmetric (see [10]). Taking

the ðt $ uÞ symmetry of Bj
5, C

j
1, and Cj

4 into account, one

notes a corresponding ðt $ uÞ symmetry for the first and

third square brackets in FðjÞ
3 and FðjÞ

4 .

Before presenting our result for the NLO matrix ele-
ment, we would like to comment on its color structure.
First note that all the vertex and self-energy (VSE) graphs
are proportional to the LO Born term color matrices (see
Refs. [12,13]). Both the parallel ladder box, Fig. 2(a), and
the crossed ladder box, Fig. 2(b), have their own color
structures. Altogether one obtains the following three color
structures,

TrðTaTbÞTrðTaTbÞ ¼ dA
4

) 2;

TrðTaTbTcÞTrðTbTaTcÞ ¼ dA
8

�
NC � 2

NC

�
) 7

3
;

TrðTaTbTcÞTrðTaTbTcÞ ¼ � dA
4

1

NC

) � 2

3
;

(3.6)

from folding the Born term with the VSE graphs, the
parallel ladder box, Fig. 2(a), and the crossed ladder box,
Fig. 2(b), in that order. The common factor dA ¼ N2

C �
1 ¼ 8 is the dimension of the adjoint representation of the
color group SUðNCÞ. We present our NLO result separately
for these three color structures.

At NLO the final spin and color summed matrix element
can be written down as a sum of three terms:

1

g2s
ffiffiffi
C

p jMj2Loop�Born ¼ Re

�
1

"2
Wð�2Þð"Þ þ 1

"
Wð�1Þð"Þ

þWð0Þð"Þ
�
; (3.7)

where C has been defined in (2.3). The notation
jMj2Loop�Born means that one is retaining only the Oð�3

sÞ
part of jMj2.
The first two coefficient functions in (3.7) have a rather

simple structure:

Wð�2Þð"Þ ¼ �2Bð2CF � NC þ 3Þ;
Wð�1Þð"Þ ¼ �2B

�
5CF½Cð�1Þ

4 s� Cð�1Þ
6 ð2m2 � sÞ�

� ð2CF � NCÞ � 2

3

�
7 ln

��t

m2

�
þ 2 ln

��u

m2

���
;

(3.8)

where B is the Born term defined in Eq. (2.9). One should
keep in mind that the overall Born term factor B above
contains a term multiplied by ". Therefore, if the expres-

sion for B, Eq. (2.9), is substituted in Wð�2Þ and Wð�1Þ, we
will obtain ð"Þ�1 and finite terms from the first two terms
of Eq. (3.7).
The third term in Eq. (3.7) reads

Wð0Þð"Þ ¼ Fð0Þ
NLO; (3.9)

where

FðjÞ
NLO ¼ WðjÞ

1 þWðjÞ
2 þWðjÞ

3 ; (3.10)

and where
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WðjÞ
1 ¼ 2BFðjÞ

1 þ 128
m2D

s4�4
FðjÞ
2 ;

WðjÞ
2 ¼ �2B�0ln

1þj

�
m2

�2

�
;

WðjÞ
3 ¼ FðjÞ

3 þ FðjÞ
4 :

(3.11)

Note that the first term in (3.11) originates entirely from the
sum of self-energy and vertex diagrams, while the second

term is due to renormalization. The terms FðjÞ
3 and FðjÞ

4 in

WðjÞ
3 represent the contributions from boxes a and b,

respectively.
The massless limit of our NLO result, Eq. (3.7), without

the Oð"Þ and Oð"2Þ order terms was compared (including
also the imaginary part) with corresponding results ob-
tained from the methods developed in Ref. [17].1 There
was agreement [18]. This serves as a rigorous check on our
singularity structure as well as on all the mass logarithms
of our original NLO matrix element [12].

IV. SINGULARITY STRUCTURE OF THE NNLO
SQUARED AMPLITUDE

The NNLO final spin and color summed squared matrix
element can be written down as a sum of five terms:

1

C
jMj2Loop�Loop ¼ Re

�
1

"4
Vð�4Þð"Þ þ 1

"3
Vð�3Þð"Þ

þ 1

"2
Vð�2Þð"Þ þ 1

"
Vð�1Þð"Þ þ Vð0Þð"Þ

�
;

(4.1)

where C has been defined in (2.3). Note Eq. (4.1) is not a
Laurent series expansion in " since the coefficient func-

tions VðmÞð"Þ are functions of " as explicitly annotated in
Eq. (4.1). It is nevertheless useful to write the NNLO one-
loop squared result in the form of Eq. (4.1) in order to
exhibit the explicit " structures. All five coefficient func-

tions VðmÞð"Þ are bilinear forms in the coefficient functions
that define the Laurent series expansion of the scalar
master integrals (1.1). Some of these coefficient functions
are zero and some of them are just numbers or simple
logarithms. In the latter case we will substitute these num-

bers or logarithms for the coefficient functions VðmÞ in the
five terms above. This will be done for the coefficient

functions AðmÞ, Bð�1Þ
1 , Bð�1Þ

1u , Bð�1Þ
5 , Cð�1Þ

3 , and Cð�1Þ
3u .

We mention that in the course of our work we took full
advantage of the fact that in [12] all the poles in the matrix
element for the q �q ! Q �Q subprocess are multiplied only
by the leading order Born Dirac structure to cast the
singular terms of the squared matrix element into an ap-
propriately factorized form.

Before proceeding further, we present three more color
structures appearing in the NNLO calculation in addition
to the ones presented in Eq. (3.6):

TrðTaTbTb0Ta0 ÞTrðTbTaTa0Tb0 Þ¼dA
16

�
N2

C�3þ 3

N2
C

�
)19

6
;

TrðTaTbTb0Ta0 ÞTrðTaTbTb0Ta0 Þ¼dA
16

�
1þ 3

N2
C

�
)2

3
;

TrðTaTbTb0Ta0 ÞTrðTbTaTb0Ta0 Þ¼�dA
16

�
1� 3

N2
C

�
)�1

3
:

(4.2)

The above three color structures arise from folding box a
with box a, box b with box b, as well as the interference of
the two boxes, respectively.
Let us first introduce a notation which will help us to

present the coefficients of the singular terms in the most
concise fashion:

L1 ¼ ð2CF � NCÞðCð�1Þ
4 s� Cð�1Þ

6 ð2m2 � sÞÞ;

L2 ¼ 15CF � 14 ln

��t

m2

�
� 4 ln

��u

m2

�
;

L3 ¼ 35CF � 38 ln

��t

m2

�
� 4 ln

��u

m2

�
;

L4 ¼ 5CF � 2 ln

��t

m2

�
� 4 ln

��u

m2

�
:

(4.3)

The two most singular terms in (4.1) are proportional to
the Born term B defined in (2.9). One has

Vð�4Þð"Þ ¼ ð2CF � NC þ 3Þ2B;

Vð�3Þð"Þ ¼ 2ð2CF � NC þ 3ÞB
�
L1 þ L2

3

�
:

(4.4)

We also obtain

Vð�2Þð"Þ ¼ B

3

�
ð3L1 þ L2ÞðL1 þ 5CFÞ�

� 2 ln

��t

m2

�
ð7L1 þ L3Þ � 4 ln

��u

m2

�
ðL1 þ L4Þ

�

� ð2CF � NC þ 3ÞFð0Þ
NLO: (4.5)

The last term in Eq. (4.5) is obtained from folding the
Oð"�2Þ singular term of the matrix element with its finite
part, while the rest is obtained from folding the single
poles. Note that when one substitutes the Laurent expan-

sions for B and Fð0Þ
NLO, one gets additional 1=" poles and

finite terms in Eq. (4.5).
The structure of the last term in Eq. (4.1) is a little more

complicated. One has

Vð�1Þð"Þ ¼ �L�
1F

ð0Þ
NLO � L2

3
ðWð0Þ

1 þWð0Þ
2 Þ � L3

7
Fð0Þ
3

� L4F
ð0Þ
4 þ ð2CF � NC þ 3Þ½�Fð1Þ

NLO þ V 0�:
(4.6)

1The method of [17] can be considered to be a generalization
of the results of [22] to higher orders in perturbation theory.
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The terms multiplied by the Lm functions above are due to

folding the single pole terms in the original matrix element

with its finite Oð"0Þ part, while the last term is due to

interference Oð"�2Þ �Oð"Þ terms in the original matrix
element. This pole term is due to the Taylor expansion of
the original matrix element and cannot be deduced from

the knowledge of the LO terms alone. The function Fð1Þ
NLO is

defined in Eq. (3.10) and is nothing but the finite part of the
NLO term with indices of the coefficient functions of the
scalar master integrals and the power of the logarithm that
multiplies the �0 function shifted upward by 1. For the
remaining term V 0, one obtains

V0 ¼ �2B

�
�0

2
ln2

�
m2

�2

�
þ 8CF � NC

�2
� 2nl þ 2þ 28NC

27
þ Bð0Þ

2

2�2 � 18CF þ 9NC

9
þ Bð0Þ

5

2

9
ð5NC þ nl � 9CFÞ

�

� 128
m2D

s3�4
½2ð6�2CF � NCÞ � Bð0Þ

2 2�2ð2CF � NCÞ � Bð0Þ
5 2NC � Cð0Þ

1 sNC� � 56

3

�
2

�
8m2

�
1

t
� z2

s2�2

�

þ
�
2

s
þ s� t

D

�
ðCð0Þ

1 szt þ Cð0Þ
3 2t2 þ Cð0Þ

4 st�Dð0Þ
2 st2Þ

�
� "

�
8m2

�
3

t
� 2z2

s2�2

�
þ

�
8

s
þ 7s� 4t

D

�
ðCð0Þ

1 szt þ Cð0Þ
3 2t2

þ Cð0Þ
4 st�Dð0Þ

2 st2Þ
��

� 16

3

�
2

�
8m2 z2u

s2�2
þ Bð0Þ

1u2

�
2D

su
� 1

�
� Bð0Þ

5

2z2u
s�2

� Cð0Þ
1

�
m2

�
4þ sz2u

D

�
� 2zt

�2

�
�

�
z2u
s

� tu

D

�

� ðCð0Þ
3u2uþ Cð0Þ

4 s�Dð0Þ
2u suÞ

�
þ "

�
�8m2

�
1

u
þ 2z2u

s2�2

�
þ

�
8

s
þ 9sþ 4u

D

�
ðCð0Þ

1 szu þ Cð0Þ
3u2u

2 þ Cð0Þ
4 su�Dð0Þ

2u su
2Þ
��
:

(4.7)

When one substitutes the Laurent expansions for Fð0Þ
3 ,

Fð0Þ
4 , and Fð1Þ

NLO, one gets finite and Oð"Þ order terms in

Eq. (4.6). However, since we are only interested in the
Laurent series expansion up to the finite term, these Oð"Þ
contributions should be omitted.

V. STRUCTURE OF THE FINITE PART

In this section we present the finite part of our result. We
calculate the finite part in several pieces, e.g.

Vð0Þ ¼ Re½Vð0Þ
Bf1

þ Vð0Þ
Bf2

þ Vð0Þ
f0f0

�: (5.1)

The first two terms originate from the interference of the
Oð"�1Þ �Oð"Þ and Oð"�2Þ �Oð"2Þ pieces of the initial
matrix element. Each of them can be conveniently pre-
sented as a sum of five compact expressions:

Vð0Þ
Bf1

¼ G1 þG2 þG3 þG4 þG5; (5.2)

where

G1 ¼ �128m2DðL�
1 þ L2=3Þ½Fð1Þ

2 þ 12s�2CF � 2sNC � Bð0Þ
2 2s�2ð2CF � NCÞ � Bð0Þ

5 2sNC � Cð0Þ
1 s2NC�=ðs4�4Þ;

G2 ¼ �2BðL�
1 þ L2=3Þ½27Fð1Þ

1 � 2nl � 2� 28NC þ 216CF � 27NC=�
2 � Bð0Þ

2 3ð18CF � 9NC � 2�2Þ
� Bð0Þ

5 6ð9CF � 5NC � nlÞ�=27;

G3 ¼ �0Bln
2

�
m2

�2

�
ðL1 þ L2=3Þ;

G4 ¼ �16ð7L�
1 þ L3Þ½Fð1Þ

3 3=112þ 8m2ð1=t� z2=ðs2�2ÞÞ þ ðCð0Þ
1 zt þ Cð0Þ

3 2t2=sþ Cð0Þ
4 t�Dð0Þ

2 t2Þð2Dþ s2 � stÞ=D�=3;
G5 ¼ �32ðL�

1 þ L4Þ½Fð1Þ
4 3=32þ 8m2z2u=ðs2�2Þ þ Bð0Þ

1u2ð2D=ðsuÞ � 1Þ � Bð0Þ
5 2z2u=ðs�2Þ � Cð0Þ

1 ðm2sz2u=D

� 2ð8m4 þ stÞ=ðs�2ÞÞ � ðCð0Þ
3u2u=sþ Cð0Þ

4 �Dð0Þ
2uuÞðz2u � stu=DÞ�=3:

(5.3)

The first three terms above are due to the VSE contributions, and the last two terms are due to the two box diagrams.
Similarly, for the second term in Eq. (5.1) we write

Vð0Þ
Bf2

¼ H1 þH2 þH3 þH4 þH5; (5.4)
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with

H1 ¼ �128ð2CF � NC þ 3ÞDm2½Fð2Þ
2 þ 4s�2ð7CF þ NCÞ � 10sNC � Bð1Þ

2 2s�2ð2CF � NCÞ
� Bð1Þ

5 2sNC � Cð1Þ
1 s2NC�=ðs4�4Þ;

H2 ¼ �ð2CF � NC þ 3ÞB½Fð2Þ
1 162þ 2ð1296CF þ 76NC � 10nl � 10� 243NC=�

2Þ þ Bð0Þ
2 24�2

� Bð1Þ
2 18ð18CF � 9NC � 2�2Þ þ Bð0Þ

5 12ðNC þ 2nlÞ � Bð1Þ
5 36ð9CF � 5NC � nlÞ�=81;

H3 ¼ ð2CF � NC þ 3ÞB�0ln
3

�
m2

�2

�
=3;

H4 ¼ �112ð2CF � NC þ 3Þ½Fð2Þ
3 3=112þ 24m2ð1=t� z2=ðs2�2ÞÞ þ ðztð2Cð0Þ

1 þ Cð1Þ
1 Þ

þ 2t2ð2Cð0Þ
3 þ Cð1Þ

3 Þ=sþ tð2Cð0Þ
4 þ Cð1Þ

4 Þ � t2ð2Dð0Þ
2 þDð1Þ

2 ÞÞð2Dþ s2 � stÞ=D�=3;
H5 ¼ �32ð2CF � NC þ 3Þ½Fð2Þ

4 3=32þ 8m2ð1=uþ z2u=ðs2�2ÞÞ þ Bð1Þ
1u2ð2D=ðsuÞ � 1Þ � Bð1Þ

5 2z2u=ðs�2Þ
� ðCð0Þ

1 zu þ Cð0Þ
3u2u

2=sþ Cð0Þ
4 u�Dð0Þ

2uu
2Þð4Dþ 3s2 þ 2suÞ=D� Cð1Þ

1 ðm2sz2u=D� 2ð8m4 þ stÞ=ðs�2ÞÞ
� ðCð1Þ

3u2u=sþ Cð1Þ
4 �Dð1Þ

2uuÞðz2uD� stuÞ=D�=3:

(5.5)

Note again that the Oð"Þ and Oð"2Þ order terms in the

above expressions for Vð0Þ
Bf1

and Vð0Þ
Bf2

can be disregarded.

We also mention that the scalar coefficient functions with
superscript ‘‘2’’ above involve multiple polylogarithms.

We emphasize that the factorized forms of all the ex-
pressions given in this paper hold only when one retains the
full " dependence in the Born and NLO terms.

The last term in Eq. (5.1) comes from the square of the
Oð"0Þ term of the matrix element. It can also be written as a
sum of five terms:

Vð0Þ
f0f0

¼ MVSE þMBVSE þMaa þMba þMbb: (5.6)

The first term is the square of the finite parts of virtual
and self-energy graphs; the second one is an interference of
the virtual and self-energy graphs with the two box dia-
grams. These two terms can be presented in a very compact
form:

MVSE ¼ Fð0Þ
1 ðWð0Þ

1 þWð0Þ
2 � BFð0Þ

1 Þ�

� jFð0Þ
2 j232m2D=ðs5�6Þ � �0 ln

�
m2

�2

�
ðWð0Þ

2 =2

þWð0Þ
1 � 2BFð0Þ

1 Þ; (5.7)

MBVSE ¼ 7Pþ2Pjt$uþ
�
Fð0Þ
1 ��0 ln

�
m2

�2

��
ðFð0Þ

3 þFð0Þ
4 Þ�;
(5.8)

with

P ¼ 64m2Fð0Þ�
2 ½2D=t� Bð0Þ

1 D=tþ Cð0Þ
1 Tz2 � Cð0Þ

3 2tT

þ ðCð0Þ
4 �Dð0Þ

2 tÞðDþ t2Þ�=ð3s3�4Þ: (5.9)

When writing out Pjt$u one has to do the t $ u operation

in all the terms in the function P, i.e. for z, t, Fð0Þ
2 , Bð0Þ

1 ,Cð0Þ
3 ,

T, and Dð0Þ
2 (Cð0Þ

1 and Cð0Þ
4 are t $ u symmetric).

Finally, we are left with the last three terms in Eq. (5.6),
which are the longest terms in our NNLO result. However,
to our surprise, we were able to discover nice factorization
properties of the square of the two box diagrams. This part
of the cross section can be put together with the help of
several building blocks; e.g. each of the last three terms in
Eq. (5.6) can be written as a sum of bilinear products. Each
of the factors in the bilinear products are linear combina-
tions of scalar integral coefficient functions multiplied by
some combination of kinematic variables. To be more
specific, we write

Maa ¼ 76

3
½s�1Q1Q

�
8 þ 4m2Q2Q

�
3 þQ4Q

�
10 þm2Q5Q

�
11

� 2s�1Q6Q
�
12 þQ7Q

�
13�;

Mbb ¼ 4

19
Maajt$u;

Mba ¼ 16

3
½s�1Q8Q

�
14 þ 4m2Q9Q

�
15 þQ10Q

�
16

þ 2m2Q11Q
�
16 þ 2s�1Q12Q

�
17 þQ13Q

�
18�: (5.10)
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Explicit expressions for the 18 linear forms Qi are given
in the Appendix. The bilinear forms above arise from
folding certain pairs of Dirac structures in our original
matrix element. The expression for Mba represents the
result of the interference of the finite parts of box a and
box b.

It is quite obvious that the factorized forms for the finite
part of the NNLO result for the q �q ! Q �Q subprocess
should also hold for the corresponding massless ampli-
tudes. We have not seen this being displayed in the
literature.

In the finite contribution, Eq. (5.1), one can see the
interplay of the product of powers of " resulting from the
Laurent series expansion of the scalar integrals
[cf. Equation (1.1)] on the one hand, and powers of "
resulting from doing the spin algebra in dimensional regu-
larization on the other hand. For example, for the finite part

one has a contribution from Cð�1Þ
6 Bð0Þ�

1 as well as a con-

tribution from Cð�1Þ
6 Bð1Þ�

1 . Terms of the type Cð�1Þ
6 Bð0Þ�

1 ,

where the superscripts corresponding to " powers do not
compensate, would be absent in the regularization schemes
where traces are effectively taken in four dimensions, i.e.
in the so-called four-dimensional schemes or in dimen-
sional reduction.

We want to emphasize that all our factorized results
given in this paper take up about 10 Kb of hard disk space.
This has to be compared with the length of the original
computer output. The original computer output for the one-
loop squared cross section of the q �q ! Q �Q subprocess
turned out to be very long and took up approximately 4 MB
of hard disk space. Therefore, the reduction is of the order
of 400 in the present case.

As a final remark we want to emphasize that we have
done two independent calculations using REDUCE [19]
and FORM [20] when squaring the one-loop amplitudes.
After casting the results into the above compact form, we
have checked the final result against the original untreated
versions using again the REDUCE Computer Algebra
System.

VI. CONCLUSIONS

We have presented analytical Oð�4
sÞ NNLO results

for the one-loop squared contributions to heavy quark
pair production in quark-antiquark annihilation. These
are the first exact results for the hadroproduction of
heavy quarks at NNLO, where the heavy quark mass
dependence is fully retained. Our results form part of
the NNLO description of heavy quark pair production
relevant for the NNLO analysis of ongoing exper-
iments at the Tevatron and planned experiments at the
LHC.

Our analytical results are presented in factorized forms.
For the divergent parts, the squared matrix elements are

given in terms of the Laurent series expansion of the
corresponding LO and NLO contributions expanded up
to Oð"Þ and Oð"2Þ, respectively. In this way we could
transfer parts of the finite part of the squared amplitudes
to the coefficient functions of the pole terms. After this, we
found that the remaining parts of the finite contribution
could be further factorized, partly in terms of the corre-
sponding LO and NLO pieces, and, for the box graphs, in
terms of factorizing forms as described in Sec. V. Writing
our analytical results in factorized forms led to a reduction
of the length of the original output by a factor of 400. To
the best of our knowledge these nice factorization proper-
ties of the squared amplitude were not known before. It
would be interesting to find out the underlying reason for
this factorization.
The present paper deals with unpolarized quarks in

the initial and final states. Since our results for the
matrix elements in [13] contain the full spin inform-
ation of the process, an extension to the polarized
case with polarization in the initial state and/or in
the final state including spin correlations is not diff-
icult.
The present calculation constitutes a first step in obtain-

ing the full NNLO corrections to the heavy quark produc-
tion processes in QCD. A further next step is to provide
one-loop squared results for gluon-initiated heavy quark
pair production. Work on the gluon-initiated channel is in
progress.
Analytical results in electronic format for all the terms in

Eq. (4.1), including the ðt $ uÞ symmetric terms explicitly
written out, as well as combined full results, are readily
available [21].
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APPENDIX

Here we present the expressions for the terms Qm ap-
pearing in Equation (5.10).
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Q1 ¼ ½8m2ðs=t� z2=ðs�2ÞÞ � Bð0Þ
1 2ðm2sþDÞ=t� Bð0Þ

5 2zu=�
2 þ Cð0Þ

1 ð2Dþ s2 þ 2tzt þ 2m2z2=�
2Þ

� Cð0Þ
3 2tðsþ 2TÞ þ Cð0Þ

4 ð2Dþ s2 þ 2t2Þ �Dð0Þ
2 tð2Dþ s2 þ 2t2Þ�=D;

Q2 ¼ 2=t� Bð0Þ
1 =tþ Cð0Þ

1 Tz2=D� Cð0Þ
3 2tT=Dþ Cð0Þ

4 ð1þ t2=DÞ �Dð0Þ
2 tð1þ t2=DÞ;

Q3 ¼ 4ð2m2zt �DÞ=ðs�2tÞ þ Bð0Þ
1 2T=tþ Bð0Þ

5 2zt=ðs�2Þ þ Cð0Þ
1 ðzt=�2 þ ðm2st� t3Þ=DÞ þ Cð0Þ

3 2t3=D

þ Cð0Þ
4 st2=D�Dð0Þ

2 st3=D;

Q4 ¼ ½8m2zu=ðs�2Þ þ Bð0Þ
1 2m2 þ Bð0Þ

5 2m2z2=ðs�2Þ þ Cð0Þ
1 ð2tT þm2z2=�

2Þ � Cð0Þ
3 2m2tþ Cð0Þ

4 ðm2sþ 2t2Þ
�Dð0Þ

2 tðm2sþ 2t2Þ�=D;

Q5 ¼ ½16m2zu=ðs�2Þ þ Bð0Þ
1 4m2 þ Bð0Þ

5 4m2z2=ðs�2Þ þ Cð0Þ
1 2ð2tT þm2z2=�

2Þ � Cð0Þ
3 4m2tþ Cð0Þ

4 2ðm2s

þ 2t2Þ �Dð0Þ
2 2tðm2sþ 2t2Þ�=D;

Q6 ¼ 16m2=ðs�2Þ þ Bð0Þ
1 2� Bð0Þ

5 2=�2 � Cð0Þ
1 ð4tðDþm2tÞ þ s2T=�2 þ 4m2t2=�2Þ=Dþ Cð0Þ

3 2tTz2=D

� Cð0Þ
4 z2ðDþ t2Þ=DþDð0Þ

2 tz2ðDþ t2Þ=D;

Q7 ¼ ½8m2ðs=t� 4� 5zt=ðs�2ÞÞ � Bð0Þ
1 2ð2D=t� 3m2 þ uÞ þ Bð0Þ

5 2ðm2sþ 6m2t� suÞ=ðs�2Þ
þ Cð0Þ

1 ð2m2sþ 10tT þ ðm2 þ sÞz2=�2Þ � Cð0Þ
3 2tð5m2 þ z2Þ þ Cð0Þ

4 ðsð5m2 þ z2Þ þ 10t2Þ
�Dð0Þ

2 tðsð5m2 þ z2Þ þ 10t2Þ�=D;

Q8 ¼ 8m2ðD=t� tz2=ðs�2ÞÞ � Bð0Þ
1 2Tð2D=t� sÞ þ Bð0Þ

5 2ðDþ tzt=�
2Þ � Cð0Þ

1 sðm2s� t2 � tzt

� tzt=�
2 � t2ðm2s� t2Þ=DÞ � Cð0Þ

3 2stTð1þ st=DÞ þ Cð0Þ
4 sðm2sþ 2t2 þ st3=DÞ �Dð0Þ

2 stðm2sþ 2t2 þ st3=DÞ;
Q9 ¼ �4ðT=tþ zt=ðs�2ÞÞ þ Bð0Þ

1 2T=tþ Bð0Þ
5 2zt=ðs�2Þ þ Cð0Þ

1 ðzt=�2 þ tðm2s� t2Þ=DÞ þ Cð0Þ
3 2t3=D

þ Cð0Þ
4 st2=D�Dð0Þ

2 st3=D;

Q10 ¼ ½8m2D� Bð0Þ
1 2Dzt þ Bð0Þ

5 2tD� Cð0Þ
1 stðm2sþ 4m2tþ t2Þ þ Cð0Þ

3 2t2ðm2s� t2Þ þ Cð0Þ
4 stðm2s� t2Þ

�Dð0Þ
2 st2ðm2s� t2Þ�=D;

Q11 ¼ ½8Dzu=ðs�2Þ þ Bð0Þ
1 2Dþ Bð0Þ

5 2z2D=ðs�2Þ � Cð0Þ
1 sðm2s� t2 � z2D=ðs�2ÞÞ � Cð0Þ

3 2st2 � Cð0Þ
4 s2tþDð0Þ

2 s2t2�=D;

Q12 ¼ 8m2zt=ðs�2Þ þ Bð0Þ
1 2T � Bð0Þ

5 2ðD� tztÞ=ðs�2Þ þ Cð0Þ
1 sztðð2m2 � sÞ=ðs�2Þ þ t2=DÞ � Cð0Þ

3 2st2T=D

� Cð0Þ
4 s2tT=DþDð0Þ

2 s2t2T=D;

Q13 ¼ Cð0Þ
1 szt þ Cð0Þ

3 2t2 þ Cð0Þ
4 st�Dð0Þ

2 st2;

Q14 ¼ ½8m2ðs=u� z2u=ðs�2ÞÞ � Bð0Þ
1u2ðm2sþDÞ=u� Bð0Þ

5 2zt=�
2 þ Cð0Þ

1 ð2Dþ s2 þ 2uzu þ 2m2z2u=�
2Þ

� Cð0Þ
3u2uðsþ 2UÞ þ Cð0Þ

4 ð2Dþ s2 þ 2u2Þ �Dð0Þ
2uuð2Dþ s2 þ 2u2Þ�=D;

Q15 ¼ 2=u� Bð0Þ
1u=uþ Cð0Þ

1 Uz2u=D� Cð0Þ
3u2uU=Dþ Cð0Þ

4 ð1þ u2=DÞ �Dð0Þ
2uuð1þ u2=DÞ;

Q16 ¼ ½8m2ðs=u� zu=ðs�2ÞÞ � Bð0Þ
1u2ðD�m2tÞ=u� Bð0Þ

5 2ðt�m2z2u=ðs�2ÞÞ þ Cð0Þ
1 ðs2 � tzu þD=�2

� 2m2uz2u=ðs�2ÞÞ � Cð0Þ
3u2uðm2 þ z2uÞ þ Cð0Þ

4 ðDþ s2 � tuÞ �Dð0Þ
2uuðDþ s2 � tuÞ�=D;

Q17 ¼ 16m2=ðs�2Þ þ Bð0Þ
1u2� Bð0Þ

5 2=�2 � Cð0Þ
1 ð4uðDþm2uÞ þ s2U=�2 þ 4m2u2=�2Þ=Dþ Cð0Þ

3u2uUz2u=D

� Cð0Þ
4 z2uðDþ u2Þ=DþDð0Þ

2uuz2uðDþ u2Þ=D;

Q18 ¼ ½8m2ð4s=u� 1� 5zu=ðs�2ÞÞ � Bð0Þ
1u2ð5D� 3m2tþ tuÞ=u� Bð0Þ

5 2ð4t� 5m2z2u=ðs�2ÞÞ
þ Cð0Þ

1 ð4s2 þ 2ð4sþ 5uÞUþ 5m2z2u=�
2Þ � Cð0Þ

3u2uð5m2 þ 4z2uÞ þ Cð0Þ
4 ð5m2sþ 4sz2u þ 10u2Þ

�Dð0Þ
2uuð5m2sþ 4sz2u þ 10u2Þ�=D: (A1)
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