
Note on a sigma model connection with instanton dynamics

Amir H. Fariborz,1,* Renata Jora,2,+ and Joseph Schechter2,‡

1Department of Mathematics/Science, State University of New York Institute of Technology, Utica, New York 13504-3050, USA
2Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA

(Received 16 January 2008; published 6 May 2008)

It is well known that the instanton approach to QCD generates an effective term which looks like a

three-flavor determinant of quark bilinears. This has the right behavior to explain the unusual mass and

mixing of the �ð958Þ meson, as is often simply illustrated with the aid of a linear SU(3) sigma model. It is

less well known that the instanton analysis generates another term which has the same transformation

property but does not have a simple interpretation in terms of this usual linear sigma model. Here we point

out that this term has an interpretation in a generalized linear sigma model containing two chiral nonets.

The second chiral nonet is taken to correspond to mesons having two quarks and two antiquarks in their

makeup. The generalized model seems to be useful for learning about the spectrum of low-lying scalar

mesons which have been emerging in the last few years. The physics of the new term is shown to be

related to the properties of an excited �0 state present in the generalized model and for which there are

some experimental candidates.
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I. INTRODUCTION

The instanton approach to QCD (see Refs. [1–9] for
some of the many interesting references) has played an
important role in understanding the origin of the Uð1ÞA
violation in that theory. Specifically, ’t Hooft showed [2]
that a new quark term arises which conserves the
SUðNfÞL � SUðNfÞR symmetry, where Nf denotes the

number of relevant low-energy quark flavors, but violates
Uð1ÞA. In the case Nf ¼ 2, the Uð1ÞA violating term is a

2� 2 determinant of quark bilinears. If this is generalized
to Nf ¼ 3, the resulting 3� 3 determinant has the right

transformation properties to explain the unusually high
mass as well as the mixing pattern of the puzzling pseu-
doscalar meson, �0ð958Þ. The relevant calculation is often
performed using an ‘‘effective low energy’’ linear SU(3)
sigma model containing both a pseudoscalar nonet as well
as an additional scalar nonet. Such a model gives the usual
‘‘precision’’ current algebra results for the pion (and
to some extent the kaon) interactions and an acceptable
description of the �0ð958Þ. It also contains information
about the scalars although they are often ‘‘integrated
out.’’ That procedure converts the model to a nonlinear
sigma model.

It is amusing to note [4] that in the Nf ¼ 3 case, the

instanton calculation gives not only the determinant type
Uð1ÞA violation term but also another Uð1ÞA violation term
of nondeterminant type. That term will be of interest in the
present paper. We have been studying a generalized linear
sigma model [10–15] containing two chiral nonets which
are allowed to mix with each other. Related models for

thermodynamic properties of QCD are discussed in
Refs. [16]. The underlying motivation arises from the
increasing likelihood [17] of the existence of light scalar
mesons which show up, for instance, in the analysis of
pion-pion scattering data. Note that, at present, the scalars
below 1 GeV appear to fit into a nonet as

I ¼ 0: m½f0ð600Þ� � 500 MeV

I ¼ 1=2: m½�� � 800 MeV

I ¼ 0: m½f0ð980Þ� � 980 MeV

I ¼ 1: m½a0ð980Þ� � 980 MeV:

(1)

This level ordering is seen to be flipped compared to that of
the standard vector meson nonet. It was pointed out a long
time ago in Ref. [18], that the level order is automatically
flipped when mesons are made of two quarks and two
antiquarks instead of a single quark and antiquark. That ar-
gument was given for a diquark- antidiquark structure but
is easily seen to also hold for a meson-meson, ‘‘molecule’’-
type structure which was advocated, at least for a partial
nonet, in Ref. [19]. Thus, on empirical grounds a four-
quark structure for the light scalars seems plausible. Of
course, one expects higher mass scalars related to p-wave
quark-antiquark composites to also exist. It is natural to
expect mixing between states with the same quantum
numbers, and there is some phenomenological evidence
for this as noted in Refs [20,21]. Thus, it seems reasonable
to construct a generalized linear sigma model containing a
chiral ‘‘four quark’’ nonet as well as the usual chiral ‘‘two
quark’’ nonet. The study of such a model in fact yields a
plausible explanation of the main experimental facts. Of
relevance to the instanton physics is that the two nonets are
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distinguished from each other by having different Uð1ÞA
transformation properties. Furthermore, the treatment of
the model in [13–15] brings in an additional Uð1ÞA viola-
tion term which seems to have the same structure as the
additional term arising from the instanton analysis [4].

In Sec. II, we repeat, for the reader’s convenience, the
notation [10] being used for schematic quark field combi-
nations transforming like chiral nonets with quark, anti-
quark and various two-quark, two-antiquark structures.

In Sec. III, we demonstrate that the schematic molecule-
type chiral nonet can be written as a linear combination of
two diquark, antidiquark type nonets (which have different
SU(3) color representations for the diquarks). All of these
‘‘four quark’’ configurations have the same Uð1ÞA trans-
formation property. Here it will be sufficient to assume that
an unspecified ‘‘four quark’’ configuration is bound.

In Sec. IV, we give a brief outline of the linear sigma
model containing both a ‘‘two quark’’ chiral nonet and a
‘‘four quark’’ chiral nonet. It is convenient to introduce the
Uð1ÞA violation in such a way that the classical Lagrangian
mocks up the anomaly exactly. This leads to ln’s of the
violation operators. It has the advantage that the �0’s
essentially decouple from the rest of the particles. In or-
der to compare with the instanton analysis, we thus calcu-
late the leading terms which are linear in the violation
operators.

In Sec. V, we quote the known three-flavor effective
quark Lagrangian arising from the instanton analysis. We
rewrite it using Fierz transformations so that the desired
‘‘four quark’’ fields become manifest. They are presented
as a linear combination of a molecule-type field and a field
made from a color �3 diquark combined with its correspond-
ing antidiquark.

In Sec. VI, we compare the relative strengths of the two
Uð1ÞA violation terms as obtained from the instanton analy-
sis to the ones obtained from the generalized linear sigma
model. The linear sigma model relative term strengths are
obtained from comparing the properties of the�0ð958Þwith
those of the apparently best candidate to be its partner, the
�ð1475Þ. To convert the quark instanton Lagrangian to one
involving only mesons we need a way to characterize our
ignorance of the quark wave functions inside the meson
states. This is done via a parameter denoted !, which is
estimated.

Section VII contains some concluding remarks.

II. NOTATION

Even though one cannot write down the exact QCD
wave functions of the low-lying mesons it is easy to write
down schematic descriptions of how quark fields may
combine to give particles with specified transformation
properties. For spinor notations we employ the Pauli con-
ventions. Wework in a representation where the �matrices
and the charge conjugation matrix have the form:

�i ¼ 0 �i�i

i�i 0

� �
; �4 ¼ 0 1

1 0

� �
;

�5 ¼ 1 0
0 �1

� �
; C ¼ ��2 0

0 �2

� �
:

(2)

A nonetMðxÞ realizing the q �q structure can be written as

Mb
a ¼ ðqbAÞy�4

1þ �5

2
qaA; (3)

where a and A are, respectively, flavor and color indices.
Our convention for matrix notation isMb

a ! Mab. ThenM
transforms under chiral SUð3ÞL � SUð3ÞR, charge conju-
gation C and parity P as

M ! ULMUy
R C: M ! MT;

P: MðxÞ ! Myð�xÞ:
(4)

Here UL and UR are unitary, unimodular matrices asso-
ciated with the transformations on the left-handed (qL ¼
1
2 ð1þ �5Þq) and right-handed (qR ¼ 1

2 ð1� �5Þq) quark

projections. For the Uð1ÞA transformation one has

M ! e2i�M: (5)

Next consider nonets with ‘‘four quark,’’ qq �q �q structures.
One possibility is that the four-quark states are ‘‘mole-
cules’’ made out of two quark-antiquark states. This leads
to the following schematic form:

Mð2Þb
a ¼ �acd�

befðMyÞceðMyÞdf: (6)

Another possibility is that the four-quark states may be
bound states of a diquark and an antidiquark. There are two
choices if the diquark is required to belong to a �3 repre-
sentation of flavor SU(3). In the first case it belongs to a �3
of color and is a spin singlet with the structure

LgE ¼ �gab�EABqTaAC
�1 1þ �5

2
qbB;

RgE ¼ �gab�EABqTaAC
�1 1� �5

2
qbB:

(7)

Then the matrix M has the form

Mð3Þf
g ¼ ðLgAÞyRfA: (8)

In the second case the diquark belongs to a 6 representa-
tion of color and has spin 1. It has the schematic chiral
realization
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Lg
��;AB ¼ Lg

��;BA ¼ �gabqTaAC
�1���

1þ �5

2
qbB;

Rg
��;AB ¼ Rg

��;BA ¼ �gabqTaAC
�1���

1� �5

2
qbB;

(9)

where ��� ¼ 1
2i ½��; ���. The correspondingM matrix has

the form

Mð4Þf
g ¼ ðLg

��;ABÞyRf
��;AB; (10)

where the dagger operation includes a factor ð�1Þ��4þ��4 .

The nonets Mð2Þ, Mð3Þ and Mð4Þ transform like M under all
of SUð3ÞL � SUð3ÞR, C, P. Under Uð1ÞA they transform as

Mð2Þ ! e�4i�Mð2Þ: (11)

It is seen that the Uð1ÞA transformation distinguishes the
‘‘four quark’’ from the ‘‘two quark’’ states.

III. DIFFERENT FOUR-QUARK STRUCTURES

Nowwewill show thatMð2Þ,Mð3Þ andMð4Þ are related by
a Fierz transformation; thus only two of them are linearly
independent. For this purpose it is convenient to express
the four component spinors in terms of the two component
chiral projections in the basis given above:

qaA ¼ qLaA
qRaA

� �
: (12)

The quark-antiquark field, M has the schematic structure

Mb
a ¼ qyRbAqLaA while ðMyÞab ¼ qyLaAqRbA. Similarly, the

schematic molecule-type field Mð2Þ takes the form

Mð2Þf
g ¼ �gab�

fde½qyLaAqRdA�½qyLbBqReB�: (13)

Using the definition ð�2Þ	
 ¼ �i�	
 and the anticommu-

tativity of the Fermi fields we readily obtain the decom-

position of Mð3Þ as

Mð3Þf
g ¼ 2�gab�

fdeð½qyLaAqRdA�½qyLbBqReB�
� ½qyLaAqRdB�½qyLbBqReA�Þ: (14)

To simplify Mð4Þ we make use of the well-known identity
�2�

�
k�2 ¼ ��k and also the Fierz-type relation,

ð�k�2Þ
	ð�2�kÞ�� ¼ �
��	� þ �
��	�: (15)

Then we find,

Mð4Þf
g ¼ �4�gab�

fdeð½qyLaAqRdA�½qyLbBqReB�
þ ½qyLaAqRdB�½qyLbBqReA�Þ: (16)

Now it is easy to see that the molecule-type fieldMð2Þ may

be expressed as a linear combination of Mð3Þ and Mð4Þ:

Mð2Þb
a ¼ 2Mð3Þb

a �Mð4Þb
a

8
: (17)

Thus, at a naive quark model level, there is no absolute
distinction between the molecule-type field and a linear
combination of two different diquark-antidiquark configu-
rations. It may be amusing to note that, in the MIT bag
model approach [22] to four-quark scalars, the relevant
eigenstates of the hyperfine splitting Hamiltonian also
emerge as a linear combination of two diquark-antidiquark
configurations. Of course there may be differences which
would emerge if the full QCD dynamics could be solved.
Some dynamical arguments are discussed in Ref. [23].
There are no external quantum numbers to differentiate

Mð2Þ, Mð3Þ, and Mð4Þ from each other. Thus we just assume
that the dynamics selects a particular but unknown linear
combination of (any two of) them to be a bound ‘‘four
quark’’ field, M0. Note, however, that M and M0 are dis-
tinguished from each other by their different Uð1ÞA trans-
formation properties.

IV. EFFECTIVE POTENTIAL

In our model Lagrangian we use scalar fields with the
transformation properties of the schematic fieldsM andM0
just discussed. These fields may be decomposed into
Hermitian scalar (S) and pseudoscalar (�) nonets as

M ¼ Sþ i�; M0 ¼ S0 þ i�0: (18)

The Lagrangian density for our model is taken to have the
simple form

L ¼ � 1

2
Trð@�M@�M

yÞ � 1

2
Trð@�M0@�M0yÞ

� V0ðM;M0Þ � VSB; (19)

with nonderivative interaction terms. Here V0ðM;M0Þ
stands for a general function made from SUð3ÞL �
SUð3ÞR but not necessarily Uð1ÞA invariants formed out
ofM andM0. Furthermore VSB is a flavor symmetry break-
ing term designed to model the quark mass terms in QCD.
Generally one has the situation where nonzero vacuum

values of the diagonal components of S and S0 may exist.
These will be denoted by

hSbai ¼ 	a�
b
a; hS0ba i ¼ 
a�

b
a: (20)

In the isospin invariant limit, 	1 ¼ 	2 and 
1 ¼ 
2,
while in the SU(3) invariant limit, 	1 ¼ 	2 ¼ 	3 � 	
and 
1 ¼ 
2 ¼ 
3 � 
.
The model is an upgrading of the single-M SU(3) linear

sigma model to one containing two chiral nonets. However,
it is much more complicated. For example, the renormaliz-
able version of the present model has (see Appendix A of
[12] and Appendix A of [14]) twenty-one invariant terms in
V0 while the renormalizable version of the single-M model
has only four terms. To make progress we suggested first
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including only those terms with no more than a total of
eight (quark plus antiquark) lines in the underlying sche-
matic interaction. This led to the predictions ([14,15]):i) a
very light singlet scalar which might be identified with the
f0ð600Þ, ii) large four quark content of the lighter scalars,
iii) improved s-wave pion-pion isosinglet scattering length.
The model included two Uð1ÞA violating, but chiral SU(3)
conserving, terms. These were chosen to mock up the
Uð1ÞA anomaly of QCD. That is a reasonable requirement
in the present context since the Uð1ÞA symmetry distin-
guishes the two-quark from the four-quark mesons.

In the single-M model, it was noted (see Appendix of
[24]) even before QCD, that a determinant type Uð1ÞA
violating piece was needed to explain the � mesons.
After QCD, ’t Hooft [2] showed that a quark level term
of the required sort would arise from instanton contribu-
tions. Actually, he did not completely present the relevant
three-flavor version of his model. Other authors [4] later
gave this result, and one can see that there is an additional
Uð1ÞA violation term present. Here we will show that the
additional term has the same structure as the one we added
on the basis of the quark counting just mentioned.

In the effective Lagrangian framework the axial anom-
aly was first ‘‘exactly’’ modeled [25] by including a term
proportional to Gðln detM� ln detMyÞ, where G repre-
sents the pseudoscalar Yang Mills invariant TrðF��

~F��Þ,
constructed from the field strength tensor. It is necessary to
include a wrong sign mass term for G which is then
integrated out. Then one obtains a form like

L � ¼ �c3

�
ln

�
detM

detMy

��
2
; (21)

where c3 is a numerical parameter. In the present model
with two chiral nonets this form is not unique and the most

plausible modification [13] is to replace ln
�
detM
detMy

�
by

�1

�
ln

�
detðMÞ
detðMyÞ

��
þ ð1� �1Þ

�
ln

�
TrðMM0yÞ
TrðM0MyÞ

��
; (22)

where �1 is a dimensionless parameter. A similar addi-
tional term was discussed in Refs. [26]. In that model,
however, the additional term is somewhat different and
involves a three-quark–three-antiquark state rather than
the product of a two-quark–two-antiquark state with a
conventional quark-antiquark state in the present model.

For the purpose of comparison with instanton results in
the next section we will approximate this somewhat com-
plicated form by its leading term. With the assumption that
detðMÞ
hdetðMÞi ¼ 1þ small, we write:

ln½detðMÞ� � hdetðMÞi þ
�
detðMÞ
hdetðMÞi � 1

�
: (23)

Then,

ðln½detðMÞ� � ln½detðMyÞ�Þ2 �
�
detðMÞ � detðMyÞ

hdetðMÞi
�
2

¼ 1

	6
½ðdetðMÞ þ detðMyÞÞ2

� 4 detðMMyÞ�

� 4

	3
ðdetðMÞ þ detðMyÞÞ:

(24)

In this procedure a purely numerical constant has been
dropped and the Uð1ÞA invariant piece, detðMMyÞ, was
considered small compared to otherUð1ÞA invariant pieces.
Similarly,

�
ln

�
TrðMM0yÞ
TrðM0My

��
2 � 4

3	

½TrðMM0yÞ þ TrðM0MyÞ�:

(25)

Cross terms from squaring Eq. (22) are neglected in the
same approximation. Summarizing these steps we write:

L� ¼ �c3

�
�1 ln

detðMÞ
detðMyÞ þ ð1� �1Þ lnTrðMM0yÞ

TrðM0MyÞ
�
2

� �4c3

�
�2
1

	3
½detðMÞ þ detðMyÞ� þ ð1� �1Þ2

3	


� ½TrðMM0yÞ þ TrðM0MyÞ�
�
: (26)

In contrast to these approximations, keeping the ln’s in the
calculations involving the mesonic Lagrangian leads to a
desirable simplifying decoupling of the �0 sector of the
model from the parts which conserve Uð1ÞA. This was
previously discussed in [13–15].
Another way to see that the linearized form in Eq. (26) is

a reasonable approximation is to refer to some work on the
single-M model, corresponding to Eq. (21). In Eq. (5) of
the second paper in Ref. [25] it is shown that Eq. (21)
above may be written as a function of J ¼ detMþ detMy
as well as a Uð1ÞA invariant. Thus we may expand,

L � ¼
�
@L�

@J

�
J þ � � � ; (27)

which is the analog of Eq. (26). This captures the essential
low-energy physics in the pseudoscalar isosinglet sector;
for example, Eqs. (41) and (42) in Ref. [24] show that the

isosinglet squared masses depend on the quantity
D
@L�

@J

E
denoted as hV4i there.

V. Uð1ÞA VIOLATION FROM INSTANTONS

The ’t Hooft effective Lagrangian for the three-flavor
case [4] can be presented [27] as
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LðqÞ ¼ const
1

6NcðN2
c � 1Þ �gab�

fde

�
2Nc þ 1

2Nc þ 4

�
�qgA

1þ �5

2
qfA

��
�qaB

1þ �5

2
qdB

��
�qbC

1þ �5

2
qeC

�
þ 3

8ðNc þ 2Þ
�

�
�qgA

1þ �5

2
qfA

��
�qaB

1þ �5

2
���qdB

��
�qbC

1þ �5

2
���qeC

�
þ

�
1þ �5

2
! 1� �5

2

��
: (28)

Here the kinematics were modified from Euclidean space,
appropriate for the path integral derivation, to ordinary
Minkowski space. The overall constant contains a function
of the QCD running coupling constant which essentially
cuts it off at higher energies.

The quantities like ½ �qgA 1þ�5

2 qfA� which appear in this

equation clearly can be identified with the usual quark-
antiquark meson fieldMg

f defined in Eq. (3). The quantities

involving ��� on the second line are less familiar. Using

the identity

ð�kÞ
	ð�kÞ�� ¼ 2�
��	� � �
	��� (29)

we find

�gab�
fde

�
�qaB

1þ �5

2
���qdB

��
�qbC

1þ �5

2
���qeC

�

¼ 4�gab�
fdeð2½qyRaBqLdC�½qyRbCqLeB�

� ½qyRaAqLdA�½qyRbDqLeD�Þ
¼ 4½ðMð2ÞyÞfg � ðMð3ÞyÞfg�; (30)

where Eqs. (13), (14), and (17) were used in the last step.
Putting these identifications back into Eq. (28) finally
yields

L ðqÞ ¼ const

2NcðN2
c � 1ÞðNc þ 2Þ

�
ð2Nc þ 1Þ detðMðqÞÞ

þ 1

2
Tr½MðqÞðMð2ÞyðqÞ �Mð3ÞyðqÞÞ�

�
þ H:c:

(31)

Here the determinant and trace refer to the three-flavor
space.

VI. COMPARISON OF SIGMA MODEL AND
INSTANTON APPROACHES

It is immediately clear that the Uð1ÞA violating instanton
generated Lagrangian of Eq. (31) has the same structure as
L�, the linearized Uð1ÞA violating Lagrangian in Eq. (26).

Of course, the sigma model expression is constructed out
of physical meson fields while the instanton expression is
constructed out of schematic combinations of quark fields
with the same transformation properties. Presumably the
schematic quark combinations will be dominated by, or at
least have substantial overlap with, the corresponding me-
son fields. This similarity seems to be the strongest point of
our discussion. It is especially interesting to us in the
context of building linear sigma models to learn about
possible mixing of quark-antiquark and two-quark plus

two-antiquark mesons. As noted in Sec. IV, even the re-
normalizable linear sigma model potential would have too
many terms for practical analysis. We therefore suggested
a simplifying scheme in which terms with the smallest
number of underlying (quark plus antiquark) fields be
retained. On this basis, the two dominant Uð1ÞA violating
terms are expected to be the detðMÞ and TrðMM0yÞ ones,
each representing six underlying fermions. This is appar-
ently confirmed by the leading instanton calculation. The
four-quark structure appearing in Eq. (31) is seen to con-

tainMð2Þ �Mð3Þ, a linear combination with equal strengths
of molecule-type and diquark plus antidiquark compo-
nents. This does not guarantee, naturally, that such a com-
bination is the one which is dynamically bound.
To get a rough indication of what is happening, we

introduce a prescription for obtaining the leading Uð1ÞA
violating terms in the meson Lagrangian given in Eq. (26);
we simply make the replacements,

MðqÞ ! ��2M; Mð2ÞðqÞ �Mð3ÞðqÞ ! �!�5M0;
(32)

in the instanton Lagrangian of Eq. (31). Here, M and
M0 are the meson fields while MðqÞ etc. represent corre-
sponding schematic quark structures with the same chiral
transformation properties. The positive quantity � is a
QCD-type scale with dimension of mass. The dimension-
less, positive quantity ! is a phenomenological parameter
introduced to account for our ignorance of which linear
combination of the possible four-quark states is actually
bound, the possibility of other hadronized field combina-
tions appearing in Eq. (30) as well as other QCD effects.
Finally the sign choice measures the sign of the vacuum
value of the left-hand side operator.
We may estimate � above by taking the ground state

expectation value of the (11) matrix element:

hM11i ¼ 	 ¼ �1

2�2
h �q1Aq1Ai: (33)

Using 	 ¼ 0:0606 GeV, as obtained in the SU(3) limit for
either the massless or massive pion cases in [14] or [15],
together with h �q1Aq1Ai � �0:016 GeV3 yields for the
scale factor, � � 0:36 GeV. As a check on this procedure,
if the ‘‘quark mass’’ factor, A, in the symmetry breaking
term LSB ¼ 2 TrðASÞ is also scaled as A ¼ �2mq, where

mq is the diagonal matrix of quark masses, then the current

algebra mass formula for the pseudoscalars is converted to
the corresponding linear sigma model mass formula.
Notice that the overall factor in Eq. (31) is heavily

suppressed for large Nc as expected for instanton effects.
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Thus we shall set Nc to be three, for our world. Then the
substitutions of Eq. (32) result in a meson Uð1ÞA violating
Lagrangian of the form

L � ¼ const0½�7 detðMÞ 	!�

2
TrðMM0yÞ� þ H:c: (34)

Comparing Eq. (34) with Eq. (26) gives a relation between
�1, a measure of the relative strengths of the det and Tr
terms which are being used to model the Uð1ÞA anomaly,
and the scaling factor ! introduced in Eq. (32):

�2
1

ð1� �1Þ2
¼ �14	2

3
�!
: (35)

Since the left-hand side of this equation must be positive
and 
ð� 0:0249 GeVÞ is positive, consistency requires us
to keep only the þ sign in Eq. (32). This corresponds to a

positive vacuum value forMð2ÞðqÞ �Mð3ÞðqÞ, as opposed to
the negative vacuum value for MðqÞ shown in Eq. (33).
Defining Qð!Þ ¼ 14	2=ð3
�!Þ, this quadratic equation
has the solutions

�1ð!Þ ¼ �Q� ffiffiffiffi
Q

p
1�Q

: (36)

Note that the� sign here is related to solving the quadratic
equation rather than to the possible choice displayed in
Eq. (32). Figure 1 shows that, for theþ sign choice, �1ð!Þ
is positive and slowly decreasing as ! increases. On the
other hand for the — sign choice, �1ð!Þ can be either
positive or negative, as seen in Fig. 2. For either sign choice
�1ð!Þ goes to one as ! goes to zero.

In our mesonic level sigma model the value of �1 affects
the masses and mixings of the four pseudoscalar isosinglets
which appear. The lowest-lying ones are the �ð547Þ and
the �ð958Þ while there are four experimental candidates
(with masses in MeVat 1295, 1405, 1475 and 1760) for the
two higher-lying states. This is, in general, a complicated
mixing problem with some experimental ambiguities. In

Refs [14] (see Sec. 4 and Appendix B) and [15] (see
Appendix A) we examined flavor SU(3) symmetric situ-
ations and considered the favored scenario to be the one in
which the �ð958Þ mixed with the �ð1475Þ. Furthermore
there were two possible solutions with different ‘‘four-
quark contents.’’ The preferred solution with mainly
‘‘two-quark content’’ for the �0 (denoted I2 in Appen-
dix B of [14]) gave �1 � 0:25 while the somewhat less
favored solution (labeled I1) with less ‘‘two-quark con-
tent’’ for the �0 gave �1 � 0:54. These are seen to result,
respectively, in values of about 18 and 1.3 for!. Clearly,!
is sensitive to the value of �1, although it might be fairer to

compare the values of !1=5 which differ less for the two
alternatives.
Consider also the effect of choosing a different candi-

date for the second �0. As discussed in Refs. [14,15], the
only other consistent choice of candidate, in our present
SU(3) symmetric calculation, is the �ð1760Þ. The favored
solution, corresponding to �ð958Þ being mainly of q �q type,
yields �1 ¼ �0:08 compared to �1 ¼ 0:25 when the
�ð1475Þ is selected. Qualitatively, �1 is small for both
the favored cases.
It may be interesting to present these results in terms of

quantities associated with the quark level instanton
Lagrangian in Eq. (28). Using Eq. (32) and comparing
with Eq. (26) gives for the overall constant:

const ¼ 960c3�
2
1

7	3�6
: (37)

Similarly, the vacuum value of Mð2ÞðqÞ �Mð3ÞðqÞ can be
estimated as

hM0ðqÞi ¼ h½Mð2ÞðqÞ �Mð3ÞðqÞ�11i ¼ !
�5: (38)

The overall constant and the ‘‘four quark’’ vacuum value
are listed in Table I for each of the two considered sce-
narios. For comparison, the square of the ‘‘two quark’’
vacuum value given in Eq. (33) is 3:7� 10�3 GeV6, simi-
lar in order of magnitude to the four-quark ones.
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FIG. 1. �1vs:! for the positive sign choice in Eq. (36)
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FIG. 2. �1vs:! for the negative sign choice in Eq. (36)
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Of course, the results just discussed will be modified to
some extent by the inclusion of SU(3) flavor symmetry
breaking effects. This work, which is under study, involves
at minimum the consideration of a 4� 4 mixing matrix
for the isoscalar pseudoscalar mesons in the present
framework.

VII. SUMMARYAND DISCUSSION

We have shown that an extra term in the effective
instanton generated Lagrangian has a natural interpreta-
tion as a mixing term between quark-antiquark spin zero
mesons and spin zero mesons made from two quarks and
two antiquarks (in some unspecified combination). Since
the fields of the two kinds of mesons have different Uð1ÞA
quantum numbers (before quark masses and spontaneous
symmetry breaking are taken into account) this term also
violates the Uð1ÞA symmetry.

On the question of what is the correct bound state of
‘‘four quark’’ mesons, we showed that at the zero quark
mass kinematical level the molecule type could be rewrit-
ten as a linear combination of two different diquark-
antidiquark types.

We worked at the level of a generalized linear SU(3)
sigma model which contains two scalar nonets and two
pseudoscalar nonets. The mixings between the two scalar
nonets play an important role in explaining the properties
which seem to be emerging from analysis of experimental
data. The ‘‘extra’’ term of interest, on the other hand,
primarily affects the mixing of the pseudoscalar SU(3)
singlets. Indeed, we used a variation of the model in which
the axial anomaly was exactly modeled, which has the
effect of decoupling the pseudoscalar SU(3) singlets.

Using the masses of the �0ð958Þ and the �ð1475Þ in the
sigma model we made numerical estimates of the overall
constant for the instanton Lagrangian and the vacuum
value of the ‘‘four quark’’ operator which appears in it.
An interesting treatment of the relation between instan-

ton physics and the pattern of light scalar meson decay
widths has been recently given in Ref. [28]. Some other
discussions were given in Refs. [20,21]. Further discussion
is planned in the present framework in the near future when
our present work on the inclusion of flavor SU(3) breaking
effects is completed.
The generalized linear sigma model in question is ac-

tually a very complicated one, describing many different
particles and potentially having many different relevant
terms. Thus while, due to chiral symmetry, it gives a
good description of near threshold pion-pion scattering;
for example, it is probably best regarded as a toy model for
learning when it comes to describing a nonet’s worth of
heavy pseudoscalars.
From the point of view of truncating the terms of this

linear sigma model to a more manageable number we had
made [13–15] a provisional ansatz that terms representing
more than eight underlying fermion lines be discarded.
This gave two Uð1ÞA violating terms and corresponded
nicely to the instanton effective Lagrangian, which has
two terms with six such lines. One might ask about going
beyond this approximation for an effective model. If one
allows 10 underlying fermion lines, the Uð1ÞA violating
terms with coefficients eb3 , e

d
4 and e

i
4 in Eq. (A1) of [12] are

possible. If one allows 12 underlying fermion lines, the
terms with coefficients d3 and ec4 kick in. Finally, if one

allows 14 underlying fermion lines, the terms with coef-

ficients ee4 and e
j
4 become possible. This could conceivably

also be an interesting expansion in the instanton approach.
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