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We calculate the leading order corrections to the �B ! Xs� decay in the standard model with two large

flat universal extra dimensions. We find that the contributions involving the exchange of Kaluza-Klein

modes of the physical scalar field a�ðklÞ depend logarithmically on the ultraviolet cutoff scale �. We

emphasize that all flavor-changing neutral current transitions suffer from this problem. Although the

ultraviolet sensitivity weakens the lower bound on the inverse compactification radius 1=R that follows

from �B ! Xs�, the constraint remains stronger than any other available direct measurement. After

performing a careful study of the potential impact of cutoff and higher-order effects, we find 1=R >

650 GeV at 95% confidence level if errors are combined in quadrature. Our limit is at variance with the

parameter region 1=R & 600 GeV preferred by dark matter constraints.
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I. INTRODUCTION

The branching ratio of the inclusive radiative �B-meson
decay is known to provide stringent constraints on various
nonstandard physics models at the electroweak scale [1],
because it is accurately measured and its theoretical deter-
mination is rather precise.

The present experimental world average, which includes
the latest measurements by CLEO [2], Belle [3], and
BABAR [4], is performed by the Heavy Flavor Averaging
Group [5] and reads for a photon energy cut of E� > E0

with E0 ¼ 1:6 GeV in the �B-meson rest-frame1

B ð �B ! Xs�Þexp ¼ ð3:55� 0:24þ0:09
�0:10 � 0:03Þ � 10�4:

(1)

Here the first error is a combined statistical and systematic
one, while the second and third are systematic uncertainties
due to the extrapolation from E0 ¼ ð1:8� 2:0Þ GeV to the
reference value and the subtraction of the �B ! Xd� event
fraction, respectively.

After a joint effort [7–9], the first theoretical estimate of
the total �B ! Xs� branching ratio at next-to-next-to-
leading order (NNLO) in QCD has been presented recently
in Refs. [8,10]. For E0 ¼ 1:6 GeV the result of the im-
proved standard model (SM) evaluation is given by2

B ð �B ! Xs�ÞSM ¼ ð3:15� 0:23Þ � 10�4; (2)

where the uncertainties from hadronic power corrections
(� 5%), higher-order perturbative effects (� 3%), the
interpolation in the charm quark mass (� 3%), and para-
metric dependences (� 3%) have been added in quadra-
ture to obtain the total error.
Compared with the experimental world average of

Eq. (1), the new SM prediction of Eq. (2) is lower by
1:2�. Potential beyond SM contributions should now be
preferably constructive, while models that lead to a sup-
pression of the b ! s� amplitude are more severely con-
strained than in the past, where the theoretical
determination used to be above the experimental one.
As emphasized in Refs. [13–15], among the latter cate-

gory is the model with a flat, compactified extra dimension
where all of the SM fields are allowed to propagate in the
bulk [16], known as minimal universal extra dimensions or
UED5. Since Kaluza-Klein (KK) modes in the UED5
model interfere destructively with the SM b ! s� ampli-
tude, the Bð �B ! Xs�Þ constraint leads to a very powerful
bound on the inverse compactification radius of 1=R >
600 GeV at 95% confidence level (C.L.) [15]. This exclu-
sion is independent from the Higgs mass and therefore
stronger than any limit that can be derived from electro-
weak precision measurements [17].
The purpose of this article is to study the phenomenol-

ogy of �B ! Xs� in the SM with two universal extra
dimensions [18,19] or UED6. In contrast to UED5, the
UED6 model has additional KK particles in its spectrum.
An interesting feature of this model is the fact that dark
matter constraints suggest a rather small KK mass scale.
Therefore, it is very interesting to derive a bound on this
scale from b ! s� in UED6, taking into account the new
KK modes. In this context, several questions will need to
be answered: Does the leading order (LO) result depend on

1The very recent measurement of BABAR [6] that gives
Bð �B ! Xs�Þ ¼ ð3:66� 0:85stat � 0:60systÞ � 10�4 for E0 ¼
1:9 GeV is not taken into account in the average of Eq. (1).

2The small NNLO corrections related to the four-loop b ! sg
mixing diagrams [9] and from quark mass effects to the electro-
magnetic dipole [11] and current-current operator [12] contribu-
tions are not included in Eq. (2).
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the cutoff scale, in contrast to UED5 where no cutoff
dependence was found? If so, is this a generic feature of
all flavor-changing neutral current (FCNC) amplitudes in
the UED6 model? What is the theoretical uncertainty
stemming from the unknown ultraviolet (UV) dynamics?

This article is organized as follows. In Secs. II and III we
describe, first, the model itself and, second, the calculation
of the one-loop matching corrections to the Wilson coef-
ficients of the electromagnetic and chromomagnetic dipole
operators in UED6. Section IV contains a numerical analy-
sis of Bð �B ! Xs�Þ and the lower bound on the compacti-
fication scale 1=R in the UED6 model. Concluding
remarks are given in Sec. V. In the appendix we show
how to compute the double sums over KK modes appear-
ing in the calculation of �B ! Xs�.

II. MODEL

Here we briefly summarize the main features of the
UED6 scenario. All SM fields propagate in two flat extra
dimensions, compactified on a square with side length L ¼
�R and adjacent sides being identified [20]. This compac-
tification, aptly dubbed chiral square, leads to chiral fer-
mion zero modes, while the higher KK modes of the
fermions are vectorlike as usual. Since the geometry is
invariant under rotations by 180� about the center of the
square, the model respects an additional Z2 symmetry. It
implies that the lightest KK-odd particle is stable and could
provide a viable dark matter candidate for a small KK scale
1=R & 600 GeV [21].

Solving the six-dimensional equations of motion leads
to an orthonormal set of functions, which depend on two
KK indices k, l corresponding to the two extra dimensions,
with k � 1, l � 0, or k ¼ l ¼ 0 [18]. The model becomes
strongly interacting at high-energy scales, so that it is
viewed as a low-energy effective theory which is valid up
to some cutoff scale �. From naive dimensional analysis
(NDA) [19], this scale is estimated to be � � 10=R, cor-
responding to an upper limit kþ l � NKK � 10 for the KK
indices.

Before electroweak symmetry breaking, all ðklÞ modes

have degenerate tree-level masses mðklÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
=R.

The degeneracy is lifted by loop corrections, which lead
to mass operators localized at the corners of the chiral
square [19,22]. Additional flavor diagonal and nondiagonal
contributions can originate from physics at the UV cutoff
scale. Since flavor nonuniversal operators would in general
lead to unacceptably large FCNC transitions, we will as-
sume that the localized operators are flavor conserving, so
that the Cabibbo-Kobayashi-Maskawa (CKM) matrix re-
mains the only source of flavor violation. In this work, we
concentrate on the leading order contributions from the
UED6 model to �B ! Xs�, using tree-level masses for
those KK excitations which receive only logarithmic cor-
rections from loop corrections and boundary terms local-
ized at the orbifold fixed points [19,22–24]. This is justified

since these terms are of one-loop order, thus leading to
next-to-leading order effects for �B ! Xs�.
Upon compactification, the six-component gauge fields

Wa
M, M ¼ 0; . . . ; 5, decompose into four-component mas-

sive KK vector bosonsWa
�ðklÞ,� ¼ 0; . . . ; 3, and two scalar

KK fields Wa
4;5ðklÞ. Here a denotes the adjoint group index.

Following Refs. [18,25], a covariant gauge fixing is intro-
duced, such thatWa

�ðklÞ do not mix withWa
4;5ðklÞ. In the six-

dimensional formulation, the gauge fixing-term reads

L GF ¼ � 1

2�
½@�Wa

� � �ð@4Wa
4 þ @5W

a
5 � g6v6�

aÞ�2

� 1

2�0 ½@�B� � �0ð@4B4 þ @5B5 þ g06v6�
3Þ�2;

(3)

whereW, B are the uncompactified SUð2Þ and Uð1Þ gauge
fields with the six-dimensional gauge couplings gð0Þ6 , and

�ð0Þ are the gauge parameters. The �a are the components
of the six-dimensional Higgs doublet

H ¼ 1ffiffiffi
2

p �2 þ i�1

v6 þ hþ i�3

� �
: (4)

The six-dimensional gauge couplings and vacuum expec-
tation value are related to the four-dimensional values by

gð0Þ6 ¼ gð0Þ�R and v6 ¼ v=R.
The Higgs scalars mix with the fourth and fifth compo-

nent of the gauge fields to form the would-be Goldstone
bosons Ga

ðklÞ of the massive vector bosons Wa
�ðklÞ, and two

physical scalars aaðklÞ and Wa
HðklÞ. Only the would-be

Goldstone bosons have zero modes Ga
ð00Þ, which corre-

spond to the usual components of the SM Higgs doublet.
For kþ l � 1, the Ga

ðklÞ are dominated by the scalar ad-

joints Wa
4;5ðklÞ and B4;5ðklÞ while the aaðklÞ are composed

mostly of the Higgs doublet elements. For the charged
fields one finds

G�
ðklÞ ¼

1

MðklÞ
W

�
1

R
ðlW�

4ðklÞ � kW�
5ðklÞÞ þMW�

�
ðklÞ

�
;

a�ðklÞ ¼
1

MðklÞ
W

�
mðklÞ��

ðklÞ �
MW

mðklÞR
ðlW�

4ðklÞ � kW�
5ðklÞÞ

�
;

W�
HðklÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p ½kW�
4ðklÞ þ lW�

5ðklÞ�; (5)

where

X� ¼ X1 	 iX2ffiffiffi
2

p ; X ¼ W;�;G; a;WH: (6)

Here M2
WðklÞ ¼ m2

ðklÞ þM2
W is the tree-level squared mass
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of the W�
�;HðklÞ and a�ðklÞ. The would-be Goldstone bosons

G�
ðklÞ receive the unphysical squared mass �M2

WðklÞ from
gauge fixing. Similar expressions hold for the neutral
fields, taking into account a small mixing between W3

ðklÞ
and BðklÞ. However, since they do not contribute to the

process �B ! Xs� at leading order in the electroweak in-
teractions we do not give them here.

As mentioned above, the masses of the KK modes
receive corrections from loop and UV effects, which are
dependent on the cutoff scale �. Since G�

ðklÞ and W�
�;HðklÞ

are protected by gauge invariance, the dependence on � is
only logarithmic [22], so that the mass corrections are
small compared to 1=R and can be neglected in a LO
calculation. The a�ðklÞ scalars, however, can receive contri-

butions proportional to �2 to both their bulk and boundary
mass terms [24].

In order to obtain a small mass term for the zero mode
Higgs doublet, the bulk and boundary mass terms need to
be tuned to cancel to a large extent. However, independent
of this tuning, the higher KK modes can receive sizeable
contributions from these terms. As a result, the a�ðklÞ scalars
can be heavier or lighter than the other particles of the same
KK level.3 We include the �2 corrections to the a�ðklÞ
masses based on the following parametrization of the
UV-induced mass terms:

L 

�
L2

2
ð�ðx4Þ�ðx5Þ þ �ðL� x4Þ�ðL� x5ÞÞm2

H;1

þ L2

2
�ðx4Þ�ðL� x5Þm2

H;2 þm2
H;bulk

�
jHj2: (7)

Although the UV physics is not specified, these mass
parameters are expected to stem from loop contributions
of the UV dynamics, so that

m2
H;i ¼

h2i
16�2

�2 ¼ h2i
16�2

N2
KK

R2
; i ¼ 1; 2; (8)

with h1;2 ¼ Oð1Þ. Using the explicit form of the KK wave

functions from Refs. [18,20] and tuning the bulk mass
m2

H;bulk to exactly cancel the �2 correction to the zero

mode of the Higgs doublet, the masses of the a�ðklÞ scalars
are found to be

M2
aðklÞ ¼ M2

WðklÞ þ
3h21 þ ð1þ ð�2ÞkþlÞh22

16�2

N2
KK

R2
: (9)

We will estimate the theoretical uncertainty from the un-

specified UV physics by varying the coupling constants
h1;2 of the boundary mass terms independently in the range

[0, 1] which corresponds to either decoupling or strong
coupling.
The boundary mass terms could cause mixing among

KK modes and one would need to rediagonalize the mass
matrix to find the eigenstates if they are large. To have a
light Higgs boson, we assume that these mixing mass terms
are tuned to be much smaller than 1=R, so that we can treat
them as small perturbations and ignore the higher-order
mixing effects.
The small KK scale suggested by dark matter constraints

would lead to interesting signals at the Fermilab Tevatron
and the CERN Large Hadron Collider [19,26,27] as well as
the International Linear Collider [28]. However, strong
bounds on the compactification radius can arise from heavy
flavor physics. In particular, the FCNC decay �B ! Xs�,
which shall be studied in the following, is known to put
stringent constraints on various beyond the SM physics
scenarios at the electroweak scale.

III. CALCULATION

We work in an effective theory with five active quarks,
photons, and gluons obtained by integrating out the elec-
troweak bosons, the top quark, and all the heavy KK
modes. Adopting the operator basis of Ref. [29], the effec-
tive Lagrangian relevant for the b ! s�ðgÞ transitions at a
scale � reads

L eff ¼ LQED�QCD þ 4GFffiffiffi
2

p V�
tsVtb

X8
i¼1

Cið�ÞQi; (10)

where the first term is the conventional QED and QCD
Lagrangian for the light SM particles. In the second term
GF and Vij denotes the Fermi coupling constant and the

elements of the CKMmatrix, respectively, while Cið�Þ are
the Wilson coefficients of the corresponding operators Qi

built out of the light fields. Terms proportional to the small
Vub mixing, which will be included in our numerical
results, have been neglected above for simplicity. The
same refers to higher-order electroweak corrections [30].
The operators Q1;...;6 are the usual four-quark operators

whose explicit form can be found in Ref. [29]. The remain-
ing two operators, characteristic for the b ! s�ðgÞ transi-
tions, are the dipole operators

Q7 ¼ emb

16�2
ð�sL���bRÞF��;

Q8 ¼ gmb

16�2
ð�sL���TabRÞGa

��:
(11)

Here eðgÞ is the electromagnetic (strong) coupling con-
stant, qL;R are chiral quark fields, F�� ðGa

��Þ is the elec-

tromagnetic (gluonic) field strength tensor, and Ta are the
color generators normalized such that TrðTaTbÞ ¼ �ab=2.

3This problem already arises in UED5, but was not discussed
in previous analyses of �B ! Xs� for this model [13–15].
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The factor mb in the definition of Q7;8 denotes the bottom

quark MS mass renormalized at �.
The relevant quantity entering the calculation ofBð �B !

Xs�Þ is not C7ð�Þ but a linear combination Ceff
7 ð�Þ of this

Wilson coefficient and of the coefficients of the four-quark
operators. The so-called effective Wilson coefficients rele-
vant for b ! s�ðgÞ are [31]

Ceff
i ð�Þ ¼

8><
>:
Cið�Þ for i ¼ 1; . . . ; 6;
C7ð�Þ þP6

j¼1 yjCjð�Þ for i ¼ 7;

C8ð�Þ þP
6
j¼1 zjCjð�Þ for i ¼ 8;

(12)

where yj and zj are chosen so that the LO b ! s�ðgÞ
matrix elements of the effective Lagrangian are propor-

tional to the LO terms Ceffð0Þ
7;8 ð�Þ. In the MS scheme with

fully anticommuting �5, one has ~y ¼ ð0; 0;� 1
3 ;

� 4
9 ;� 20

3 ;� 80
9 Þ and ~z ¼ ð0; 0; 1;� 1

6 ; 20;� 10
3 Þ [29].

We further decompose the effective coefficients into a
SM and a new physics part

Ceff
i ð�Þ ¼ Ceff

iSMð�Þ þ�Ceff
i ð�Þ; i ¼ 1; . . . ; 8; (13)

and expand the latter contribution in powers of 	s as
follows:

�Ceff
i ð�Þ ¼ X1

n¼0

�
	sð�Þ
4�

�
n
�CeffðnÞ

i ð�Þ: (14)

In the case of UED6, new physics affects the initial
conditions of the Wilson coefficients of the operators in
the low-energy effective theory while it does not induce
new operators besides those already present in the SM. To
find the LO corrections from the UED6 model to Bð �B !
Xs�Þ one has to consider all the one-loop one-particle-
irreducible diagrams contributing to the processes b !
s�ðgÞ. The one-loop b ! s� diagrams are shown in
Fig. 1. Before performing the loop integration, the
Feynman integrands are Taylor-expanded up to second
order in the off-shell external momenta and to first order
in the bottom quark mass. Thereby, only terms which
project on Q7 after the use of the equations of motion are
retained. The calculation for the b ! sg amplitude pro-
ceeds in the same way. The relevant Feynman rules have
been derived from Ref. [18] and implemented into a model
file for FeynArts3 [32], which has been used to generate
the necessary amplitudes. At tree level, the interactions
between SM and KK fields preserve both KK numbers.
Consequently, only diagrams where all particles in the loop
have the same KK index ðklÞ have to be taken into account.

At the matching scale�0 ¼ OðmtÞ the LO results for the
UED6 initial conditions read

�Ceffð0Þ
i ð�0Þ ¼

8>>>><
>>>>:
0 for i ¼ 1; . . . ; 6;
� 1

2

P0
k;l

Að0ÞðxklÞ for i ¼ 7;

� 1
2

P0
k;l

Fð0ÞðxklÞ for i ¼ 8;

(15)

where the 0 superscript in the summation indicates that the
KK sums run only over the restricted range k � 1 and l �
0, i.e.

P0
k;l

¼ P
k�1

P
l�0 .

We decompose the Inami-Lim functions as

Xð0ÞðxklÞ ¼
X

I¼W;a;H

Xð0Þ
I ðxklÞ; X ¼ A; F; (16)

where the function Xð0Þ
W;a;HðxklÞ describes the contribution

due to the exchange of KK modes of the would-be
Goldstone,G�

ðklÞ, and theW-bosons,W�
�ðklÞ, the scalar fields

a�ðklÞ and W�
HðklÞ. Here xkl ¼ ðk2 þ l2Þ=ðR2M2

WÞ.
Our results for the LO Inami-Lim functions entering

Eq. (16) are given by

FIG. 1. One-loop corrections to the b ! s� amplitude in the
UED6 model involving the KK modes of the would-be
Goldstone, G�

ðklÞ, the W-boson, W�
�ðklÞ, and the scalar fields

a�ðklÞ and W�
HðklÞ. Diagrams where the SUð2Þ quark doublets

Qi
ðklÞ are replaced by the SUð2Þ quark singlets Ui

ðklÞ are not

shown. Here i ¼ u; c; t. See text for details.
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Að0Þ
W ðxklÞ ¼ xtð6ððxt � 3Þxt þ 3Þx2kl � 3ð5ðxt � 3Þxt þ 6Þxkl þ xtð8xt þ 5Þ � 7Þ

12ðxt � 1Þ3 þ 1

2
ðxkl � 2Þx2kl ln

�
xkl

xkl þ 1

�

� ðxkl þ xtÞ2ðxkl þ 3xt � 2Þ
2ðxt � 1Þ4 ln

�
xkl þ xt
xkl þ 1

�
; (17)

Fð0Þ
W ðxklÞ ¼ xtð�6ððxt � 3Þxt þ 3Þx2kl � 3ððxt � 3Þxt þ 6Þxkl þ ðxt � 5Þxt � 2Þ

4ðxt � 1Þ3 � 3

2
ðxkl þ 1Þx2kl ln

�
xkl

xkl þ 1

�

þ 3ðxkl þ 1Þðxkl þ xtÞ2
2ðxt � 1Þ4 ln

�
xkl þ xt
xkl þ 1

�
; (18)

Að0Þ
a ðxklÞ ¼ xtð6x2kl � 3ðxtð2xt � 9Þ þ 3Þxkl þ ð29� 7xtÞxt � 16Þ

36ðxt � 1Þ3 � 1

6
ðxkl � 2Þxkl ln

�
xkl

xkl þ 1

�

� ðxkl þ 3xt � 2Þðxt þ xklððxkl � xt þ 4Þxt � 1ÞÞ
6ðxt � 1Þ4 ln

�
xkl þ xt
xkl þ 1

�
; (19)

Fð0Þ
a ðxklÞ ¼ xtð�6x2kl þ ð6x2t � 9xt � 9Þxkl þ ð7� 2xtÞxt � 11Þ

12ðxt � 1Þ3 þ 1

2
xklðxkl þ 1Þ ln

�
xkl

xkl þ 1

�

þ ðxkl þ 1Þðxt þ xklððxkl � xt þ 4Þxt � 1ÞÞ
2ðxt � 1Þ4 ln

�
xkl þ xt
xkl þ 1

�
; (20)

Að0Þ
H ðxklÞ ¼ xtð6ðx2t � 3xt þ 3Þx2kl � 3ð3x2t � 9xt þ 2Þxkl � 7x2t þ 29xt � 16Þ

36ðxt � 1Þ3 þ 1

6
xklðx2kl � xkl � 2Þ ln

�
xkl

xkl þ 1

�

� ðxkl þ 1Þðx2kl þ ð4xt � 2Þxkl þ xtð3xt � 2ÞÞ
6ðxt � 1Þ4 ln

�
xkl þ xt
xkl þ 1

�
; (21)

Fð0Þ
H ðxklÞ ¼ � xtð6ðx2t � 3xt þ 3Þx2kl þ 3ð3x2t � 9xt þ 10Þxkl þ 2x2t � 7xt þ 11Þ

12ðxt � 1Þ3 � 1

2
xklðxkl þ 1Þ2 ln

�
xkl

xkl þ 1

�

þ ðxkl þ xtÞðxkl þ 1Þ2
2ðxt � 1Þ4 ln

�
xkl þ xt
xkl þ 1

�
: (22)

Here xt ¼ m2
t ð�0Þ=M2

W . Our results for the sums
Xð0Þ
W ðxklÞ þ Xð0Þ

a ðxklÞ, X ¼ A, F, agree with the expressions
for the one-loop dipole functions given in Ref. [14]. We
note that there is a misprint in the last line of Eq. (3.33) of
the latter paper. Obviously, the term lnððxn þ xtÞ=ð1þ xtÞÞ
should read lnððxn þ xtÞ=ð1þ xnÞÞ with xn ¼ n2=ðR2M2

WÞ
and n the single KK index appearing in UED5.

For the numerical analysis, the results in Eqs. (17)–(22)
need to be summed over the KK indices k, l. This summa-
tion can be performed analytically employing an expansion
for large 1=R, as explained in the appendix. For zero
boundary mass contributions, h1;2 ¼ 0, we obtain the fol-

lowing approximate formulas:

X0

k;l

Að0Þ
W ðxklÞ � 0:686 134þ 0:162 912�xt

x2
; (23)

X0

k;l

Fð0Þ
W ðxklÞ � 0:316 677þ 0:075 190�xt

x2
; (24)

X0

k;l

Að0Þ
a ðxklÞ � � 23�

288

xt
x
lnð�2R2Þ

� 0:866 95þ 0:205 844�xt
x

; (25)

X0

k;l

Fð0Þ
a ðxklÞ � � 7�

96

xt
x
lnð�2R2Þ

� 0:791 563þ 0:187 945�xt
x

; (26)

X0

k;l

Að0Þ
H ðxklÞ � � 0:211 118þ 0:050 127�xt

x2
; (27)
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X0

k;l

Fð0Þ
H ðxklÞ � � 0:158 339þ 0:037 595�xt

x2
; (28)

where x ¼ 1=ðR2M2
WÞ and �xt ¼ xt � ð165=80:4Þ2. Note

that in the above formulas we have only kept the leading
terms in the 1=x expansion for simplicity. The coefficients
of the logarithms in Eqs. (25) and (26) are exact in the limit
of an infinite number of KK modes. We emphasize that the
given approximations are for illustrative purpose only. In
our numerical analysis we will throughout employ the

exact double series
P

k;lX
ð0Þ
I ðxklÞ, X ¼ A; F; I ¼ W; a;H,

summed over the restricted range k � 1, l � 0, and lþ
k � NKK.

We see from the latter equations that while the one-loop

G�
ðklÞ and W�

�;HðklÞ corrections to �Ceffð0Þ
7;8 ð�0Þ are insensi-

tive to the UV cutoff scale � or, equivalently, NKK, the
contributions due to a�ðklÞ exchange depend logarithmically

on �. The different convergence behavior is closely con-
nected to the unitarity of the CKMmatrix which results in a
Glashow-Iliopoulos-Maiani (GIM) suppression [33] of the
higher KK mode contributions to the double sums in
Eqs. (23)–(28). In the case at hand, the GIM mechanism
leads to a hierarchy of the various contributions to

�Ceffð0Þ
7;8 ð�0Þ, with Xð0Þ

W;HðxklÞ proportional to 1=ðk2 þ l2Þ2
and Xð0Þ

a ðxklÞ, X ¼ A; F, scaling like 1=ðk2 þ l2Þ for large
values of l, k. The extra power of k2 þ l2 in the contribu-
tion from diagrams with a�ðklÞ exchange, that leads to the

logarithmic divergent results, stems from the left-handed
(right-handed) top quark Yukawa coupling enhanced part

of the aþðklÞ
�Ut
ðklÞb (a�ðklÞ �sU

t
ðklÞ) tree-level vertex. No such

terms are present in the flavor-changing vertices involving
G�

ðklÞ and W�
�;HðklÞ.

The logarithmic divergences appearing in Eqs. (25) and
(26) would be cancelled by counterterms at the scale � at
which perturbativity is lost in the higher dimensional the-
ory. Our calculation only determines the leading logarith-
mic corrections associated with the renormalization group
(RG) running between � and 1=R. The corresponding
initial conditions contain incalculable finite matching cor-
rections from the unknown UV physics. Assuming that the
RG effects dominate over the finite matching corrections
and that the UV completion of the UED6 model has a
CKM-type flavor structure, the UV sensitivity can be ab-
sorbed into a logarithmic dependence on �R or, equiva-
lently,NKK. To gauge the theoretical uncertainty associated
with the unknown UV completion we will vary NKK in the
range [5, 15] around NKK ¼ �R � 10 as estimated by
NDA. The choice of the lower value of NKK is motivated
by the observation that for NKK < 5 the nonlogarithmic

terms in
P

k;lX
ð0Þ
a ðxklÞ, X ¼ A; F, become numerically of

the same size as the logarithmic ones. Since the choice of
the upper value of NKK has no impact on our conclusions
we choose it symmetrically. We mention that the require-

ment of unitarity of gauge boson scattering at high energies
[34] generically leads to values of �R notably below the
NDA estimate NKK � 10.

The individual contributions�IC
effð0Þ
7;8 ð�0Þ, I ¼ W; a;H,

to the UED6 initial conditions of the dipole operators as a
function of 1=R are shown in Fig. 2. The contribution due
to the exchange of G�

ðklÞ and W�
�ðklÞ and W�

HðklÞ (green/

medium gray) KK modes are depicted as yellow (light
gray) and green (medium gray) curves, while the red
(dark gray) bands and the black lines illustrate the a�ðklÞ
corrections. The lower (upper) borders of the red (dark
gray) bands correspond to NKK ¼ 5ð15Þ while the black
lines represent the results for NKK ¼ 10. We see that in
both cases the contribution involving a�ðklÞ exchange is by

far dominant and its variation with NKK is nonnegligible.

Nevertheless, the large positive corrections to �Ceffð0Þ
7;8 ð�0Þ

already start to exceed the SM values Ceffð0Þ
7;8SMð�0Þ �

�0:19;�0:10 in magnitude for 1=R � 240; 335 GeV in

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3
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7ef

f
0

µ 0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
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0.2

0.3

0.4

1 R TeV

IC
8ef

f
0

µ 0

FIG. 2 (color online). �IC
effð0Þ
7;8 ð�0Þ as a function of 1=R. The

different curves correspond to the individual contributions due to
the exchange of KK modes of the would-be Goldstone, G�

ðklÞ,
and the W-bosons, W�

�ðklÞ (yellow/light gray), the scalar fields

a�ðklÞ (black), and W�
HðklÞ (green/medium gray), respectively. The

lower (upper) borders of the red (dark gray) bands correspond to
NKK ¼ 5ð15Þ while the black lines represent the results for
NKK ¼ 10. See text for details.
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the most conservative case NKK ¼ 5. The observed strong

enhancement of the initial conditions Ceffð0Þ
7;8 ð�0Þ will play

the key role in our phenomenological applications.4

Another main observation of our work is, that in the
UED6 model the Z- ð�CÞ, photon ð�DÞ, gluon penguin
ð�EÞ, and the j�Fj ¼ 2 boxes ð�SÞ all behave as 1=ðk2 þ
l2Þ for large values of k, l. In contrast, j�Fj ¼ 1 boxes
ð�B��;llÞ show an asymptotic 1=ðk2 þ l2Þ2 behavior after

GIM. The corresponding UED6 Inami-Lim functions
therefore exhibit the following behavior: �C, �S /
x2t =x lnð�2R2Þ, �D, �E / xt=x lnð�2R2Þ, and �B��;ll /
xt=x

2. This implies that the logarithmic cutoff sensitivity
first seen in Eqs. (25) and (26) is a generic feature of all
FCNC transitions in the UED6model. A dedicated study of
neutral meson mixing, rare K- and B-decays in UED6 is
left for further work.

IV. NUMERICS

The UED6 prediction of Bð �B ! Xs�Þ for E0 ¼
1:6 GeV as a function of 1=R is displayed by the red
(dark gray) band in Fig. 3. The yellow (light gray) and
green (medium gray) band in the same figure shows the
experimental and SM result as given in Eqs. (1) and (2),
respectively. In all three cases, the middle line is the central
value, while the widths of the bands indicate the uncertain-
ties that one obtains by adding errors in quadrature. The
central value of the UED6 prediction corresponds to
NKK ¼ 10 and h1;2 ¼ 0. The strong suppression ofBð �B !
Xs�Þ in the UED6 model with respect to the SM expecta-
tion and the slow decoupling of KK modes is clearly seen
in Fig. 3.

In our numerical analysis, matching of the UED6Wilson
coefficients at the electroweak scale is complete up to
leading logarithmic order, while terms beyond that order
include SM contributions only. For the reference values of
the renormalization scales �0, �b, �c ¼ 160, 2.5,
1.25 GeV, we utilize the formula

Bð �B ! Xs�Þ ¼ ½3:15� 0:23� 8:03�Ceffð0Þ
7 ð�0Þ

� 1:92�Ceffð0Þ
8 ð�0Þ þ 4:96ð�Ceffð0Þ

7 ð�0ÞÞ2
þ 0:36ð�Ceffð0Þ

8 ð�0ÞÞ2
þ 2:33�Ceffð0Þ

7 ð�0Þ�Ceffð0Þ
8 ð�0Þ� � 10�4;

(29)

which has been derived based on the NNLO SM results of
Refs. [8,10,36]. For the remaining input parameters we

adopt the central values and error ranges that can be found
in Ref. [8].
The theoretical uncertainty in the UED6 model is esti-

mated by scanning NKK, the couplings h1;2 of the boundary
mass terms, and the matching scale�0 in the range [5, 15],
[0, 1], and [80, 320] GeV for the largest possible variations.
The combined theory error does not exceed þ17

�8 % for 1=R

in the range [0.4, 2.0] TeV. Larger relative errors of above
þ55
�25% appear for 1=R ¼ 300 GeV. Whether the quoted

numbers provide a reliable estimate of the cutoff and
higher-order corrections to Bð �B ! Xs�Þ in the UED6
model can only be seen by performing a next-to-leading
order (NLO) matching calculation. Such a calculation
seems worthwhile but is beyond the scope of this work.
The parametric uncertainty due to the error on the top
quark mass is below þ1

�3% for 1=R in the range [0.3,

2.0] TeV and thus notably smaller than the combined
theory uncertainty.
Since the experimental result is at present above the SM

one and KK modes in the UED6 model necessarily inter-
fere destructively with the SM b ! s� amplitude, the
lower bound on 1=R following from Bð �B ! Xs�Þ turns
out to be much stronger than what one can derive from any
other currently available direct measurement [26]. If ex-
perimental, parametric, and theory uncertainties are treated
as Gaussian and combined in quadrature, the 95% C.L.
bound amounts to 650 GeV. In contrast to the upper limit
coming from the dark matter abundance the latter exclu-
sion is almost independent of the Higgs mass because
genuine electroweak effects related to Higgs boson ex-
change enter Bð �B ! Xs�Þ first at the two-loop level. In
the SM these corrections have been calculated [30] and
amount to around �1:5% in the branching ratio. They are
included in Eq. (29). Neglecting the corresponding two-
loop Higgs effects in the UED6 model calculation should

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.5

2.0

2.5

3.0

3.5

4.0

1 R TeV

B
X

s
10

4

FIG. 3 (color online). Bð �B ! Xs�Þ for E0 ¼ 1:6 GeV as a
function of 1=R. The red (dark gray) band corresponds to the
UED6 result. The 68% C.L. range and central value of the
experimental/SM result is indicated by the yellow/green (light/
medium gray) band underlying the straight solid line. See text
for details.

4For compactification scales 1=R � 100 GeV it would even be
possible to reverse the sign of Ceff

7 ð�bÞ with respect to its SM
value Ceff

7 ð�bÞ � �0:37. This possibility is disfavored on gen-
eral grounds by the experimental information on �B ! Xsl

þl�
[35].
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therefore have practically no influence on the derived
limits.

The upper (lower) contour plot in Fig. 4 shows the
95% C.L. bound of 1=R as a function of the experimental
(SM) central value and error. The current experimental
world average and SM prediction of Eqs. (1) and (2) are
indicated by the black squares. These plots allow one to
monitor the effect of future improvements in both the

measurements and the SM prediction. Of course, one
should keep in mind that the derived bounds depend in a
nonnegligible way on the treatment of theoretical uncer-
tainties. Furthermore, the found limits could be weakened
by the NLO matching corrections in the UED6 model
which remain unknown.

V. CONCLUSIONS

We have calculated the leading order corrections to the
inclusive radiative �B ! Xs� decay in the standard model
with two universal extra dimensions. While the one-loop
matching corrections associated to the exchange of
Kaluza-Klein modes of the would-be Goldstone, G�

ðklÞ,
the W-boson, W�

�ðklÞ, and the physical scalar W�
HðklÞ are

insensitive to the ultraviolet physics, we find that contri-
butions involving a�ðklÞ scalars depend logarithmically on

the cutoff scale �. We have emphasized that in the con-
sidered model all flavor-changing neutral current transi-
tions suffer from this problem already at leading order.
This feature is not present in the case of one universal extra
dimension where at leading order all flavor-changing neu-
tral current processes are cutoff independent. Moreover, we
have included formally next-to-leading but sizeable mass
corrections to the Kaluza-Klein scalars that depend quad-
ratically on the scale�. Although the ultraviolet sensitivity
weakens the lower bound on the inverse compactification
radius 1=R that can be derived from the measurements of
the �B ! Xs� branching ratio, a strong constraint of 1=R >
650 GeV at 95% confidence level is found if errors are
added in quadrature. The corresponding 95% confidence
level limit in the case of one universal extra dimension is
not affected by ultraviolet physics and amounts to 1=R >
600 GeV. Our new bound exceeds by far the limits that can
be derived from any other direct measurement, and is at
variance with the parameter region preferred by the dark
matter abundance. This once again underscores the out-
standing role of the inclusive radiative �B-meson decay in
searches for new physics close to the electroweak scale.

ACKNOWLEDGMENTS

We are grateful to Mikolaj Misiak and Matthias
Steinhauser for private communications concerning
Eq. (29). Helpful discussions with Bogdan Dobrescu and
Giulia Zanderighi are acknowledged. ANL is supported by
the U.S. Department of Energy, Division of High Energy
Physics, under Contract No. DE-AC02-06CH11357. This
work was initiated when U.H. was supported by the Swiss
Nationalfonds. He is grateful to the University of Zürich
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APPENDIX: EVALUATION OF KK SUMS

Here we show how to approximate the double sum over
KK levels ðklÞ appearing in Eq. (15). Following Ref. [25],

0.3 TeV 0.4 0.5 0.6 0.7 0.8 1.0 1.4

2.0 TeV
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FIG. 4 (color online). The upper/lower panel displays the
95% C.L. limits on 1=R as a function of the experimental/SM
central value (horizontal axis) and total error (vertical axis). The
experimental/SM result from Eq. (1)/Eq. (2) is indicated by the
black square. The contour lines represent values that lead to the
same bound in TeV. See text for details.
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we first introduce the integrals

InðaÞ ¼ ð�1Þnanþ1
Z 1

0
dy

yn

ayþ xkl
; (A1)

where n ¼ 0; 1; . . . , and xkl ¼ ðk2 þ l2Þx with x ¼
1=ðR2M2

WÞ. Obviously, Inð0Þ ¼ 0. These integrals allow
us to express the logarithms appearing in Eqs. (17)–(22) as

ln

�
xkl þ a

xkl þ 1

�
¼ I0ðaÞ � I0ð1Þ;

xkl ln

�
xkl þ a

xkl þ 1

�
¼ I1ðaÞ � I1ð1Þ � 1þ a;

x2kl ln

�
xkl þ a

xkl þ 1

�
¼ I2ðaÞ � I2ð1Þ þ 1

2
� xkl þ xkla� 1

2
a2;

x3kl ln

�
xkl þ a

xkl þ 1

�
¼ I3ðaÞ � I3ð1Þ � 1

3
þ 1

2
xkl � x2kl þ x2kla

� 1

2
xkla

2 þ 1

3
a3; (A2)

with a ¼ 0 or xt. We note that Eq. (D.3) of Ref. [25] is
missing an overall minus sign on its right-hand side.
Since the individual building blocks InðaÞ behave as

1=ðk2 þ l2Þ for large k, l, the corresponding double series
over the KK levels diverge logarithmically. We regulate the
appearing divergence analytically

I�n ðaÞ ¼ ð�1Þnanþ1
Z 1

0
dy

yn

ðayþ xklÞ1þ�
; (A3)

with � > 0. Then one has

X0

k;l

I�n ðaÞ ¼ ð�1Þnanþ1
X1
k¼1

X1
l¼0

Z 1

0
dy

yn

ðayþ xklÞ1þ�
¼ ð�1Þnanþ1

�ð1þ �Þ
X1
k¼1

X1
l¼0

Z 1

0
dy yn

Z 1

0
dt t�e�ðayþxklÞt

¼ ð�1Þnanþ1

4�ð1þ �Þ
Z 1

0
dy yn

Z 1

0
dt t�ð#3ð0; e�xtÞ2 � 1Þe�ayt

¼ ð�1Þn
4�ð1þ �Þ

Z 1

0
dt t�1�nþ�ð#3ð0; e�xtÞ2 � 1Þð�ð1þ nÞ � �ð1þ n; atÞÞ; (A4)

where in the first step we have used the Mellin-Barnes
representation

1

s1þ�
¼ 1

�ð1þ �Þ
Z 1

0
dt t�e�st: (A5)

Here #3ðu; qÞ ¼ 1þ 2
P1

m¼1 q
m2

cosð2muÞ, �ðzÞ ¼R1
0 dt tz�1e�t, and �ðu; zÞ ¼ R1

z dt tu�1e�t, denotes the
elliptic theta, the Euler gamma, and the plica function,
respectively.

The integration over t in the last line of Eq. (A4) cannot
be performed analytically. Yet, using

#3ð0; e�zÞ �
( ffiffiffi

�
z

q
; for z � ffiffiffiffi

�
p

;

1þ 2
P

nþ1
m¼1 e

�m2z; for z >
ffiffiffiffi
�

p
;

(A6)

and expanding the integrand in powers of 1=t in the latter
case, we can perform the integration piecewise and ap-
proximate the double series asX0

k;l

I�n ðaÞ � l�nðaÞ þ hnðaÞ: (A7)

The integration over t 2 ½0; ffiffiffiffi
�

p
=x� leads to the relatively

compact formulas

l�nðaÞ ¼ ð�1Þn�anþ1

4ðnþ 1Þx
1

�

þ

8>>>><
>>>>:

1
8x ½2

ffiffiffiffi
�

p
xE2ða

ffiffiffi
�

p
x Þ� xð2�ð0; a

ffiffiffi
�

p
x Þþ lnða2�

x2
ÞÞþ 2ð�að1� lnaÞ� ð ffiffiffiffi

�
p þ�EÞxÞ�; for n¼ 0;

ð�1Þn
4nðnþ1Þ2x ½e�ða ffiffiffi

�
p

=xÞðnþ 1Þ2xan �anðxðnþ 1Þ2 þ�anðnþ 1Þð�ð0; a
ffiffiffi
�

p
x Þþ lnðaÞÞ��anÞ

þ ðnþ 1Þðnð1� ffiffiffiffi
�

p Þþ 1Þ��n=2xnþ1 �ð�ðnþ 1Þ��ðnþ 1; a
ffiffiffi
�

p
x ÞÞ� for n¼ 1;2; . . . ;

(A8)

where we have expanded the result around � ¼ 0 and dropped all terms that vanish in the limit � ! 0. Furthermore,
EmðzÞ ¼

R1
1 dtt�me�zt and �E � 0:577216 is the exponential integral function and the Euler constant.
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The integration over t 2 ð ffiffiffiffi
�

p
=x;1Þ is finite in the limit � ! 0. For all double sums

P0
k;lInðaÞ appearing in Eq. (A2) we

were able to find analytic expressions. Since the results turn out to be rather lengthy and not very informative we refrain
from giving them here. Short numerical expressions for the hnðaÞ can be obtained in the large x limit. Keeping terms up to
third order in 1=x, we find

hnðaÞ ¼

8>>>>><
>>>>>:

0:184 616a
x � 0:252 21a2

x2
þ 0:259 202a3

x3
; for n ¼ 0;

� 0:092 3082a2

x þ 0:168 14a3

x2
� 0:194 402a4

x3
; for n ¼ 1;

0:061 538 8a3

x � 0:126 105a4

x2
þ 0:155 522a5

x3
; for n ¼ 2;

� 0:046 154 1a4

x þ 0:100 884a5

x2
� 0:129 601a6

x3
; for n ¼ 3:

(A9)

Combining Eqs. (A8) and (A9) we finally arrive at the following large x approximations:

X0

k;l

I�n ðaÞ � ð�1Þn�anþ1

4ðnþ 1Þx
�
1

�
� lnx

�
þ

8>>>>><
>>>>>:

0:644 381a
x � 0:751 902a2

x2
þ 0:387 481a3

x3
; for n ¼ 0;

� 0:322 191a2

x þ 0:501 268a3

x2
� 0:290 611a4

x3
; for n ¼ 1;

0:214 794a3

x � 0:375 951a4

x2
þ 0:232 489a5

x3
; for n ¼ 2;

� 0:161 095a4

x þ 0:300 761a5

x2
� 0:193 741a6

x3
; for n ¼ 3:

(A10)

The term 1=�� lnx in Eq. (A10) implies that one should include counterterm contributions from physics at the UV cutoff
scale � that cancel the divergences. Our calculation only determines the RG running contribution between � and 1=R,
given initial conditions at�. Assuming that the unknown finite matching corrections are small and have a CKM-type flavor
structure, the divergences can be absorbed into a cutoff dependence by switching from analytic to cutoff regularization
employing the approximation

1

�
� lnx � lnð�2R2Þ; (A11)

with � not much larger than 1=R. We remark that the latter assumptions are self-consistent because the finite matching
corrections are formally of next-to-leading logarithmic order.
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