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We perform an analysis of transverse-momentum dependent parton-distribution functions, making use

of their renormalization properties in terms of their leading-order anomalous dimensions. We show that

the appropriate Wilson line in the light cone gauge, associated with such quantities, is a cusped one at light

cone infinity. To cancel the ensuing cusp anomalous dimension, we include in the definition of the

transverse-momentum dependent parton-distribution functions an additional soft counter term (gauge

link) along that cusped transverse contour. We demonstrate that this is tantamount to an ‘‘intrinsic

(Coulomb) phase,’’ which accumulates the full gauge history of the color-charged particle.
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I. INTRODUCTION

A fundamental goal of QCD is to provide an accurate
description of parton-distribution functions (PDFs) which
contain the nonperturbative strong dynamics. While inte-
grated PDFs can be defined in a gauge-invariant way that is
compatible with factorization, ensuring multiplicative re-
normalizability and DGLAP evolution, the definition of
unintegrated or, equivalently, transverse-momentum de-
pendent (TMD), parton distributions poses severe prob-
lems (see, e.g., [1–3]): (a) Additional, so-called rapidity,
divergences [4] appear, related to lightlike Wilson lines (or
the use of the light cone gauge Aþ ¼ 0) [5], that cannot be
taken care of by ordinary ultraviolet (UV) renormalization
alone. In the integrated case, these divergences also appear
but they mutually cancel [4,6], allowing a probabilistic
interpretation. (b) Moreover, in the light cone gauge, the
result depends on the applied pole prescription in the gluon
propagator. Only with the advanced boundary condition,
which sets the transverse gauge link to unity, one recovers
the results obtained in the Feynman gauge [7]. (c) The
reduction to the integrated case is at least not straightfor-
ward [8]. (d) Universality is in general broken [9], an issue
outside the scope of our analysis, given that we concentrate
on unpolarized PDFs only. This point will be briefly ad-
dressed in the last section. Let us discuss these issues in
more detail.

The first issue, i.e., the treatment of the rapidity diver-
gences, is on the focus of our investigation and will be
discussed in detail below. The second question has been
addressed by Belitsky, Ji, and Yuan [7] (see also [10,11]),
where a transverse gauge link was introduced in order to
exhaust the gauge freedom of the TMD PDF. The third
problem becomes trivial in our approach because it is

avoided ab initio by the proposed definition of the TMD
PDF. In particular, one may note the

(i) Collins-Soper (CS) approach [4] (or cutoff method)
(see also [8]): These authors were the first to address
issue (a) and to propose a solution of the problem by
adopting either a nonlightlike axial gauge or by
shifting the integration contour slightly off the light
cone. This, however, entails the introduction of an
additional rapidity parameter � ¼ ðp � nÞ2=n2 (with
n2 � 0) to encode the deviation from the light cone.
To establish independence from this arbitrary vari-
able, an additional evolution equation to the stan-
dard one has to be fulfilled causing the reduction to
the integrated case questionable. Besides, factoriza-
tion off the light cone also becomes problematic.

(ii) Collins-Hautmann approach [12] (or subtractive
method): These authors suggest another way to
circumvent problem (a). They restrict themselves
to lightlike Wilson lines and remove the rapidity
divergences by redefining the TMD PDF. The prin-
cipal element in their approach is the introduction of
a soft counter term that compensates these diver-
gences, shown explicitly at the one-loop order and
working in the Feynman gauge; a fresh look was
given by Collins and Metz [13]. More recently,
Hautmann [14] claimed that the reduction to the
integrated case can also be performed within this
method.

In our work, wewill follow another strategy based on the
renormalization properties of TMD PDFs in terms of their
anomalous dimensions. The reason is that anomalous di-
mensions (within perturbative QCD) encode the key char-
acteristics of Wilson lines in local form. In contrast, gauge
contours are global objects and, hence, difficult to handle
within a local-field theory framework. A properly defined
TMD PDF should respect collinear factorization. But this
turns out to be in conflict with the gauge link because the
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Wilson line contains not only longitudinal gluons that
could be eliminated by imposing the light cone gauge, it
also comprises transverse ones, with a distinct region of k?
that are accumulated after the quark has been struck by the
hard current and changes its direction from xþ to x�. As a
result, one cannot define a TMD PDF by introducing a
straight lightlike line between the quarks (i.e., a ‘‘connec-
tor’’ [15]). The reason is that the two quark fields have a
separation also in the transverse coordinate space and
hence the gluons originating from this are not collinear
to the struck quark (they mismatch in the gluon rapidity).
The common assumption to avoid this problem is to use a
combined contour which joins the quarks through light
cone infinity. Our analysis shows that such a contour
cannot be a smooth one, as usually tacitly assumed, but it
has to contain some obstruction in the transverse direction
(not specified yet) which will inevitably contribute to the
total anomalous dimension of the TMD PDF. Therefore, in
order to be able to reproduce the well-known result in the
Feynman gauge, one has to define the TMD PDF in such a
way as to cancel this unwanted anomalous-dimension
term. To this end, we seek to recast the Wilson line in
terms of the associated anomalous dimensions. We will
show that this can be naturally achieved within a formalism
which inherently respects gauge invariance by using man-

ifestly gauge-invariant quark fields that account for the
whole gauge ‘‘history’’ in the sense of Mandelstam [16].
Details will be given elsewhere [17]. The paper is organ-
ized as follows. In the next section, we first provide argu-
ments for the necessity to insert a transverse gauge link.
Then we continue with the calculation of the anomalous
dimension of the TMD PDF and show that there is a
contribution at light cone infinity in the transverse direc-
tion that can be associated with a cusp. In the same section
we will supply a modified definition of the TMD PDF that
provides the same anomalous dimension as the one in the
Feynman gauge. Section III deals with the interpretation of
the soft gauge-invariant counter term, introduced in Sec. II,
as an ‘‘intrinsic Coulomb phase’’ in analogy to the QED
case [18]. Some comments on universality and our con-
clusions are given in Sec. IV.

II. CALCULATION OF THE ANOMALOUS
DIMENSION OF THE TMD PDF

A. Transverse gauge link

The standard definition of the TMD PDF [4], for a quark
in a quark distribution supplemented by a transverse link
[7], reads

fq=qðx; k?Þ ¼ 1

2

Z d��d2�?
2�ð2�Þ2 e

�ikþ��þik?��?hqðpÞj � ð��; �?Þ½��; �?;1�; �?�y

� ½1�; �?;1�;1?�y�þ½1�;1?;1�; 0?�½1�; 0?; 0�; 0?� ð0�; 0?ÞjqðpÞij�þ¼0;

½1�; z?; z�;z?� � P exp

�
ig

Z 1

0
d�tan�A

�
a ðzþ n�Þ

�
; ½1�;1?;1�; �?� � P exp

�
ig

Z 1

0
d�tal �Aað�? þ l�Þ

�
; (1)

where li represents an arbitrary vector in the transverse
direction and P denotes path ordering. The displayed
gauge links ½1�; z?; z�; z?�, and ½1�;1?;1�; �?� in-
volve gauge contours extending to light cone infinity in the
lightlike and in the transverse direction, respectively.
Analogous expressions hold for the other gauge links
entering (1). Belitsky, Ji, and Yuan [7] have shown that
the extra transverse gauge link is indispensable for the
restoration of gauge invariance in the light cone gauge in
which the gauge potential does not vanish asymptotically.

The necessity of the additional transverse gauge link in
Eq. (1) can be most easily understood from the point of
view of a complete gauge fixing in the axial light cone
gauge. Using the spacetime picture of the interaction of a
quark moving fast in the plus light cone direction with the
hard spacelike photon, as depicted in Fig. 1, one can treat
the ‘‘classical’’ current

j�ðyÞ ¼ g
Z
dy0��ð4Þðy� y0Þ; y0� ¼ v��; (2)

as a source of the gauge field. The gauge field related to
such a current has the form

A�ð�Þ ¼
Z
d4yD��ð�� yÞj�ðyÞ; (3)

where D�� is the gluon Green’s function. Appealing to the
spacetime structure of this process illustrated in Fig. 1(a),
we recast the current in the form

FIG. 1. Spacetime representation (a) and corresponding Feyn-
man graph (b) of the collision of a quark with a hard photon in
a deeply inelastic process. The struck quark (Wilson line) is
denoted by a double line.
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j�ðyÞ ¼ g�ð2Þðy?Þ
�
nþ��ðy�Þ

Z dq�

2�

e�iq�yþ

q� þ i0

� n���ðyþÞ
Z dqþ

2�

e�iqþy�

qþ � i0

�
; (4)

which makes it clear that the first term in this expression
corresponds to a gauge field created by a source moving
from minus infinity to the origin in the plus light cone
direction before being struck by the photon, whereas the
second term corresponds to a gauge field being created by a
source moving from the origin to plus infinity along the
minus light cone ray after the collision. Then, using the
gluon propagator in the light cone gauge

D��ðzÞ ¼ �
Z d4q

ð2�Þ4
e�iqz

q2 � 	2 þ i0

�
�
g�� � q�ðn�Þ� þ q�ðn�Þ�

½qþ�
�
; (5)

one obtains

A?ð1�; �?Þ ¼ g

4�
C1r lnð	j�?jÞ; (6)

where the numerical constant C1 depends on the pole
prescription applied to regularize the light cone singularity

C1 ¼
8><
>:
0; Adv: ½qþ� ¼ qþ � i0
�1; Ret: ½qþ� ¼ qþ þ i0
� 1

2 ; PV: ½qþ��1 ¼ 1
2 ð 1
qþþi0 þ 1

qþ�i0Þ
: (7)

Obviously, the longitudinal components A� vanish. On the
other hand, the components of the gauge field associated

with the same source, but in a covariant gauge ( labeled by
a prime), read

A0
? ¼ 0; A0� ¼ 0;

A0þð�Þ ¼ � g

4�
�ð��Þ lnð	j�?jÞ:

(8)

The (singular) gauge transformation, which connects these
two field representations (i.e., the gauge-field components
in the light cone gauge and those in a covariant gauge), is
given by

ALC
� ¼ A0

� þ @�
; 
ð�Þ ¼ �
Z ��

�1
d�0�A0þð�0�Þ:

(9)

Equation (9) reflects exactly the gauge freedom remaining
after fixing the light cone gauge Aþ ¼ 0. We appreciate
that a complete gauge fixing can only be achieved by
inserting the additional singular gauge transformation

Usingð1�;�?Þ

¼
�
1� ig

Z 1�

�1
dz�A0þ

sourceðz�; z?Þ þOðg2Þ
�
; (10)

which contains the cross talk effects of the struck parton
with the light cone source. Therefore, the product of two
(local) quark field operators in the completely fixed light
cone gauge (marked below by a wide hat) differs from that
in a covariant gauge by two phase factors and attains the
form

½ � ð��; �?Þ�þ ð0�; 0?Þ� bLC
¼ � LCð�ÞP exp

�
þig

Z 1?

�?
dz?ALC

sourceð1�;z?Þ
�
�þP exp

�
�ig

Z 1?

0?
dz?ALC

sourceð1�; 0?Þ
�
 LCð0Þ (11)

in agreement with Eq. (1).

B. Anomalous dimensions

Within the CS approach, where n2 � 0, the anomalous
dimension associated with fq=qðx; k?Þ is

�CS ¼ 1

2
�

d

d�
lnZfð�;�s; �Þ ¼ 3

4

�s
�
CF þOð�2

sÞ

¼ �smooth; (12)

where Zf is the renormalization constant of fq=qðx; k?Þ in
the MS scheme. As long as one assumes that the deforma-
tion of the Wilson line in the transverse direction off the
light cone preserves the smoothness of the gauge contour,
the associated anomalous dimension is only due to the

endpoints and, therefore, equals that of the connector in-
sertion [15]. Hence, as far as the renormalization of the
pure gauge link with a finite contour is concerned, the
straight lightlike line is enough to supply its anomalous
dimension because other contour characteristics, e.g., its
length, are irrelevant.
In general, in renormalizing the distribution fq=q of a

quark in a quark, one faces UV divergences stemming from
the momentum integration that can be renormalized in the
usual way. But, using the light cone gauge n2 ¼ 0, extra
UV divergences contribute due to the additional pole of the
gluon propagator, as already mentioned. We calculate the
UV divergences of the one-loop diagrams, shown in Fig. 2,
which contribute to fq=qðx; k?Þ in the light cone gauge ðA �
n�Þ ¼ 0, ðn�Þ2 ¼ 0, by using dimensional regularization.
The poles 1=qþ of the gluon propagator
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DLC
��ðqÞ ¼ 1

q2

�
g�� �

q�n
�
� þ q�n

�
�

½qþ�
�
; (13)

are regularized according to

1

½qþ� ¼ 1

qþ � i�
: (14)

In what follows, we keep � small but finite.
The UV divergent part of diagrams 2(a) and 2(d) re-

ceives contributions owing to the pþ-dependent term

�UV
LC ð�s; �Þ ¼

�s
�
CF2

�
1

�

�
3

4
þ ln

�

pþ

�
� �E þ ln4�

�
(15)

in addition to those originating from the standard UV
renormalization. In deriving expression (15), we find that
the contribution associated with the transverse gauge link
at infinity (diagram Fig. 2(d)) exactly cancels against the
term entailed by the adopted pole prescription in the gluon
propagator. This confirms the previous results by Belitsky,
Ji, and Yuan, and establishes the dependence of the result
on local quantities only. Therefore, the corresponding
anomalous dimension is given by

�LC ¼ �s
�
CF

�
3

4
þ ln

�

pþ

�
¼ �smooth � ��: (16)

The difference between �smooth and �LC is exactly that term
induced by the additional divergence which has to be
compensated by a suitable redefinition of the TMD PDF.
Note that pþ ¼ ðp � n�Þ � cosh
 defines, in fact, an angle

 between the direction of the quark momentum p� and

the lightlike vector n�. In the large 
 limit, lnpþ ! 
,

! 1. Thus, we can conclude that the ‘‘defect’’ of the
anomalous dimension, ��, can be identified with the well-
known cusp anomalous dimension [19]

�cuspð�s; 
Þ ¼ �s
�
CFð
 coth
� 1Þ;

d

d lnpþ �� ¼ lim

!1

d

d

�cuspð�s; 
Þ ¼ �s

�
CF:

(17)

This provides formal support for our previous statement
concerning the appropriate choice of the Wilson line in the
definition of the TMD PDF.

As one knows from the renormalization of contour-
dependent composite operators in QCD (see [20] and

also [19,21,22] and earlier references cited therein), the
standard UV renormalization procedure has to be general-
ized in order to be able to subtract angle-dependent
singularities stemming from obstructions, like cusps or
self-intersections. Having recourse to these techniques,
we compute the extra renormalization constant associated
with the soft counter term [12] and show that it can be
expressed in terms of a vacuum expectation value of a
specific gauge link. In order to cancel the anomalous-
dimension defect ��, we introduce the counter term

R � �ðpþ; n�j0Þ�yðpþ; n�j�Þ; (18)

where

�ðpþ; n�j�Þ ¼ h0jP exp

�
ig

Z
�cusp

d��taAa�ð�þ �Þ
�
j0i
(19)

and evaluate it along the nonsmooth, off-the-light cone
integration contour �cusp, defined by

�cusp: �� ¼ f½pþ
�s;�1< s < 0� [ ½n��s0; 0< s0 <1�

[ ½l?�; 0< �<1�g (20)

with n�� being the minus light cone vector illustrated in

Fig. 3.
The one-loop gluon virtual corrections, contributing to

the UV divergences of R, are shown in Fig. 4. For the UV
divergent term we obtain

�UV
R ¼ ��s

�
CF2

�
1

�
ln

�

pþ � �E þ ln4�

�
(21)

FIG. 2. One-loop gluon contributions to the UV divergences of
the TMD PDF. Double lines denote gauge links. Diagrams (b)
and (c) are absent in the light cone gauge.

FIG. 3. The integration contour associated with the additional
soft counter term.

FIG. 4. Virtual gluon contributions to the UV divergences of
the soft counter term (in analogy to Fig. 2).
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and observe that this expression is equal, but with opposite
sign, to the unwanted term in the UV singularity, related to
the cusped contour, calculated before.

Hence, it is reasonable to redefine the conventional
TMD PDF and absorb the soft counter term in its defini-
tion. Then we have

fmod
q=q ðx; k?Þ ¼

1

2

Z d��d2�?
2�ð2�Þ2 e

�ik?��?hqðpÞj � ð��; �?Þ½��; �?;1�; �?�y½1�;�?;1�;1?�y�þ½1�;1?;1�; 0?�
� ½1�; 0?; 0�; 0?� ð0�; 0?ÞjqðpÞi � ½�ðpþ; n�j0�; 0?Þ�yðpþ; n�j��; �?Þ�; (22)

which is one of the main results of our work. For the
renormalization of

fmod
ren ðx; k?Þ ¼ Zmod

f ð�s; �Þfmodðx; k?; �Þ (23)

the standard UV renormalization is sufficient. It yields the
following renormalization constant

Zmod
f ¼ 1þ �s

4�
CF

2

�

�
�3� 4 ln

�

pþ þ 4 ln
�

pþ

�

¼ 1� 3�s
4�

CF

2

�
; (24)

which in turn gives rise to the anomalous dimension

�mod
f ¼ 1

2
�

d

d�
lnZmod

f ð�;�s; �Þ ¼ 3

4

�s
�
CF þOð�2

sÞ:
(25)

It is obvious that (at least at the one-loop order) this
expression coincides with �smooth given by Eq. (12).

III. INTRINSIC COULOMB PHASE

The physical meaning of the introduced soft counter
term can be described as follows. Appealing to the ex-
ponentiation theorem for non-Abelian path-ordered expo-
nentials [19], the vacuum average (19) can be recast in
the form

�ðu; n�Þ ¼ exp

�X1
n¼1

�ns�nðu; n�Þ
�
; (26)

where the functions �n have, in general, a complicated
structure. Nevertheless, the leading term in this series,
�1, is just a non-Abelian generalization of the Abelian
expression

�1ðu; n�Þ ¼ �4�CF

Z
�cusp

dx�dy��ðx� yÞD��ðx� yÞ:
(27)

By virtue of the current

jb�ðzÞ ¼ tbv�
Z
�cusp

d��ð4Þðz� v�Þ; (28)

evaluated along the contour �cusp [cf. Equation (20)] and

where the velocity v� equals either u�, n
�, or l? (depend-

ing on the segment of the contour along which the integra-
tion is performed), one can rewrite (27) as follows

�1ðu; n�Þ ¼ �ta4�
Z
�cusp

dx�
Z
d4z�abD��ðx� zÞjb�ðzÞ:

(29)

This result proves that the additional soft counter term R
can be treated within Mandelstam’s manifestly gauge-
invariant formalism and appears there as an ‘‘intrinsic
Coulomb phase’’ [18] originating from the long-range
interactions of a colored quark, created initially at the
‘‘point’’ �1þ together with its oppositely color-charged
counterpart, then travelling along the plus light cone ray to
the origin, where it experiences a hard collision with the
off-shell photon, subsequently changing its route and ven-
turing along the minus ray toþ1�. Within such a context,
the soft counter term can be conceived of as that part of the
TMD PDF which accumulates the residual effects of the
primordial separation of two oppositely color-charged par-
ticles, created at light cone infinity and being unrelated to
the existence of external color sources.

IV. DISCUSSION AND CONCLUSIONS

The study presented above was performed for the semi-
inclusive deep inelastic scattering (SIDIS). Before we con-
clude, it is appropriate to make some comments concerning
the Drell-Yan lepton-pair production. In this case, it is
known [9] that the direction of the integration contours in
the gauge links should be reversed. In the light cone gauge,
this corresponds to a change of sign of the additional
regulator � [cf. Equation (14)]

�SIDIS ¼ ��DY: (30)

In the nonpolarized case, this affects only the imaginary
parts, and, therefore, it does not contribute to the final
expressions. In other words, the UV anomalous dimension
of the nonpolarized TMD PDFs is universal as regards the
SIDIS and the Drell-Yan processes. This, however, may not
be true for the spin-dependent TMD PDFs, since in that
case the imaginary parts play a crucial role and, thus, a sign
change [expressed in (30)] might indeed affect the
renormalization-group properties and the corresponding
evolution equations. These issues will be considered
elsewhere.
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Let us summarize the cornerstones of our work:
(i) We performed an analysis of TMD PDFs based on

anomalous dimensions that encapsulate the rele-
vant Wilson-line characteristics in local form.

(ii) We showed by explicit calculation at the one-loop
level that the appropriate Wilson contour in the
light cone gauge is a cusped one, contributing an
angle-dependent anomalous dimension to the TMD
PDF, that has to be compensated in order to render
it compatible with the collinear factorization. The
validation of this cancellation in next-to-leading
order is currently in progress.

(iii) We outlined how this new contribution can be
included in the definition of the TMD PDF by
means of a soft counter term, as proposed by
Collins [9]. We found that this new term can be
written as an ‘‘intrinsic Coulomb phase’’ that
keeps track of the full gauge history of the colored
quarks [18].

This phase may be given the following interpretation:
Before the quark is being struck it is escorted only by
longitudinal gluons that can be formally eliminated by
imposing the light cone gauge. However, when it leaves
the (hard) interaction region, it is not lying on the minus
light cone direction and exchanges soft transverse gluons
with the quark spectator. Hence, one cannot trivialize the

interaction of the struck quark with the gauge field by
imposing a single gauge choice on a lightlike ray, because
the struck quark enters and leaves the hard-interaction
vertex with different four velocities, as it becomes evident
from Eq. (28). This complies with the interpretation given
by Belitsky, Ji, and Yuan [7] (see also [11]) in terms of
final-state interactions of the struck quark with the gluon
field of the target spectators. As long as one disregards
polarization effects, the direction of the Wilson line (ex-
pressed by means of the i� prescription in the gluon
propagator), appears only in intermediate steps of the
calculation and cancels at the end because it is only a
phase. In conclusion, our analysis may lead to a deeper
insight of the dynamics of TMD PDFs and have wide-
range phenomenological applications.
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