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It has recently been suggested that scalar, Dirac, and Rarita-Schwinger perturbations are related to
thermodynamic phase transitions of charged (Reissner-Nordström) black holes. In this Brief Report we
show that this result is probably a numerical coincidence, and that the conjectured correspondence does
not straightforwardly generalize to other metrics, such as Kerr or Schwarzschild (anti–)de Sitter. Our
calculations do not rule out a relation between dynamical and thermodynamical properties of black holes,
but they suggest that such a relation is nontrivial.
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I. INTRODUCTION

Kerr-Newman black holes (BHs) in (anti–)de Sitter
space are characterized by their mass M, dimensionless
rotation parameter a=M, dimensionless charge Q=M, and
possibly a nonzero cosmological constant � (here and in
the following we adopt geometrical units, G � c � 1, and
we write Einstein’s equations as G�� � 3�g��.)

Davies [1,2] pointed out that BHs can undergo a second-
order phase transition in which their specific heat changes
sign as a=M and/or Q=M are increased. For our consid-
erations below, we only need to recall that the phase
transition occurs when
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for Reissner-Nordström (anti)-de Sitter BHs (a � 0) and
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for Kerr BHs (� � Q � 0).
BH perturbations due to external fields of different spin

have been studied for decades [3]. After a transient phase,
the decay of these perturbations can be described as a
superposition of damped exponentials of the form
exp�i!t�. For a given spacetime (i.e. for a given cosmo-
logical constant �) the quasinormal mode (QNM) frequen-
cies ! � !R � i!I depend only on the BH parameters M,
a, and Q. They are complex numbers because oscillations
are damped away by the emission of gravitational radia-
tion, and they are usually labeled by three integers: ! �
!lmn (see [4] for a review, and [5] for a summary of the
properties of the QNM spectrum.) Two integers �l; m�

correspond to the ‘‘angular quantum numbers’’ of the
spin-weighted spheroidal harmonics used to separate the
angular dependence of the perturbations. For spherically
symmetric backgrounds, such as the Reissner-Nordström
metric (a � � � 0), perturbations are degenerate with
respect to the azimuthal index m, but this degeneracy is
broken when a � 0. A third integer n�� 0; 1; . . .�, called
the ‘‘overtone number,’’ sorts the frequencies by the mag-
nitude of their imaginary parts.

For Reissner-Nordström BHs and n < nc (nc being
some critical value that depends on l and on the spin s of
the perturbing field), !R and !I are usually monotonic
functions of the charge Q=M. For n � nc the real part of
the QNM frequency has an extremum as a function of the
charge. When n > nc, both !R and !I usually become
oscillatory functions of Q=M [6–9]. A similar behavior
has been observed for m � 0 QNM frequencies of Kerr
BHs as functions of a=M [7,10,11] (see also [12] for a
generalization to Kerr-Newman BHs.)

Jing and Pan [13] recently computed QNM frequencies
for scalar (s � 0), Dirac (s � 1=2), and Rarita-Schwinger
(s � 3=2) perturbations of Reissner-Nordström BHs. They
noticed that the first maximum of M!R�Q=M�, as com-
puted numerically, matches within �2:5% the value of
Q=M �

��������
3=4

p
’ 0:866 predicted by Eq. (1) for Davies’

second-order phase transition. They conjectured that this
agreement implies a connection between dynamical and
thermodynamic properties of Reissner-Nordström BHs. In
this Brief Report we show that the observed agreement is
probably a numerical coincidence, and that such a connec-
tion (if it exists) should be nontrivial.

Our results can be summarized as follows:
(1) The approximate agreement found in Ref. [13] is

usually observed for n � nc � 1, not for n � nc.
We see no compelling reason why this mode should
be singled out from the QNM spectrum as especially
relevant.
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(2) For n � nc � 1, the numerical agreement with
Davies’ thermodynamic phase transition point is
significantly worse for ‘‘electromagnetic-type’’ or
‘‘gravitational-type’’ perturbations of Reissner-
Nordström BHs, which were not considered in
Ref. [13].

(3) Finally, and perhaps more convincingly, we show
that the conjecture does not hold for (i) integer-spin,
m � 0 perturbations of Kerr BHs, and (ii) integer-
spin perturbations of Schwarzschild anti–de Sitter
(SAdS) BHs.

In Sec. II we present details of our calculations. In
Sec. III we argue that, if a relation between classical BH
oscillations and their thermodynamic properties exists, it is
not as simple as proposed in Ref. [13].

II. RESULTS

A. Reissner-Nordström black holes

Reference [13] considered scalar (s � 0), Dirac (s �
1=2), and Rarita-Schwinger (s � 3=2) perturbations of a
Reissner-Nordström BH. The results presented in their
Fig. 1 for s � 0 agree with those previously published in
[12]. From the calculations shown in Fig. 1 of [13] (or
Fig. 1 of [12], where modes are counted starting from n �
1 rather than from n � 0) one deduces that, for scalar
perturbations with l � 0, M!R has the first extremum
when n � nc � 0 and Q=M � 0:962. Similarly, for scalar
perturbations with l � 1, the first extremum occurs when
n � nc � 1 and Q=M � 0:960. Both values are quite far
from Davies’ phase transition point Q=M ’ 0:866.

For s � 0, the maximum in M!R�Q=M� gets in better
agreement with the phase transition point if we consider
the next overtone n � nc � 1, as we show by an explicit
calculation in Table I. For the s � l � 0, n � 1 mode, and
accounting for their different choice of units, Ref. [13]
determines the ‘‘critical’’ charge to be Q=M � 0:876.
This is in good (if not perfect) agreement with our value

Q=M � 0:879, which has a 1.5% disagreement with the
phase transition point predicted by Davies.

Reference [13] did not consider gravitational (s � 2)
and electromagnetic (s � 1) perturbations of Reissner-
Nordström BHs. These perturbations are coupled to each
other by the BH charge, but the scattering problem can still
be reduced to a pair of wave equations (see discussions in
[3,12,14].) The two equations are said to describe
electromagnetic-type and gravitational-type perturbations,
depending on whether they reduce to pure electromagnetic
or pure gravitational perturbations of a Schwarzschild BH
in the limit Q=M ! 0. In Table I we list the critical charge
for the dominant multipoles of electromagnetic-type and
gravitational-type perturbations. From the tabulated values
it is quite clear that the agreement with Davies’ phase
transition point does not get better even if, following
Ref. [13], we consider the QNM with n � nc � 1 rather
than that with n � nc.

In our opinion, this is evidence that the conjectured
correspondence is only a numerical coincidence. The value
of the charge for which M!R first has an extremum is
around Q=M ’ 0:96 for all integer spins s � 0; 1; 2, and
this is quite far from the thermodynamic phase transition
pointQ=M � 0:866. One could still argue that the dynami-
cal and thermodynamic properties of BHs are not simplest
when one considers coupled electromagnetic and gravita-
tional perturbations: see e.g. [14] for a discussion. To show
that this is not the only reason for the discrepancy with
Davies’ critical point, in the remainder of this paper we
show that the conjectured correspondence does not hold for
other metrics as well. In particular, below we consider Kerr
and SAdS BHs.

B. Kerr black holes

For Kerr BHs, according to Eq. (2) the thermodynamic
phase transition corresponds to a rotation parameter
a=M ’ 0:786. For moderate values of n, only Kerr pertur-
bations with m � 0 are oscillatory functions of a=M
[5,11]. For this reason, in our discussion we only consider
QNM frequencies with m � 0.

The first occurrence of local extrema in M!R�a=M� for
m � 0 and different values of l and s is listed in Table II.
For n � nc there is no agreement with the thermodynamic

TABLE I. Critical charge Q=M corresponding to the first
extremum of M!R�Q=M� for Reissner-Nordström BHs. We
consider only the dominant multipolar component of the radia-
tion, i.e. l � jsj. For each spin s, in the first row we list the
critical charge for which an extremum in M!R first appears and
the corresponding overtone number n � nc (in parentheses). In
the second row, we show the charge corresponding to the first
extremum in M!R for n � nc � 1.

Q=M
Perturbation l � 0 l � 1 l � 2

Scalar 0.962 (0) � � � � � �

0.879 (1) � � � � � �

Electromagnetic-type 0.962 (2) � � �

0.940 (3) � � �

Gravitational-type 0.958 (1)
0.910 (2)

TABLE II. Dimensionless angular momentum parameter a=M
corresponding to the first extremum of M!R�a=M� for Kerr
perturbations with m � 0. We only consider the two lowest
allowed values of l: l � jsj, jsj � 1. In parentheses we list nc,
the overtone number for which an extremum first appears.

a=M
Perturbation l � 0 l � 1 l � 2 l � 3

Scalar 0.819 (0) 0.898 (1) � � � � � �

Electromagnetic 0.922 (1) 0.925 (2) � � �

Gravitational 0.947 (2) 0.937 (2)
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phase transition point predicted by Davies. As in the
Reissner-Nordström case, we verified that the agreement
would not improve if we considered the next overtone n �
nc � 1. For example, for s � l � m � 0 and n � 1 the
first extremum in M!R�a=M� occurs when a=M � 0:503.

C. Schwarzschild (anti–)de Sitter black holes

Setting Q � 0 in Eq. (1) we get 0 � �9=4�2�M2 � 3=4,
r� � 3M=2. A phase transition occurs when
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���
3
p
’ 0:577 for negative cos-

mological constant (anti–de Sitter space.) For positive �
(de Sitter space), there is no phase transition.

The perturbation equations for SAdS spacetimes have
been worked out in the literature, and QNM frequencies
have been studied in many papers (see e.g. [15–18].) We
used numerical codes we developed in the past to look for
extrema in the QNM frequencies. We have two choices to
make the frequency dimensionless:

(i) We can rescale by the BH mass and compute
M!R�r��. This function has no extrema for SAdS
BHs.

(ii) We can rescale frequencies by the cosmological
constant �. Then !R�r��=

�������
j�j

p
does have an extre-

mum for the values or r� listed in Table III: compare
with Fig. 1 of Ref. [17]. It is clear from the table that
these extrema are strongly dependent on l and s, and
that in general they do not agree with Davies’ phase
transition point. The fact that QNM frequencies do
have an extremum close to the phase transition point
is intriguing, but the physical reason for this extre-
mum is unclear.

III. CONCLUSIONS

In the last few years, remarkable relations between
classical and thermodynamic properties of black objects
have been uncovered. For instance, a correspondence be-
tween classical and thermodynamic instabilities of a large
number of black branes conjectured by Gubser and Mitra
[19,20] was proved by Reall [21] (see [22] for a review.)
Manifestations of this duality are expected to appear in the
QNM spectra. Indeed, some indications that phase transi-
tions do show up in the QNM spectrum were provided in
specific cases by various authors [23–27]. The main pur-
pose of this Brief Report is to show that the correspondence
is not as simple as proposed in [13].
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