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We analyze the quark-gluon induced process ug ! ~d~�þ
i , including the one-loop electroweak effects in

the minimal supersymmetric model. This process is dominated by ~dL-production and is determined by

four helicity amplitudes, three of which are violating helicity conservation, and another one which

respects it and is logarithmically enhanced at high energy. Combining this ug ! ~dL ~�
þ
i analysis with a

corresponding one for ug ! dWþ, we obtain simple approximate relations between the two processes,

testing the minimal supersymmetric model structure at the amplitude and the cross section levels. These

relations become exact at asymptotic energies and, provided the supersymmetry (SUSY) scale is not too

heavy, they may be approximately correct at LHC energies also. In addition to these, we study the one-

loop electroweak corrections to the inclusive ~d~�þ
i production at LHC, presenting as examples, the pT and

angular distributions. Comparing these to the corresponding predictions for W þ jet production derived

earlier, provides an accurate test of the supersymmetric assignments.

DOI: 10.1103/PhysRevD.77.093007 PACS numbers: 12.15.Lk, 14.70.Fm, 14.80.Ly

I. INTRODUCTION

In a previous paper we have shown that the one-loop
virtual supersymmetry (SUSY) electroweak (EW) effects
in the process ug ! dWþ, present a number of remarkable
properties [1]. Among them is the role of SUSY in ensuring
the validity of helicity conservation (HC) for any two-body
process at high energy, to all orders in perturbation theory
[2]. By this we mean the fact that at very high energies and
fixed angles, the only surviving two-body amplitudes are
those where the sum of the initial particle helicities equal to
the sum of the final particle helicities [2]. According to HC,
these are the only amplitudes that could possibly contribute
at asymptotic energies, and in fact receive the logarithmic
enhancements extensively studied in [3,4]. All the rest
must vanish in this limit.

These results raised several questions concerning the
deeper reasons for the validity of HC, and whether terms
involving ratios of masses could possibly violate it.1 Such
questions called for further studies of various explicit
processes [1]. Particular among them are processes involv-
ing heavy SUSY-particles in the final state, where estab-
lishing of HC is expected to be delayed.

Along these lines of thought, we present here an analysis

of the process ug ! ~dL ~�
þ
i , which starts from the same

initial state as ug ! dWþ, but its final state involves
SUSY partners of dWþ. Such a study could provide in-
sights into the SUSY implications, which of course become
clearest at the highest energy.

Denoting the helicities and momenta of the incoming
and outgoing particles in the above process as

uðpu; �uÞ þ gðpg; �gÞ ! ~dLðp~dÞ þ ~�þ
i ðp~�; �~�Þ; (1)

we write the corresponding helicity amplitudes as F
~�
�u�g�~�

.

At Born level, these amplitudes are determined by the
two diagrams in Fig. 1(a), characterized by a u-quark

exchange in the s-channel, and a ~dL-squark exchange in
the u-channel. Because of the negligible u and d quark
masses, the charginos couple only through their pure gau-
gino components, so that the appearance of a right-handed
~dR-squark in the final state is very strongly suppressed.
Moreover, the incoming u-quark must always be left-

handed, with �u ¼ �1=2. The mixing in the (~dL; ~dR)
system is also generally negligible, since it behaves like
mdðAd �� tan�Þ=M2

q, with Mq being the soft SUSY

breaking mass term. Only for extremely large � tan� it
may acquire some relevance, which can easily be taken
into account at the end when discussing the numerical

results.2 Therefore, we neglect (~dL; ~dR)-mixing in the theo-
retical part of this work.
These properties remain true also at the 1-loop EW level,

as it can be seen from the relevant diagrams, shown in
Figs. 1 and 2. So, only four independent helicity ampli-
tudes remain for the process (1), corresponding to �g ¼
�1 and �~� ¼ �1=2; namely

F ~����; F
~�
��þ; F

~�
�þ�; F

~�
�þþ: (2)

The HC rule would then predict that at fixed angles, and
energies much larger than all SUSY masses, the first three

amplitudes F~����, F
~�
��þ, and F

~�
�þ� should all vanish,

most often like M2=s, with M being some ‘‘average’’

1Note that the general proof in [2] is done in the massless limit. 2See (41) in Sec. IV.
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SUSY mass [2]. Only the last amplitude F
~�
�þþ, which

respects HC, could possibly have a nonvanishing, logarith-
mically increasing limit [2–4].

To see this explicitly, we make a complete computation

of the one-loop electroweak contributions to the ug !
~dL ~�

þ
i helicity amplitudes. Our results are contained in a

FORTRAN code, available at the site [5], which calculates all

four helicity amplitudes of (2), in any minimal supersym-
metric model (MSSM) with real parameters.

Using these results, we then present the angular and
energy dependence of each helicity amplitude for three
benchmark cases covering light, medium, and high SUSY
masses. This way we try to illustrate how HC establishes

itself at high energies. In particular, how the corrections to
the leading amplitude Fi�þþ match the high energy leading
logs approximation; and how the individual, relatively
large contributions to the helicity-violating amplitudes
cancel each other at high energies and produce vanishing
results, in accordance to the HC rule.
We next compare these results to those for ug ! dW

obtained in [1]. Denoting the ug ! dW 1loop helicity
amplitudes as FW

�u�g�d�W
, and comparing the leading

helicity-conserving amplitudes FW���� and FW�þ�þ, with
the above F

~�
�þþ for ~dL ~�

þ
i -production, we derive relations

which test the supersymmetric connection between the two
processes at asymptotic energies. These are subsequently

FIG. 1. Independent diagrams used for calculating the ug ! ~dL ~�
þ
i amplitudes. They consist of the tree diagrams (a); the u-channel

bubbles with an upper 4-leg coupling (b); and the s-channel left and right triangles, together with the u-channel up and down triangles
and the down triangles carrying an upper 4-leg coupling, all depicted in (c). Full, broken, and wavy lines describe, respectively,
fermionic, scalar, and gauge particles.
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transformed to simple relations among the differential

cross sections for ug ! ~dL ~�
þ
i and ug ! dWþ, which

should be very good asymptotically, but may be ‘‘not
bad’’ for LHC energies also.

Studying experimentally these SUSY �-relations, could
teach us how the asymptotic SUSY properties are modified
at LHC energies by ‘‘constant’’ terms; i.e. terms which do
not depend on energy, but may depend on the scattering
angle and the SUSY masses and couplings.

Independently of these, we also study the exact one-loop

EW corrections to ~dL ~�
þ
i -production at LHC, and compare

it to the corresponding study forW þ jet production [1]. In
particular, we study the angular and transverse momentum
distributions. Such a study provides a test of whether the
identification of two ‘‘candidate particles’’ possibly pair-

produced at LHC, as a ~dL and a ~�þ
i , is consistent.

The contents of the paper are: In Sec. II, the Born and the

1oop EW contributions to the ug ! ~dL ~�
þ
i helicity ampli-

tudes are presented, as well as the FORTRAN code. In

Sec. III, the high energy properties of the ug ! ~dL ~�
þ
i

and ug ! dWþ amplitudes are given, together with their
SUSY relations. The corresponding numerical results ap-
pear in Sec. IV, while in Sec. V we give the EW contribu-

tion to the LHC ~dL ~�
þ
i -production. Section VI contains our

conclusions and outlook.

II. THE ONE-LOOP ELECTROWEAK
AMPLITUDES FOR ug ! ~dL ~�þ

i

Defining the momenta and helicities of the incoming and
outgoing particles as indicated in (1), and using also

s ¼ ðpu þ pgÞ2; u ¼ ðp~d � pgÞ2 ¼ ðpu � p~�Þ2;
t ¼ ðpg � p~�Þ2 ¼ ðpu � p~dÞ2; (3)

we express the initial and final energies and momenta as

Eu ¼ Eg ¼ pu ¼ pg ¼ p ¼
ffiffiffi
s

p
2
;

E~� ¼ sþm2
~� �m2

~d

2
ffiffiffi
s

p ;

E~d ¼
s�m2

~� þm2
~d

2
ffiffiffi
s

p ;

p0 ¼ p~d ¼ p~� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

~� �m2
~�

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðm~� þm~dÞ2�½s� ðm~� �m~dÞ2�

q
2

ffiffiffi
s

p ;

(4)

where the mass of the u-quark has been ignored. For later
use we also give the kinematical variables

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EuðE~� þm~�Þ

q
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p þm~�Þ2 �m2

~d

q
;

�0
~� ¼ 2p0ffiffiffi

s
p ; ru ¼ p

Eu

¼ 1; r~� ¼ p0

E~� þm~�

;

(5)

while the c.m. scattering angle and transverse momentum
are defined through

u ¼ 1

2
ðm2

~� þm2
~d
� sÞ � 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðm~� þm~dÞ2�½s� ðm~� �m~dÞ2�

q
cos�;

t ¼ 1

2
ðm2

~� þm2
~d
� sÞ þ 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðm~� þm~dÞ2�½s� ðm~� �m~dÞ2�

q
cos�;

(6)

cos� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

T

p02

s
; jt� uj ¼ s�0

~�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

T

p02

s
: (7)

FIG. 2. Independent box diagrams used for ug ! ~dL ~�
þ
i . Full, broken, and wavy lines describe, respectively, fermionic, scalar, and

gauge particles.
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The Born contribution to ug ! ~dL ~�
þ
i , may be written as

F
~�;Born
��g�~�

¼ F
~�;s�Born
��g�~�

þ F
~�;u�Born
��g�~�

; (8)

with the two terms

F
~�;s�Born
��g�~�

¼ �
�
�a

2

�
gsA

L
i ð~dLÞ
2s

R
ffiffiffiffiffi
2s

p ð1� �gÞð1þ 2�~�r~�Þ

�
�
sin

�

2
��~�;þ � cos

�

2
��~�;�

�
; (9)

F
~�;u�Born
��g�~�

¼
�
�a

2

�
gsA

L
i ð~dLÞ

u�m2
~dL

R
ffiffiffi
2

p
�gp

0 sin�ð1þ 2�~�r~�Þ

�
�
cos

�

2
��~�;þ þ sin

�

2
��~�;�

�
; (10)

arising from the two diagrams in3 Fig. 1(a). The u-quark
exchange diagram is responsible for (9), while (10) comes

from ~dL-exchange in the u-channel. The overall factor
�a=2 describes the color matrices acting between the initial

u-quark and the final ~dL-squark, while gs is the QCD
coupling. Finally,

AL
i ð~dLÞ ¼ � e

sW
Z�
1i; (11)

expresses the u~dL-coupling of the produced chargino, in
terms of its gaugino-higgsino mixing matrix Z�, in the
notation of [6].

The 1-loop EW corrections arise from the diagrams
in Figs. 1(b), 1(c), and 2, to which we should also
add the counter terms (c.t.) induced by the

AL
i ð~dLÞ-renormalization, and the self energy (s.e.) correc-

tions to the external and internal lines of the tree diagrams
in Fig. 1(a).

We first discuss these c.t. and s.e. energy corrections,
which are simply expressed by modifying the Born con-
tribution (8)–(10) as

F
~�;s�Born
��g�~�

! F
~�;s�Born
��g�~�

�
1þ �Zu

L þ 1

2

�
�Zu

L þ �Z~dL

þ 1

AL
i ð~dLÞ

X
j

AL
j ð~dLÞ��R�

ji

�
þ �AL

i ð~dLÞ
AL
i ð~dLÞ

� ½�u
LðsÞ þ �Zu

L�
�
; (12)

F
~�;u�Born
��g�~�

! F
~�;u�Born
��g�~�

�
1þ �Z~dL

þ 1

2

�
�Zu

L þ �Z~dL

þ 1

AL
i ð~dLÞ

X
j

AL
j ð~dLÞ��R�

ji

�
þ �AL

i ð~dLÞ
AL
i ð~dLÞ

�
½�~dL

ðuÞ ��~dL
ðm2

~dL
Þ � ðu�m2

~d
Þ�0

~dL
ðm2

~d
Þ�

u�m2
~d

�
:

(13)

In the calculation, we always use the dimensional regulari-
zation scheme for the ultraviolet divergencies, while the
infrared divergencies are regularized by a ‘‘photon mass’’
m�.

As input parameters in our renormalization scheme, we
use the W and Z masses, through which the cosine of the
Weinberg angle is also fixed; while the fine structure
constant 	 is defined through the Thompson limit [7].
For all couplings, we have checked that we agree with
the results of [6].
We next turn to the various c.t. and s.e. corrections:
Defining the phase conventions for the self energies of

the transverse gauge bosons, u-quark, and ~dL-squark, so
that the respective quantities �ig�
�VV , i�

u
L, and i�~dL

,

always have the phase of the S-matrix, we find

�ZW
2 ¼ ��0

��ð0Þ � 	

�

c2W
s2W

�
�� ln

m2
W

�2

�

þ c2W
s2W

�
�m2

Z

m2
Z

� �m2
W

m2
W

�
; (14)

�m2
W ¼ Re�WWðm2

WÞ; �m2
Z ¼ Re�ZZðm2

ZÞ; (15)

�Zu
L ¼ ��u

Lð0Þ; (16)

�Z~dL
¼ � d�~dL

ðp2Þ
dp2

��������p2¼m2
~d

� ��0
~dL
ðm2

~d
Þ: (17)

In all cases, these results are expressed in terms of simple
Bj Passarino-Veltman (PV) functions [8]. Particularly for

the gauge boson s.e., the relevant results may be obtained
from the appendices4 of [9].

The AL
j ð~dLÞ-dependent terms in (12) and (13) arise from

the chargino renormalization matrices and the

AL
i ð~dLÞ-renormalization. Below we only present the part

needed here, following [10]. The necessity for 2 � 2 char-
gino renormalization matrices arises from the existence of
two charginos, whose mixing is affected by the 1-loop self
energy bubbles. They are defined through

3We use the same conventions as in [1]. In particular, the phase
convention of the amplitude F is related to the S-matrix, through
S ¼ iF.

4Since, as in [1], we always regularize the infrared divergen-
cies by a ‘‘photon mass’’ m�, the quantity

	
2�m

2
��must be added

to the r.h.s. of the expression (C.18) of [9].
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~�þ
i ! ð�ij þ 1

2½��L
ijPL þ ��R

ijPR�Þ~�þ
j : (18)

Defining then the chargino 1-loop s.e. bubble contribution
for the transition ~�þ

j ðpÞ ! ~�þ
i ðpÞ, as

�ijðpÞ ¼ p6 PL�
L
ij þ p6 PR�

R
ij þ PL�

S
ij þ PR�

�S
ij; (19)

with p denoting the corresponding momentum, and choos-
ing the phase as for the other fermions,5 we obtain

��R
ii ¼ �Ref�R

iiðM2
i Þ þM2

i ½�L0
ii ðM2

i Þ þ �R0
ii ðM2

i Þ�
þMi½�S0

ii ðM2
i Þ þ�

�S0
ii ðM2

i Þ�g; (20)

if the initial and final charginos are of the same kind, and

��R
ij ¼

2

ðM2
i �M2

j Þ
RefM2

j�
R
ijðM2

j Þ þMiMj�
L
ijðM2

j Þ

þMj�
S
ijðM2

j Þ þMi�
�S
ijðM2

j Þg; (21)

when they are different. Here Mj denotes the chargino

masses for j ¼ 1, 2, and we also have �
�S
ij ¼ �S�

ji [10].

The expression needed in (12) and (13) is then written as
[10]

P
j A

L
j ð~dLÞ��R�

ji

2AL
i ð~dLÞ

þ �AL
i ð~dLÞ

AL
i ð~dLÞ

¼ � 	

2�s2W

�
�� ln

m2
W

�2

�
� 1

2
�ZW

2

þ
P

j Z
�
1jð��R

ij þ ��R�
ji Þ

4Z�
1i

; (22)

where � is the usual ultraviolet contribution, and Z� has
been already defined. The bubbles contributing to �ij

consist of the exchanges

ð~�þ
k �Þ; ð~�þ

k ZÞ; ð~�0
kW

þÞ; ð~�þ
k H

0Þ; ð~�þ
k h

0Þ;
ð~�þ

k A
0Þ; ð~�þ

k G
0Þ; ð~�0

kH
þÞ; ð~�0

kG
þÞ;

as well as the fermion-sfermion bubbles. They have all
been expressed in terms of Bj functions.

Using (14)–(22) and the substitutions (12) and (13), in
(8), we obtain the full contribution arising from the Born
terms in Fig. 1(a), to which the counterterms and self
energy contributions have been inserted. All these contri-
butions have the form of 1-loop bubbles with two external
legs.

It is worth remarking here that inserting the s.e. and c.t.
corrections in (12) and (13) guarantees that we never have
to worry on whether our regularization scheme preserves
supersymmetry or not. This is an important feature of our
approach, which was also used in [1].
We next turn to the rest of the 1loop diagrams generi-

cally depicted in Figs. 1(b), 1(c), and 2. The full, broken,
and wavy lines in these figures describe all possible fer-
mion, scalar, and gauge exchanges. In more detail, these
exchanges are the following:
(i) The u-channel bubbles, with an upper 4-leg coupling

depicted in Fig. 1(b), involve the exchanges

ð�~dLÞ; ðZ~dLÞ; ðW�~uLÞ:

The first two diagrams in Fig. 1(c) describe
s-channel left triangles involving the exchanges

ð�uuÞ; ðZuuÞ; ðWddÞ;
ð~�0

j ~uL~uLÞ; ð~��
j
~dL ~dLÞ:

The next 5 diagrams in Fig. 1(c) describe the
s-channel right triangles with the exchanges

ðu~dL�Þ; ðu~dLZÞ; ð�~�þ
j uÞ; ðZ~�þ

j uÞ;
ðWþ ~�0

jdÞ; ð~�þ
j �

~dLÞ; ð~�þ
j Z

~dLÞ;
ð~�0

jW
�~uLÞ; ð~uLd~�0

j Þ; ð~�0
jH

�~uLÞ;
ð~�0

jG
�~uLÞ; ð~�þ

j H
0 ~dLÞ; ð~�þ

j h
0 ~dLÞ:

The next 3 diagrams in Fig. 1(c) describe the
u-channel up triangles with the exchanges

ð~dL ~dL�Þ; ð~dL ~dLZÞ; ð~uL~uLW�Þ;
ðdd~�0

j Þ; ðuu~�þ
j Þ; ð~dL ~dLh0Þ;

ð~dL ~dLH0Þ; ð~uL~uLH�Þ; ð~uL~uLG�Þ:

The next 5 diagrams in Fig. 1(c) describe the
u-channel down triangles with the exchanges

ð~dLu�Þ; ð~dLuZÞ; ðd~uL ~�0
j Þ; ð�~�þ

j
~dLÞ;

ðZ~�þ
j
~dLÞ; ðWþ ~�0

j ~uLÞ; ð~�þ
j �uÞ;

ð~�þ
j ZuÞ; ð~�0

jW
þdÞ; ðh0 ~�þ

j
~dLÞ;

ðH0 ~�þ
j
~dLÞ; ðH� ~�0

j ~uLÞ; ðG� ~�0
j ~uLÞ:

The last 2 diagrams in Fig. 1(c) describe u channel
triangles with an upper 4-leg coupling, with the
exchanges

5More explicitly the phase of i�ij is chosen the same as for the
S-matrix.
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ð~dLu�Þ; ð~dLuZÞ; ð�~�j
~dLÞ;

ðZ~�j
~dLÞ; ðW ~�j~uLÞ: (23)

The first 2 diagrams in Fig. 2, called direct boxes,
involve the exchanges

ðuu~dL�Þ; ðuu~dLZÞ; ð~uL~uLd~�0
j Þ:

The next 3 diagrams in Fig. 2, called crossed boxes,
involve the exchanges

ð~dL ~dL�~�þ
j Þ; ð~dL ~dLZ~�þ

j Þ;
ð~uL~uLW� ~�0

j Þ; ðuu~�þ
j �Þ;

ðuu~�þ
j ZÞ; ðdd~�0

jW
þÞ;

ð~dL ~dLh0 ~�þ
j Þ; ð~dL ~dLH0 ~�þ

j Þ;
ð~uL~uLH� ~�0

j Þ; ð~uL~uLG� ~�0
j Þ:

(24)

And finally, the last 2 diagrams in Fig. 2, called
twisted boxes, involve the exchanges

ðdd~�0
j ~uLÞ; ð~dL ~dL�uÞ; ð~dL ~dLZuÞ:

Using the above procedure we calculate the four helicity

amplitudes of ug ! ~dL ~�
þ
i in MSSM, at the 1-loop EW

order. For regularizing the infrared divergencies we choose
m� ¼ mZ. The same choice was made in [1,3] and has the

advantage of treating �, Z, and W� on the same footing at
high energies, thus preserving the SUð2Þ �Uð1Þ symmetry
[11].

Under this choice, the results for the real and imaginary
parts of the helicity amplitudes, for any energy and scat-
tering angle, they may be obtained from a FORTRAN code
available at the site [5]. All input parameters in that code
are at the electroweak scale, and they are assumed real. If
needed, they may be calculated from a high scale SUSY
breaking model using e.g. the SusSpect code [12].

To eliminate possible errors, we have checked that the
code respects the HC theorem, so that the 3 helicity-

violating amplitudes F~����, F
~�
��þ, F

~�
�þ� exactly vanish

asymptotically. This is indeed a very efficient tool for
identifying errors. The reason is that the helicity-violating
amplitudes receive relatively large 1-loop corrections from
the various triangle and box diagrams. Only when these are
combined, they largely cancel each other, producing a
small result, which vanishes asymptotically. A seemingly
innocuous error can easily destroy this cancellation.

In addition, we have of course checked that the divergent
� contributions cancel out, both analytically and in the
code.

In the illustrations presented below, we select three con-

strained MSSM benchmark models covering a range for ~dL
and chargino masses, within the 1 TeV range. They are
shown in Table I.
The first of these benchmarks is a ‘‘heavy’’ scale model

we call FLN mSP4, which has been suggested in [13] and
is consistent with all present experimental information.6 In

this model, the ~dL mass is predicted at 1.66 TeV, while the
lightest chargino lies at 98.6 GeV. This model has been
selected to show the effects of heavy, but still within the

LHC range, ~dL-masses7 The quantityMSUSY in the last line
of Table I, gives an average of the SUSY masses entering
the asymptotic expressions in the next section.
For the ‘‘medium’’ and ‘‘light’’ scale examples in

Table I, we use the same models as in [1]. Thus, for the
‘‘medium scale,’’ we have taken the SPS1a0 model of [15],
which is essentially consistent with all present knowledge
[13,16]. The light scale model, appearing in the last col-
umn of Table I, is already experimentally excluded. But it
is nevertheless used here in order to indicate what would
had been the picture, if the LHC energies were much
higher than all SUSY masses.
In Sec. IV, we show how the various helicity amplitudes

behave with energy in these examples, and how the HC
property [2] is asymptotically established.

III. ASYMPTOTIC AMPLITUDES AND SUSY
RELATIONS

We next turn to the asymptotic helicity amplitudes, for
which simple expressions may be given.
As expected from [2], out of the complete list of the

ug ! ~dL ~�
þ
i helicity amplitudes given in (2), only F

~�
�þþ

remains at asymptotic energies and fixed angles; all the rest
must vanish. Using then the asymptotic expressions for the
PV functions, taken e.g. from [17], we obtain

TABLE I. Input parameters at the grand scale, for three con-
strained MSSM benchmark models. We always have �> 0. All
dimensional parameters are in GeV.

FLN mSP4 SPS1a0 light SUSY

m1=2 137 250 50

m0 1674 70 60

A0 1985 �300 0

tan� 18.6 10 10

MSUSY 1500 350 40

6As is well known, the consistency of a constrained MSSM
model often depends on the top mass. In the present model mt ¼
170:9 GeV has been used. The results of the present paper
though, are not sensitive to the top mass.

7In our previous work [1], we have used the FP9 model in [14],
as a ‘‘heavy scale’’ example. We avoid doing it here, because its
very large ~dL mass makes its LHC production negligible.
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; (25)

where the leading logarithmic corrections are of course in
accordance with the expectations from the general analysis
of [3]. The parameterMSUSY in (25) appears in the last line
of Table I.

In addition to the log-corrections, we have included in
(25) the subleading nonlogarithmic correction described
by the so called ‘‘constant’’ contribution CMSSM�þþ ð~�iÞ. In
principle, CMSSM�þþ ð~�iÞ can be analytically computed from
the ‘‘constant’’ terms in the asymptotic expansions of the
PV functions given in [17]. The expressions are lengthy
though, depending on all internal and external masses and
the scattering angle. We refrain from giving them, and only
present in Table II their numerical values for ~�1, for the
three models considered, at some choices of the angles. As
seen there, the angular dependence of CMSSM�þþ ð~�1Þ is mild,
for � & 90o.

As can be checked from the code in [5], the imaginary

part of the F
~�
�þþ amplitude is also nonvanishing asymp-

totically, behaving as

ImF
~�
�þþ ’ �	gs

4s2W

ffiffiffi
2

p
AL
i ð~dLÞ sin

�

2

�
ln

s

m2
W

þ ln
s

m2
Z

�
:

(26)

We next turn to the corresponding asymptotic expres-
sions for ug ! dW studied in [1]. Denoting the helicity
amplitudes for this process as FW

�u�g�d�W
, we find that the

list of independent ones now is [1]

FW����; FW�þ�þ; FW���þ;

FW
���0; FW�þ��; FW

�þ�0;
(27)

out of which, only the first two are helicity conserving and
remain nonvanishing asymptotically. At the 1-loop level of
EW corrections, they are given by

ReFW���� ’ egsffiffiffi
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p
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(28)
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(29)

in any MSSM model, provided the energy is much larger
than the SUSY masses [1].

Note that theMSUSY parameter in (28) and (29) has been

chosen the same as in the ug ! ~dL ~�
þ
i case. This is always

possible, by appropriately choosing the definition of the
subleading ‘‘constant’’ contributions CMSSM����ðWÞ and
CMSSM�þ�þðWÞ, in (28) and (29). These ‘‘constants’’ turn out
to be rather insensitive to the MSSM model, but depend
mildly on the scattering angle and the helicities.8 They
could be analytically calculated using [17], and their nu-
merical values are given in Table III.

TABLE II. Angular dependence of CMSSM�þþ ð~�1Þ, for the three
MSSM models used here.

C�þþ
� FLN mSP4 SPS1a0 light

30� 116 67 0

60� 123 73 6

90� 125 76 9

150� 147 98 31
8In [1] we had neglected the helicity dependence of the

‘‘constant’’ terms for ug ! dWþ.
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Comparing (25), with (28) and (29), we see that the only

differences between ug ! ~dL ~�
þ
i and ug ! dWþ lie in

a~�W ¼ 	

4�

ð1þ 26c2WÞ
72s2Wc

2
W

ln
M2

SUSY

m2
Z

; (30)

contributing in the last line of (25), and of course in the
‘‘constant’’ terms. Neglecting these ‘‘constant’’ terms, we
obtain the F-relation:

cosð�=2ÞFW���� ’ FW�þ�þ
cosð�=2Þ ’

F
~�
�þþ

sinð�=2ÞZ�
1ið1þ a~�WÞ ;

(31)

which is a genuine asymptotic SUSY prediction, valid at
the logarithmic level. If the exact 1-loop EW results are
used for calculating the amplitudes in the various parts of
(31), then violations arise which come either from the
‘‘constant’’ terms in (25), (28), and (29), or from mass-
suppressed contributions to the relevant amplitudes. In
Sec. IV we illustrate tests of the F-relation in the models
of Table I.

Remembering that

d�̂ðug ! ~dL ~�
þ
i Þ

d cos�
¼ �0

~�

3072�s

X
�u�g�~�

jF ~�
�u�g�~�

j2; (32)

where �0
~� is defined in (5), and that

d�̂ðug ! dWþÞ
d cos�

¼ �0
W

3072�s

X
�u�g�d�W

jFW
�u�g�d�W

j2; (33)

with

�0
W ’ 1�m2

W

s
; (34)

we conclude that

d�̂ðug ! dWþÞ
d cos�

’ 1

RiW

d�̂ðug ! ~dL ~�
þ
i Þ

d cos�
; (35)

with

RiW ¼ ½s� ðm~� þm~dÞ2�1=2½s� ðm~� �m~dÞ2�1=2
s�m2

W

jZ�
1ij2

� ð1þ a~�WÞ2sin2�
5þ 2 cos�þ cos2�

: (36)

In deriving (35), we used the fact that all helicity-violating
amplitudes vanish asymptotically. The relation (35) is also
a genuine asymptotic SUSY relation that we call
�-relation. Its violations could come either from the ‘‘con-
stant’’ terms in (25), (28), and (29), or from mass-
suppressed contributions to any of the helicity-conserving
or helicity-violating amplitudes.
It may also be worth remarking that (31), (35), and (36)

should remain true even at energies where the 1-loop

approximation for the helicity-conserving ug ! ~dL ~�
þ
i

and ug ! dWþ could not be adequate, provided the
SUSY scale and a~�W remain sufficiently small; compare

(30).
Considering the approximations made in deriving (31)

and (35), we would naively expect that, at not-very-high
energies, the F-relation is more accurate than the
�-relation. We will see in the next section, that the actual
situation is opposite. Somehow the violations induced by
the helicity-violating amplitudes in (35) cancel those com-
ing from the helicity-conserving ones, so that (35) becomes
quite accurate at LHC energies—at least in the three
models of Table I.

At energies much larger than the ~dL-mass and the
masses of both charginos, the u, t variables become inde-
pendent of the final state masses, which then simplifies (35)
to

d�̂ðug ! dWþÞ
d cos�

’
�

u2 þ s2

utð1þ a~�WÞ2
�

1

jZ�
1ij2

� d�̂ðug ! ~dL ~�
þ
i Þ

d cos�
: (37)

In such a case, the orthogonality of the Z� matrix may be
used to write

d�̂ðug ! dWþÞ
d cos�

’
�

u2 þ s2

utð1þ a~�WÞ2
�X

i

d�̂ðug ! ~dL ~�
þ
i Þ

d cos�
:

(38)

IV. NUMERICAL EXPECTATIONS

In this section we present the expected behavior of the
helicity amplitudes and SUSY relations in the three models
of Table I.

Close to threshold for the ug ! ~dL ~�
þ
i process, we

would generally expect all four helicity amplitudes (2) to
have comparable magnitudes; but far above threshold we
should see the dominance of the Fi�þþ amplitude predicted
by HC [2].
The actual situation for the SPS1a0 model is illustrated

in Figs. 3 describing the energy and angular dependencies

TABLE III. Angular dependence of CMSSM�	�	ðWÞ for the three
MSSM models used here.

� C���� C�þ�þ
30� 22 14

60� 25 21

90� 23 23

150� 29 45
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of the real parts of the four amplitudes in (2), for
~�þ
1 -production; (the imaginary parts are always smaller

or much smaller). The results presented in these figures are
at both the Born and the 1-loop EW level.

As seen in Fig. 3(a), where the scattering angle has been

chosen at � ¼ 60o, the amplitudes F
~�
�þþ, F ~����, F

~�
�þþ,

and F
~�
��þ are comparable in magnitude, for energies con-

strained by
ffiffiffi
s

p
& 1:2 TeV; while F

~�
�þ� is much smaller.

Moreover, at such energies the 1-loop corrections are very
small, so that the Born and the 1-loop results almost
coincide.

The situations changes dramatically in Fig. 3(b), in
which the energy is allowed to reach the 25 TeV region.
There we see, that for

ffiffiffi
s

p
* 4 TeV, the three helicity-

violating amplitudes F ~����, F
~�
�þþ, F

~�
�þ� are very small

and decreasing with energy, while the helicity-conserving

F
~�
�þþ dominates. Moreover, at such energies the 1-loop

corrections to the helicity-conserving amplitudes become
very large because of the large logarithmic corrections in9

(25).

In Figs. 3(c) and 3(d), the angular dependence of the
helicity amplitudes are indicated at

ffiffiffi
s

p ¼ 1 TeV and
ffiffiffi
s

p ¼
4 TeV, respectively. As seen there, the predominance of

F
~�
�þþ against the other three amplitudes is only estab-

lished at 4 TeV, provided � & 150o. For larger angles, an
even higher energy is needed.10

The same type of effects appear also in Figs. 4 based on
the light model of Table I; and in Figs. 5 based on FLN
mSP4 of the same table. The only difference is that the

predominance of F
~�
�þþ appears earlier for light and later

for FLN mSP4, due to the differences in the SUSY thresh-

old. We note particularly that the F
~�
�þ� amplitude is al-

ways very small, at all energies.
Qualitatively similar results arise also for

~�þ
2 -production, apart from the global normalization

change induced by the replacement Z�
11 ! Z�

12, and the
obvious cross section suppression induced by the higher
chargino mass. This can be seen from Figs. 6 illustrating
the SPS1a0 model case.
We also remark on the basis of the c and d parts of

Figs. 3–5, that each helicity amplitude has its typical

FIG. 3. The ug ! ~dL ~�
þ
1 helicity amplitudes at � ¼ 60�, for the SPS1a0 model. The energy dependencies cover an LHC-type

range (a), and a higher energy region (b); while the angular dependencies are given at
ffiffiffi
s

p ¼ 1 TeV (c), and
ffiffiffi
s

p ¼ 4 TeV (d).

9This means that the 1-loop approximation cannot be adequate
for the actual determination of the helicity-conserving amplitude
at very high energies. Nevertheless, the general conclusion that
this amplitude is much larger than all helicity-violating ones, is
still true [2].

10This is mainly due to the u-channel propagator in the right
diagram in Fig. 1(a), which needs energies much larger than ~dL,
in order to reach the asymptotic region.
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FIG. 4. The ug ! ~dL ~�
þ
1 helicity amplitudes for the light model. The energy dependencies cover an LHC-type range (a), and a

higher energy region (b); while the angular dependencies are given at
ffiffiffi
s

p ¼ 1 TeV (c), and
ffiffiffi
s

p ¼ 4 TeV (d).

FIG. 5. The ug ! ~dL ~�
þ
1 helicity amplitudes for the FLN mSP4 model. The energy dependencies cover an LHC-type range (a), and

a higher energy region (b); while the angular dependencies are given at
ffiffiffi
s

p ¼ 2 TeV (c), and
ffiffiffi
s

p ¼ 4 TeV (d).
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angular dependence. So even in the absence of polarization
measurement, a measurement of the angular distribution
could give information on the helicity structure.
Particularly at a sufficiently high energy, where the
helicity-conserving amplitude dominates, the angular dis-
tribution can be predicted.

Similar remarks apply also for the ug ! dW case,
where there are two helicity-conserving amplitudes domi-
nating at very high energies, with different angular depen-
dencies; compare Figs. 4, 7, and 10 of [1].

We next turn to testing the F-relation (31) at the level of
our 1-loop EW results. To this aim we compare in Fig. 7(a),
the 4 quantities

cosð�=2ÞFdWþ
����;

FdWþ
�þ�þ

cosð�=2Þ ;

F
~d~�þ

1�þþ
sinð�=2ÞZ�

11ð1þ a~�Þ ;
F

~d~�þ
2�þþ

sinð�=2ÞZ�
12ð1þ a~�Þ ;

(39)

as functions of the energy, using the light model and fixing
the angle at � ¼ 60�. The last two terms in (39) come from
~�þ
1 and ~�þ

2 , respectively. Similar results are expected for
other angles also. In Figs. 7(b) and 7(c) the corresponding
results for the SPS1a0 and FLN mSP4 models are also

shown. As seen in these figures, the parts of (39) referring
to ud ! dW almost coincide at all energies for all three
models. The deviations of the right parts though, coming

from ug ! ~dL ~�
þ
1 or ug ! ~dL ~�

þ
2 , depend on the scale of

the MSSM model; they are negligible for the light model,
and increase as we move to SPS1a0 and then to FLNmSP4.
We note that the relative magnitudes of these deviations
become constant at high energies since they arise from the
constant terms in (25), (28), and (29).
Correspondingly, the testing of the �-relation (35), is

done in Figs. 8 and 9, at the level of our 1-loop EW results.
More explicitly, we compare in Figs. 8(a)–8(c), the three
quantities

d�̂ðug ! dWþÞ
d cos�

;
1

R1W

d�̂ðug ! ~dL ~�
þ
1 Þ

d cos�
;

1

R2W

d�̂ðug ! ~dL ~�
þ
2 Þ

d cos�
;

(40)

as functions of the energy, for the light, SPS1a0, and FLN
mSP4 models, respectively, using � ¼ 60�. Cor-
respondingly, in Figs. 9(a)–9(c) we compare the angular
dependencies of the same quantities, fixing the energy at
3 TeV. As seen there, the �-relation is almost perfect for

FIG. 6. As in Fig. 3, but for the ug ! ~dL ~�
þ
2 amplitudes. The energy dependencies cover an LHC-type range (a), and a higher energy

region (b); while the angular dependencies are given at
ffiffiffi
s

p ¼ 2 TeV (c), and
ffiffiffi
s

p ¼ 4 TeV (d).
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the light model, gradually worsening as we move towards
models with higher supersymmetric masses; i.e. to SPS1a0
first, and then to FLN mSP4. In fact this worsening is very
small for ~�þ

1 production, and increases for ~�þ
2 production,

obviously due to the higher chargino mass.

We may also add here that in case the ð~dL; ~dRÞ-mixing is

not fully negligible, and some ~d1, ~d2 are the true sdown
squarks, then this mixing can easily be taken into account
by replacing in (40)

�ð~dLÞ ! �ð~d1Þ
cos2 ~�d

’ �ð~d2Þ
sin2 ~�d

: (41)

Comparing Figs. 7, with Figs. 8 and 9, we conclude
(with some surprise) that the �-relation is more accurate
than the F-relation. This is most impressive in the ~�þ

1 case
for the medium and heavy scale models SPS1a0 and FLN
mSP4, where the low energy F-relation deviations in Fig. 7
(b) and 7(c) are cured in the �-relation Figs. 9(b) and 9(c)
by contribution from the helicity-violating amplitudes. Is
there a deeper reason for this? Or it is an accidental result?

Further studies with other processes may help clarifying
this.

V. PREDICTIONS FOR ~dL ~�þ
i DISTRIBUTIONS

AT LHC

Contrary to the results in the previous Secs. III and IV,
this section does not involve any asymptotic energy as-

sumption. Instead, the code for the ug ! ~dL ~�
þ
i helicity

amplitudes presented above is used to calculate the ~dL ~�
þ
i

production at the actual LHC energies.
We present results both at the Born level as well as at the

level of the 1-loop EW corrections. Our aim is to see

whether ~dL ~�
þ
i -production and its SUSY 1-loop corrections

are visible at LHC.
As already said, the infrared divergencies are avoided by

choosing m� ¼ mZ. All other infrared sensitive contribu-

tions are supposed to be included in the pure QED con-
tribution, following the same philosophy as in [1].
Next, we first discuss the angular distribution in the c.m.

of the ~dL ~�
þ
i -subprocess at LHC. In analogy to W þ jet

production in [1], and folding in the needed parton distri-

FIG. 7. The energy dependencies of the W-production parts of (39), are compared to those for ~�þ
1 (full line) and ~�þ

2 (dash line with
circles) production, using the models light (a), SPS1a0 (b), and FLN mSP4 (c). The scattering angle is fixed at � ¼ 60�. The
corresponding masses of ~�þ

1 , ~�þ
2 , and

~dL are also indicated.
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butions [18], this is given by

d�ðpp ! ~dL ~�
þ
i . . .Þ

dsd cos�
¼ 1

S

Z 1

s=S

dxa
xa

�
Pi
ang

�
xa;

s

Sxa
; �

�

þ ~Pi
ang

�
xa;

s

Sxa
; �

��
; (42)

where s ¼ xaxbS, with
ffiffiffi
S

p ¼ 14 TeV being the LHC c.m.
energy, and

Pi
angðxa; xb; �Þ ¼ d�̂ðug ! ~dL ~�

þ
i Þ

d cos�
fuðxaÞfgðxbÞ;

~Pi
angðxa; xb; �Þ ¼ Pi

angðxb; xa; �� �Þ:
(43)

Here, (32) should be used, and we should also remark that
the Cabibbo-Kobayashi-Maskawa quark-mixing matrix
(CKM) effects are negligible in (42).

The implied angular distributions at the Born and the 1-
loop EW approximation are then given in Figs. 10(a) and
10(b), corresponding to

ffiffiffi
s

p ¼ 3 TeV and
ffiffiffi
s

p ¼ 6 TeV
respectively, for the three MSSM models of Table I. As
seen there, the overall magnitude of the cross section is at

the level of 0:1 fb=TeV2 for
ffiffiffi
s

p
* 3 TeV, while the 1-loop

EW contribution always reduces the Born result. For
ffiffiffi
s

p ¼
3 TeV and �
 50�, this reduction is at the 30% level for
the light model, the 20% level for SPS1a0, and the 10%
level for FLN mSp4. Such cross sections seem difficult to
measure at LHC, mainly because of the large value of

ffiffiffi
s

p
.

Only closer to threshold, we could get measurable cross
sections.11

Correspondingly, the ~dL or ~�þ
i transverse momentum

ðpTÞ distribution at LHC is determined by first noting that

d�̂ðug ! ~dL ~�
þ
i Þ

dpT

¼ pT

768�sjt� uj
� X
�u�g�~�

jF ~�
�u�g�~�

j2
���������

þ X
�u�g�~�

jF ~�
�u�g�~�

j2
�����������

�
; (44)

where (7) is used, and then using

FIG. 8. The energy dependencies of the left part of (40) (dash line with circles), are compared to the ~�þ
1 (full line) and ~�þ

2 (dash
line with squares) production parts, using the models light (a), SPS1a0 (b), and FLN mSP4 (c). The scattering angle is fixed at
� ¼ 60�. The corresponding masses of ~�þ

1 , ~�þ
2 , and

~dL are given in Fig. 7.

11This is elucidated by the pT-discussion below.
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d�ðpp ! ~dL ~�
þ
i . . .Þ

dpT

¼
Z 1

0
dxa

Z 1

0
dxb�ðxaxb � �mÞ

� ½Pi
Tðxa; xbÞ þ ~Pi

Tðxa; xbÞ�;
(45)

where

�m ¼ 1

S

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

~�

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

~d

q �
2
; (46)

Pi
Tðxa; xbÞ ¼

d�̂ðug ! ~dL ~�
þ
i Þ

dpT

fuðxaÞfgðxbÞ;
~Pi
Tðxa; xbÞ ¼ Pi

Tðxb; xaÞ:
(47)

The relevant results for the three models in Table I are
presented in Fig. 10(c), again for the Born predictions and
the 1-loop EW corrections. As before, the 1-loop contri-
bution always reduces the Born prediction, by an amount
which for pT 
 0:6 TeV lies at the level of 18% for the

light model, 11% for SPS1a0, and 7% for FLN mSP4. For
W þ jet production, the corresponding effect was found at
the 10% level [1].
For an integrated LHC luminosity of 10 or

100 fb�1=TeV, it seems possible to measure this direct
~dL ~�

þ
i production, assuming that the masses are not too

high. To achieve this, the experiment needs of course to
include properly all necessary infrared QED and the higher
order QCD effects.

The ratio of the ~dL ~�
þ
i LHC distributions, given (42) and

(45), with respect to the corresponding quantities for W þ
jet production studied in [1], may then provide a basic test
of the supersymmetric nature. For sufficiently light SUSY
masses, it may even be possible to determine the 1-loop
EW reductions of the Born contributions.

VI. SUMMARYAND CONCLUSIONS

In this paper we have calculated the four independent

helicity amplitudes for the process ug ! ~dL ~�
þ
i , to 1-loop

EW order in MSSM. The results are contained in a code,
valid for any set of real MSSM parameters in the EW scale,
and released at [5].

FIG. 9. The angular dependencies of the left part of (40) (dash line with circles), are compared to the ~�þ
1 (full line) and ~�þ

2 (dash
line with squares) production parts, using the models light (a), SPS1a0 (b), and FLN mSP4 (c). The energy is fixed at

ffiffiffi
s

p ¼ 3 TeV.
The corresponding masses of ~�þ

1 , ~�þ
2 , and

~dL are given in Fig. 7.
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Combining these results, with the previous ones in [1],
we pursued the following three aims.

The first aim is to understand how the asymptotic helic-

ity conservation property for ug ! ~dL ~�
þ
i reflects itself as

the energy is reduced to nonasymptotic or even LHC
values. As compared to the ug ! dW case, the establish-

ment of HC in ~dL ~�
þ
i -production is delayed by the higher

masses of the produced particles. But HC may nevertheless
be visible at subprocess c.m. energies of about 4 TeV, if the
SUSY scale is not too high. Compare the results in Figs. 3

and 6 for ~dL ~�
þ
1 and ~dL ~�

þ
2 production, respectively, based

on the SPS1a0-model [15]. The recent very precise analy-
sis of [13,16], allows entertaining the hope that this is a
viable possibility in Nature.

The second aim concerns identifying simple SUSY re-

lations between the processes ug ! ~dL ~�
þ
i and ug !

dWþ, characterized by the same initial state, but having
their final states constituting supersymmetric particle pairs.
Assuming energies much higher than all SUSY masses, we
derive two such relations affecting the dominant high
energy amplitudes and the corresponding cross sections,
called F-relation and �-relation, respectively. Using the
three model examples covering a reasonable scale of
SUSY scales, we investigate how the deviations of these
relations develop as the energy is reduced down to the LHC

range. Particularly for the �-relation, we have found that it
may be quite accurate at LHC energies, or so—provided
the SUSY scale is not much larger than the one of the FLN
mSP4 model of Table I. If this is the case, they may be used
in testing the consistency of identifying a pair two new

particles produced at LHC, consisting of a ~dL and a char-
gino. This seems even more true for the ~�þ

1 case, probably
due to the lighter chargino mass.
The third aim was to present the Born contribution and

the 1-loop EW corrections to the ~dL ~�
þ
i production at LHC

without any high energy assumptions. Both the angular and
transverse momentum distributions were studied. As in the
W þ jet production case [1], the SUSY 1-loop corrections
were always found to reduce the Born contribution,
roughly by an amount at the 10% level. This may be
observable, provided the SUSY scale is not too high.

Combining this ~dL ~�
þ
i production study with the corre-

sponding one for W þ jet production [1] offers stringent
tests of the nature of candidate supersymmetric particles.
We should not only have a reasonable magnitude for the

Born contribution to ug ! ~dL ~�
þ
i , but the 1-loop EW

corrections to this process, as well as to ug ! dW, should
come out right.
Finally, we come back to the intriguing helicity conser-

vation property of any 2-to-2 body process at asymptotic

FIG. 10. Born (dash line) and 1loop (full line) predictions for the LHC distributions in ~dL ~�
þ
1 production, for the 3 models of Table I;

(a) gives the angular distributions at
ffiffiffi
s

p ¼ 3 TeV, (b) the angular distribution at
ffiffiffi
s

p ¼ 6 TeV, (c) the transverse momentum
distributions.
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energies, in a softly broken renormalizable supersymmet-
ric theory12 [2]. Its realization comes about after the ap-
pearance of huge cancellations among the various
diagrams. Both here and in previous work [1,20], we
were fascinated to see this happening in detail, so that no
terms involving ratios of masses destroy it. This is most
tricky when longitudinal gauge bosons and Yukawa cou-
plings are involved; we intend to examine such cases in the
future.

Of course, since HC is an asymptotic theorem, its phe-
nomenological relevance depends mainly on the external

masses. If the external masses are not too heavy, like in
ug ! dW, it may be partly realized already at LHC en-
ergies [1]. If the masses are heavier, like in the present

ug ! ~dL ~�
þ
i example, its realization is delayed. In any case

though, it provides a stringent test of any theoretical cal-
culation of such supersymmetric processes.
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