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We study baryons in SU�N� gauge theories, according to the gauge/string correspondence based on IIB
string theory. The D5-brane, in which N fundamental strings are dissolved as a color singlet, is introduced
as the baryon vertex, and its configurations are studied. We find a point- and split-type of vertex. In the
latter case, two cusps appears, and they are connected by a flux composed of dissolved fundamental
strings with a definite tension. In both cases, N fundamental quarks are attached on the cusp(s) of the
vertex to cancel the surface term. In the confining phase, we find that the quarks in the baryon feel the
potential increasing linearly with the distance from the vertex. At finite temperature and in the deconfining
phase, we find stable k-quark ‘‘baryons’’, which are constructed of an arbitrary number of k�<N� quarks.
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I. INTRODUCTION

In the context of string/gauge theory correspondence [1–
3], the large-N dynamics of baryons can be related to the
D5-branes embedded in anti–de Sitter (AdS) space [4,5].
This point, in the context of the nonconfining N � 4
supersymmetric Yang-Mills theory, has been studied in
[6,7] using the Born-Infeld approach for constructing
strings out of D-branes [8,9]. The fundamental strings (F
strings) are dissolved in the D5-brane in these approaches,
and they could flow out as separated strings from the
singular point(s) appearing on the surface of the
D5-brane. So we can consider the system of the
D5-brane and F strings, which are out of the D5-brane,
as baryon. The approach in this direction has been applied
to the confining gauge theories [10–12]. In this case, the
no-force condition, a balance of the tensions of the
D5-brane and the F strings, is imposed at their connected
point(s) [13,14]. However, in [13,14], the configuration of
D5-branes with dissolved F strings has not been consid-
ered. In [10], the D5 configuration has been taken into
account, but the no-force condition has been used only in a
restricted direction, so then the structure of the F strings is
neglected. However, taking into account the structure of
both the D5-brane and F strings is important to obtain
possible baryon configurations as a system of both objects.

Here, we study the plausible baryon configurations by
embedding these objects in two simple bulk backgrounds
which correspond to confining and nonconfining SU�N�
gauge theories. In a confining theory, we can see two kinds
of tensions in the baryon. One is the string tension of the F
strings, which works on the quarks in the baryon. And the
other is observed as the tension of the bundle composed of
many F strings. The latter is found in a special configura-
tion where the D5-brane is stretched.

In the deconfining and high temperature phase, which is
expressed by the AdS Schwarzschild background, we
could find the color nonsinglet baryon configuration con-
structed of the quarks with the number k < N. This con-
figuration could be generated due to the fact that the N � k
F strings of the baryon could disappear into the horizon. As
a result, the baryon is separated to free N � k quarks and
the remaining k quarks connected to the D5 baryon vertex
as k-quark baryon.

The AdS5 background expresses also the deconfining
phase, so the k-string state has been found also in this
theory with a constraint for the number k as 5N=8< k<
N in [13,14]. In these approaches, any configuration of the
D5 vertex has not been considered as a solution of the
brane action. In our case, however, such structures are
taken into account; then the lower bound for k is removed
as a result. Because of the geometrical freedom of the
brane and the F strings, any k-quark baryon is possible.

In Sec. II we give our model and D5-brane action with a
nontrivial U�1� gauge field which represents the dissolved
F strings. And the equations of motion for D5-branes are
given. In Sec. III, we give a point vertex solution and study
possible baryon configurations in the confining phase. We
show the linear relation of the baryon mass and the distance
of a quark in the baryon from the vertex. In Sec. IV, the
split vertex solutions are studied. This solution is con-
structed by the bundle of F-string flux with a definite
tension between two cusps on S5. And we estimate the
tension of this flux. In Sec. V, we study the baryon in the
deconfinement phase at finite temperature, and stable color
nonsinglet baryons are shown. And in the final section, we
summarize our results and discuss future directions.

II. SET OF THE MODEL

We derive the equations for a D5-brane embedded in the
appropriate ten-dimensional background. As a specific
supergravity background, we consider the following ten-
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dimensional background in string frame given by a non-
trivial dilaton � and axion � [15,16],

 ds2
10 � e�=2

�
r2

R2 A
2�r����dx

�dx� �
R2

r2 dr
2 � R2d�2

5

�
:

(1)

First, we consider the supersymmetric solution

 A � 1; e� � 1�
q

r4 ; � � �e�� � �0; (2)

with self-dual Ramond-Ramond field strength
 

G�5� � dC�4�

� 4R4

�
vol�S5�d�1 ^ . . . ^ d�5

�
r3

R8 dt ^ . . . ^ dx3 ^ dr
�
; (3)

where vol�S5�� sin4�1vol�S4�� sin4�1sin3�2sin2�3 sin�4.
The solution (2) is dual to N � 2 super Yang-Mills theory
with gauge condensate q and is chirally symmetric.

Here the baryon is constructed from the vertex and N
fundamental strings. In the string theory, the vertex is
considered as the D5-brane wrapped on an S5 on which
N fundamental strings terminate and they are dissolved in
it [4,5]. Then the D5-brane action is written by the Born-
Infeld plus Chern-Simons term
 

SD5 � �T5

Z
d6�e��

�����������������������������������������������
� det�gab � 2��0Fab�

q
� T5

Z
�2��0F�2� ^ c�4��0...5;

gab � @aX
�@bX

�G��;

ca1...a4
� @a1

X�1 . . . @a4
X�4C�1...�4

;

(4)

where T5 � 1=�gs�2��
5ls

6� is the brane tension. The Born-
Infeld term involves the induced metric g and the U�1�
world volume field strength F�2� � dA�1�. The second term
is the Wess-Zumino coupling of the world volume gauge
field, and it is also written as

 S � �T5

Z
d6�e��

����������������������������
� det�g� F�

q
� T5

Z
A�1� ^G�5�;

in terms of (the pullback of) the background five-form field
strength G�5�, which effectively endows the five-brane with
a U�1� charge proportional to the S5 solid angle that it
spans. Namely,

 

Z
S4
d4�

@L
@F�2�

�
Z
S4
d4�

@L
@B�2�

� kTF; (5)

where TF � 1=�2��0� and k � Z.
Then we give the embedded configuration of the

D5-brane in the given ten-dimensional background. At
first, we fix its world volume as �a � �t; �; �2; . . . ; �5�.
For simplicity we restrict our attention to SO�5� symmetric

configurations of the form r���, x���, and At��� (with all
other fields set to zero), where � is the polar angle in
spherical coordinates. The action then simplifies to
 

S � T5�4R
4
Z
dtd�

� sin4�f�
����������������������������������������������������������������
e��r2 � r02 � �r=R�4x02� � F2

�t

q
� 4Atg;

(6)

where �4 � 8�2=3 is the volume of the unit four-sphere.
The gauge field equation of motion following from this

action reads

 @�D � �4sin4�;

where the dimensionless displacement is defined as the
variation of the action with respect to E � Ft�, namely
D � 	~S=	Ft� and ~S � S=T5�4R

4. The solution to this
equation is

 D � D��; �� � 	32���� �� �
3
2 sin� cos�� sin3� cos�
:

(7)

Here, the integration constant � is expressed as 0 � � �
k=N � 1, where k denotes the number of Born-Infeld
strings emerging from one of the poles of the S5. Next, it
is convenient to eliminate the gauge field in favor of D and
Legendre transform the original Lagrangian to obtain an
energy functional of the embedding coordinate only:

 U �
N

3�2�0
Z
d�e�=2

������������������������������������������
r2 � r02 � �r=R�4x02

q ������������
V����

q
; (8)

 V���� � D��; ��2 � sin8�; (9)

where we used T5�4R4 � N=�3�2�0�. Using this expres-
sion (8), we solve the D5-brane configuration in the
following.

III. THE POINT VERTEX

In this section we study solutions which correspond to a
baryon localized at a particular point in our four-
dimensional (4D) space-time. To localize the vertex in x,
we set x0 � 0, and the equation of motion for r��� is
obtained from (8) as
 

@�

�
r0��������������������

r2 � �r0�2
p ������������

V����
q �

�

�
1�

r
2
@r�

�

�
r��������������������

r2 � �r0�2
p ������������

V����
q

� 0: (10)

For our background solution (2), it is rewritten as
 

@�

�
r0�������������������

r2��r0�2
p ������������

V����
q �

�
1�q=r4

1�q=r4

r�������������������
r2��r0�2

p ������������
V����

q
� 0:

(11)
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In the case of q � 0, the background reduces to AdS5 �
S5, where the equation is analytically solved and well
studied in [7]. In this case, however, the quarks are not
confined. In order to see the baryon configuration, we
should consider the case of non-Bogomol’nyi-Prasad-
Sommerfield monopoles confinement phase, which is real-
ized in our model for nonzero q > 0. The parameter q
represents the gauge condensate in the 4D Yang-Mills
theory and provides the tension of the meson states. So
we could expect to be able to extract the characteristic
properties of the baryon in the confinement phase.

However, for q � 0, it is difficult to find an analytical
solution, so we try to solve the above equation numerically.
The ‘‘potential’’ V��� has three extremum points. In solv-
ing the equation, we impose the boundary condition at one
of these points, � � �c, which is the minimum of V����
and is given by the solution of

 �� � �c � sin�c cos�c: (12)

Then the boundary conditions are set as

 r��c� � r0;
@r��c�
@�

� 0; (13)

where r0 is a parameter which determines the configuration
of the D5-brane. The typical solutions are shown in Fig. 1.
These solutions have cusps at the pole points, � � � and
� � 0 for � � 0:2 and only at � � � for � � 0.

For simplicity, we consider here the case of � � 0. In
this case, �c � 0 and the solution r��� is smooth at � � 0
but it has a cusp at � � � on S5. The solutions depend on q
and r0 through the ratio 
 � r0=q1=4, and they are classi-
fied to two types, (A) and (B), by 
 as follows:

(A) 
 � 1:
(i) For 
  1, the solution is near the Bogomol’nyi-

Prasad-Sommerfield monopoles ‘‘tube‘‘ solution [7],
which arrives at � � � only at r � 1.

(ii) When 
 decreases toward 
 � 1, the solution begins
to tilt and crosses the symmetry axis, � � �, at a
finite value of r � rc. And r0��� is finite; then it
forms a cusp.

(iii) And we notice that r��� � q1=4 at 
 � 1, and this
constant value of r is an exact solution to the equa-
tions of motion. Its shape is completely spherical.
This is the only one allowable constant solution.
For this solution, we obtain from (8) the following:

 U �
N

3�2�0
21=2q1=4j�0�; (14)

where

 j��� �
Z �

0

������������
V����

q

and it is estimated as j�0� � 10:67 for � � 0. This
represents the vertex energy for the constant solution
of r. A similar solution has been given in [13,14] for
the AdS5 background. In our case, however, this
solution corresponds to a special one in our non-
conformal background. Actually, this solution dis-
appears into the horizon in the AdS5 limit of q! 0.

(B) 0< 
 < 1: In this case, the term 1� q=r4 in the
second term of Eq. (11) turns to negative, and then r
decreases with �. This implies that the north and south
poles on S5 are opposite to the one of the solution for 
 >
1, and then the direction of the force coming from the D5
tension at the cusp is also reversed. Further, the minimum,
r���, approaches zero for r0 ! 0, but the brane could not
arrive at r � 0 since the action diverges there despite how
small r0 is. In other words, an infinite energy is necessary
to realize r��� � 0. In other words, the D5 vertex is never
absorbed in the horizon due to the confinement force, and 

is restricted as 
 > 0.

A. Baryon configuration and no-force condition

The schematic configurations of the baryons formed
from the two types of vertex, (A) and (B), are shown in
Fig. 2. In the present case, the fundamental strings, which
are dissolved in the D5-brane, should flow out from the
cusp at � � �. The D5-brane configuration is singular at
this point. This singularity is cancelled out by the boundary

0.5 1 1.5 2 2.5 3
θ

1

2

3

4

5

r θ

0.5 1 1.5 2 2.5 3
θ

0.5

1

1.5
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r θθ

FIG. 1 (color online). Family of solutions for q � 2:8 and r�0� � q1=4 � � with various �, � � 0:2, 0.1, 0.01,�0:2,�0:3, for the five
curves from the upper to the lower one, respectively. The right-hand side shows the solutions for � � 0:2 and r��c� � q1=4 � 0:1 (the
upper) and q1=4 � 1:1 (the lower).
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term of the fundamental string stretching from this point.
This cancellation is equivalent to the so called no-force
condition, namely, the cancellation of the tension forces
among the fundamental strings and the D5-brane at the
cusp point. It is possible to consider various configurations
of the D5-brane and strings which satisfy the no-force
condition. They are supposed as the various possible flow-
ings of the fundamental strings from the D5-brane.

Then the fundamental strings coming out from the
D5-brane could stretch separately to any direction when
they are allowed dynamically. The dynamical conditions to
be considered are separated into two parts, (a) the equa-
tions of motion of F strings in the given background and
(b) the no-force conditions at the cusp point.

As for the condition (b), when the stretching direction of
the F strings is restricted to the r direction only as consid-
ered in [10], then the resultant baryon configuration is
reduced to the supersymmetric flux tube of D5 since the
tension force of the F strings is stronger than the one of the
D5 vertex. However, we could consider other configura-
tions of F strings which spread also to the x direction. As a
result, the force in the r direction is weakened, and the
configurations given in Fig. 2 become possible.

Such a string configuration has been considered in [13],
but the authors in [13] did not take into account the
structure of the D5-brane except for the constant r con-
figuration as mentioned above. In the present model, more
general configurations than the one considered in [13] are
studied.

Here we suppose that the two end points of the F string
are connected to the cusp r � rc of the D5 vertex and the
other probe brane, for example, the D7 probe brane, which
corresponds to the brane providing the flavor quarks and is
put at an appropriate position, r � rmax�>rc�. Here rmax

plays a role in the cutoff of r, and we do not give a
D7-brane configuration with the attached strings. This
problem is postponed to future works. The quark mass in
this case is given approximately by TF�rmax � rc� for the
AdS5 background.

Now we turn to the no-force condition at r � rc. In the r
direction, the tensions of the fundamental strings and the

one of the D5-brane should be balanced. As for the x
direction, the balance should be realized by the F strings
themselves. For theD5-brane, the tension in the r direction
is estimated in terms of U given by (8) under the variation
rc ! rc � 	rc [10]. It can be seen from (8), by using the
Euler-Lagrange equation, that the energy of the brane
changes only by a surface term at rc,

 

@U
@rc
� NTFe

�=2 r0c����������������
r02c � r2

c

p ; (15)

where r0c � @�rj���. From this equation, we can see that
the direction of the force is reversed at the point 
 � 1
when 
 changes from (A) 
 > 1 to (B) 
 < 1 since the sign
of r0c changes. This behavior is important in our model as
found below.

As for the fundamental string, which extends to the x
direction, its action is written as

 SF � �
1

2��0
Z
dtdxe�=2

�������������������������
r2
x � �r=R�4

q
; (16)

where rx � @r=@x and the world sheet coordinates are set
as �t; x�. Then, its energy and r-directed tension at the point
r � rc are obtained as follows:

 UF � TF
Z
dxe�=2

�������������������������
r2
x � �r=R�4

q
; (17)

 

@UF

@rc
� TFe

�=2 rx���������������������������
r2
x � �rc=R�

4
p : (18)

For the remaining N � 1 strings, it is possible to take their
world sheet coordinates in a different directions from the x
direction. Here, for simplicity, we assume that they extend
in the same plane, for example, the xy plane, and their
forces make a valence with the same tension in this plane.
The quarks are put on a circle whose center is the D5
vertex. Then, the forces of the strings in the r direction are
added up, and the value is N times of (18), and it should
keep a valence with the one of theD5-brane. We notice that
the direction of this tension force is also reversed at 
 � 1.

Thus we find the following no-force condition as dis-
cussed in [13,14] with a slightly different setting,

 r�c�x � r0c
rc
R2 ; (19)

at r � rc, where r�c�x denotes the value of rx at r � rc. Here
the sign of r�c�x and r0c should be the same.

B. Baryon mass and distance between quark and vertex

Thus we find the baryon configuration as depicted sche-
matically in Fig. 2. For small baryon mass, its configuration
is expressed by figure (A), and the configuration changes to
(B) when the mass increases. In configuration (B), the
fundamental string could become long with increasing

FIG. 2 (color online). Point vertex baryon. For the solutions of
(A) rc > r0 and (B) rc < r0.
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baryon mass. As a result, any large baryon mass is realized
by configuration (B).

The energy (or the mass) of the baryon is therefore given
as follows:

 E � NEF � E
�S�
J ; (20)

where EF is the F-string part and E�S�J represents the
D5-brane part, i.e. the baryon vertex. The latter is obtained
from (8) by setting as x0 � 0,

 E�S�J �
N

3�2�0
Z �

0
d�e�=2�r2 � r02�1=2

�����������������
V��0���

q
: (21)

While the baryon vertex is seen as a point in our 4D space-
time, it has a structure in inner space and has a finite value
of E�S�J .

Although r0 is not equal to q1=4 in general, the rough
estimation of this energy is given analytically in this limit
of r0 � q1=4 or 
 � 1. The D5-brane is squashed, at this
point, to a point in the r direction. Then we obtain

 E�S�J jr0�q1=4 �
N

3�2�0
21=2q1=4j�0�; (22)

where j�0� � 10:67 as given above. Since q is written as
q � �hF2

��i�04 [15], this vertex energy increases with the
’t Hooft coupling like �1=4 when hF2

��i is fixed. On the
other hand, we find that the F-string tension is independent
of � as seen below. Then, the vertex energy is expected to
become large and the main part of the baryon mass at large
’t Hooft coupling.

Next, we turn to the energy of the F-string part. From
(16), we can set the following constant h:

 e�=2 r4

R4
�������������������������
r2
x � �r=R�4

p � h: (23)

Then, by eliminating rx in terms of the above equation with
a constant h, we get the formula of the distance L between
the quark and the vertex and the string energy E as

 Lq�v � R2
Z rmax

rc
dr

1

r2
�����������������������������������
e�r4=�h2R4� � 1

p ; (24)

 EF � TF
Z rmax

rc
dr

e�=2�����������������������������������
1� h2R4=�e�r4�

p : (25)

These formulas are equivalent to the one of the mesons
made of quark and antiquark except for the lower bound of
the r integration, which is given here as the D5 cusp point
rc. And the no-force condition (19) is imposed at this point.

Eqs. (24) and (25) are evaluated for the solutions (A) and
(B) separately since the string shapes are different in the
two cases. First, we consider the solution (B). In this case,
rx is negative at rc; then r decreases with increasing jx�
x�rc�j after it departs from the cusp point x�rc�, but the
string can never reach the horizon r � 0 since the action

diverges at this point. Thus r reaches the minimum
r�� rmin� at some x � x0, where rx � 0; then it begins to
increase toward rmax (see Fig. 2). The shape of this F string
is determined as the extremum ofUF; namely, it is given as
a solution of the equation of motion derived from (17). The
total configuration of the baryon made of F strings and the
D5 vertex is controlled by the one parameter r0. For a
given r0, all the values of r0���, rc, rmin, and rxjrc are
determined, so the energy of the baryon is also determined.

Therefore, when a value of r0�<q
1=4� is fixed, it is

convenient to separate the F string to the region of
(i) rmin < r < rmax and (ii) rmin < r< rc. Then the energy
can be written as

 E�B�F � E�Bi�
F � E�Bii�

F : (26)

The first term corresponds to the half of the meson con-
figuration made of quark and antiquark. When the energy
becomes large or the F string grows long, E�Bi�

F is approxi-
mated by the following formula [16]:

 E�Bi�
F � meff

q � M
Lq� �q

2
;

where

 M � TF

������
q

R4

r
; (27)

 meff
q � TF

Z rmax

rmin

dre�=2: (28)

Here meff
q expresses effective quark mass in the thermal

medium. In this calculation, the constant h is taken as

 h � e��rmin�=2

�
rmin

R

�
2
� e��rc�=2

�
rc
R

�
2 1���������������������������������
�r0�rc�=rc�2 � 1

p :

(29)

Because of this boundary condition, rmin is determined by
using rc, then by r0 since rc is determined by r0 as
mentioned above. The remaining part of the F string is
obtained as

 E�Bii�
F � TF

Z rc

rmin

dr
e�=2�����������������������������������

1� h2R4=�e�r4�
p : (30)

Next, we turn to the solution (A), whose configuration is
shown in (A) in Fig. 2. In this case, since r0���> 0, then
the r of the F string increases from rc toward rmax mono-
tonically. There is no point of rx � 0. So the configuration
of the F string is obtained in terms of (24) and (25) by the
setting of the lower bound of r integration as rc and with
the boundary condition at this point,

 h � e��rc�=2

�
rc
R

�
2 1���������������������������������
�r0�rc�=rc�2 � 1

p : (31)

In this case, the energy of the F string is given as
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 E�A�F � TF
Z rmax

rc
dr

e�=2�����������������������������������
1� h2R4=�e�r4�

p : (32)

The above h could take its minimum, e��rc�=2�rcR�
2, at

r0�rc� � 0, which is realized at r0 � q1=4, and the distance
Lq�v becomes the maximum in the configuration (A).
Actually, we can estimate the maximum of Lq�v as

 Lmax
q�v � R2

�
4�2

q

�
1=4 ��3=4�

��1=4�
; (33)

where we take rmax � 1. So the baryon is expressed by the
solution (A) for 0< Lq�v � Lmax

q�v and by the (B) for
Lmax
q�v < Lq�v.
Now we can calculate the total energy of the baryon E

versus Lq�v. The energy is given as

 E � NEF � ED5; (34)

where EF � E�A�F or E�B�F for short or long Lq�v, respec-
tively. Assuming that all fundamental quarks are put at the
same distance from the vertex, E is numerically estimated
as a function of Lq�v. An example is shown in Fig. 3 for
rmax � 20.

In this figure, the value of E at L � 0 shows the value of
E�S�J with rc � rmax, namely, the pure D5-brane energy.
When L begins to increase, E�S�J decreases rapidly with L
and approaches a constant, and EF becomes dominant. It is
expressed by EF � E�A�F for small L, in the region of L �
0:7, and by EF � E�B�F for L � 0:7 in the present case. We
can see for large L that E increases with Lq�v linearly with
the tension,

 NM=2; (35)

where M is given in (27). This tension is equal to the sum
of the one of the independent F strings.

IV. SPLIT VERTICES

The equations of motion for D5 embedding are solved
here by adding the freedom of x��� without the restriction
x0 � 0. In this case, it is convenient to use a parametric
Hamiltonian formalism as in [10].

First we rewrite the energy (8) in terms of a general
world volume parameter s defined by functions � � ��s�,
r � r�s�, x � x�s� as

 U �
N

3�2�0
Z
dse�=2

���������������������������������������������
r2 _�2 � _r2 � �r=R�4 _x2

q ������������
V����

q
;

(36)

where dots denote derivatives with respect to s. The mo-
menta conjugate to r, �, and x are

 pr � _r�; p� � r2 _��; px � �r=R�4 _x�;

� � e�=2

������������
V����

p
���������������������������������������������
r2 _�2 � _r2 � �r=R�4 _x2

p ;
(37)

since the Hamiltonian that follows from the action (36)
vanishes identically due to reparametrization invariance in
s. Then we consider the following identity

 2 ~H � p2
r �

p2
�

r2 �
R4

r4 p
2
x � �V�����e� � 0: (38)

This constraint can be taken as the new Hamiltonian in
order to get the following canonical equations of motion:

 _r � pr; _pr �
2

r5
p2
xR

4 �
p2
�

r3 �
1

2
�V�����e

�@r�;

(39)

 

_� �
p�
r2 ; _p� � �6sin4����� �� sin� cos��e�;

(40)

 _x �
R4

r4 px; _px � 0: (41)

In solving these equations, the initial conditions should be
chosen such that ~H � 0.

We now solve these equations numerically to obtain a
configuration spreading in the x direction with px � 0 (i.e.
x0 � 0). We find two types of configurations of the
D5-brane, the U shaped and the cap (

T
) shaped one.

Their example solutions are shown in Fig. 4. The U shaped
one is obtained for large r�0� or small mass baryon, and the
cup shaped is obtained when r�0� or baryon mass increases.

Since r and @r=@� are finite at the end points of these
configurations, the end points of both sides are the cusps.
Then the baryon configurations given here are split into
two distinct cusps, which are connected to �N and �1�
��N quarks, respectively, for the case of a given value of �.
We can see that the cusps of theU shaped configuration are
the type (A) which is given in the previous section, and

1 2 3 4 5 6 7
L

5

10

15

20

25

30

E

FIG. 3 (color online). ELq�v plots for q � 2:0, R � 1, rmax �
20. The upper (lower) curve shows the baryon energy E (the
vertex energy ED5).

KAZUO GHOROKU AND MASAFUMI ISHIHARA PHYSICAL REVIEW D 77, 086003 (2008)

086003-6



type (B) cusps are seen for the cap shaped one. Then the
quarks are attached as depicted in Fig. 5 by considering the
no-force condition.

In both cases, the two cusps are connected by a confining
flux tube of the gauge theory. We estimate the tension of
this flux tube for a tuned configuration shown in Fig. 6 as
an example for the U shaped solution.

This tuned U shaped D5-brane is very similar to the
quark and antiquark meson state configuration which is
obtained by the fundamental string action. However the
present case is for the D5-brane tube, so the tension of this
tube is not equal to the one of the meson (27). In Fig. 6 the
tube sits almost at a constant � ’ �c where _p� ’ 0. This
behavior is understood from the fact that �c, which is given
above by the solution (12), is the extremum of the potential
V0���.

Then we can estimate the tension (v) of the flux tube
between the two cusp points as follows. From the above

solutions for r�x� and x���, we can approximate � � �c
and x0��c�  1 in the flux region (see the right-hand side of
Fig. 6). Then theD5-brane energy (8) can be approximated
as follows:

 Uflux �
N

3�2�0
sin3�c

Z
dxe�=2

�������������������������
r2
x � �r=R�4

q
; (42)

 �
2N
3�

sin3�cUF; (43)

where UF is the energy of the fundamental string given by
(17). This implies the linear relation of the energy of the
flux and its length Lvv. According to the method given for
the meson case, we obtain

 v �
2N
3�

sin3�cM; (44)

FIG. 5 (color online). Split vertex baryon. For the solutions of U shaped rc > r0 and cap shaped rc < r0.
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FIG. 4 (color online). The solution with cusps for R � 1, q � 2, and � � 0:5. The left figure is for r�� � �=2� � 0:6 and r��� �
r�0� � 0:490 507. The right one is for r��=2� � 0:1 and r��� � r�0� � 0:033 682 2.
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FIG. 6 (color online). The U shaped solution of the D5-brane for R � 1, r0 � 0:32, q � 3:5, and � � 0:2.
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where M � TF
����
q
R4

q
denotes the tension between the quark

and antiquark which is given above by (27). The depen-
dence of the flux tube tension on � is seen from the factor
sin3�c. From Eq. (12), we find sin3�c ’ 3��=2 for small �.
This implies that v�� � 1=N� reduces to the same tension
as the one of the meson state formed by quark and anti-
quark [16]. This result has a natural gauge theory inter-
pretation. When one quark is pulled out from the SU�N�
baryon (a color singlet), the remaining N � 1 must be in
the antifundamental representation of the gauge group. The
flux tube extending between this bundle and a single quark
should then have the same properties as the standard QCD
string which connects a quark and an antiquark. On the
other hand, for �N � k > 1, the k quarks are bounded by
the confining force since v < kM.

Here we comment on a similar formula of the flux
tension, which has been obtained in another confining 4D
Yang-Mills theory represented by the AdS black hole
background [10,12]. It is written as

 �B �
8�
27
N�g2

YM4
N�T2��1� ��: (45)

This has a similar � dependence to our v in (44), but �B
differs from v in two points. (i) While �B=N increases
with the ’t Hooft coupling � linearly, our v=N is indepen-
dent of �. (ii) The scale of our v is determined by hF2

��i

which is independent of the compact space scale, but �B is
determined by the compact U�1� scale T.

It would be useful to write the baryon energy or the mass
formula for the split baryon by separating it into three parts
as follows:
 

Esp
B � N��EF�rc1

� � �1� ��EF�rc2
�� � 5Lvv

� E���J � E
�1���
J ; (46)

where Lvv is the flux length and EF�rci� are given by the
same form as(25) for the two different cusp points rci : i �
1 and 2. The last two terms describe the D5-brane parts
between the cusps and the D5 flux; we call them ‘‘junc-
tion’’ here. They might be given as

 E���J ’
N

3�2�0
Z �c

0
d�e�=2�r2 � r02�1=2

������������
V����

q
; (47)

 E�1���J ’
N

3�2�0
Z �

�c
d�e�=2�r2 � r02�1=2

������������
V����

q
: (48)

In the symmetric case of � � 1=2, we can set rc1
� rc2

�

rc; then the above formulas are simplified as

 E � NEF�rc� � 5L� 2E�1=2�
J : (49)

It is an interesting problem to compare the junction energy
2E�1=2�

J with the point vertex case at L � 0 and at the same
rc. From the above formula, we obtain at rc

 2E�1=2�
J � 2

N

3�2�0
�4q�1=4j1=2��=2�; (50)

where

 j1=2��=2� �
Z �=2

0

���������������
V0:5���

q
� 4:214: (51)

Then the resultant junction energy is compared with E�S�J
given by (22), and we find

 2E�1=2�
J �

2j1=2��=2�

j�0�
E�S�J � 0:79E�S�J : (52)

This implies that the split vertex is energetically favorable
rather than the point vertex when the flux length Lvv is
negligible.

It would be an interesting problem to consider a
D5-brane configuration which splits to more numbers of
fractions of string fluxes. An approach in this direction has
been given by Imamura [11,12], and he has proposed the
junction as the vertex part of the split flux of the funda-
mental strings. Imamura has estimated this part by a nu-
merical calculation under appropriate assumptions.

In the present model, however, it means studying the
three or more numbers of split D5 vertices. It would be a
difficult task to obtain such a solution as a smooth numeri-
cal solution. In this sense, this problem is the open one
here.

V. FINITE TEMPERATURE AND k-QUARK
BARYON

Here, we consider the baryon configurations in the non-
confining Yang-Mills theory. Such a model is given by the
AdS black hole solution, which represents the high tem-
perature gauge theory. In our theory with dilaton, the
corresponding background solution is given as [17]
 

ds2
10 � e�=2

�
r2

R2 	�f
2dt2 � �dxi�2
 �

R2

r2f2 dr
2 � R2d�2

5

�
;

(53)

 f �

���������������������
1�

�
rT
r

�
4

s
; e� � 1�

q

r4
T

log
�

1

f2

�
;

� � �e�� � �0:

(54)

The temperature (T) is denoted by T � rT=��R2�. The
world volume action of the D5-brane is rewritten by elim-
inating the U�1� flux in terms of its equation of motion as
above; then we get its energy as

 U �
N

3�2�0
Z
d�e�=2f

�������������������������������������������������
r2 � r02=f2 � �r=R�4x02

q ������������
V����

q
;

(55)

where V is the same form as (9).
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For simplicity, we concentrate on the point vertex con-
figuration. Then, we set x0 � 0 as above, and the equation
of motion of r��� is obtained as follows:

 @�

�
r0�������������������������

r2f2 � �r0�2
p ������������

V����
q �

�
g�������������������������

r2f2 � �r0�2
p ������������

V����
q

� 0;

(56)

 g � 1
2e�@r�e�r2f2�: (57)

In this case also, we find the two types of solutions (A) and
(B) which have been given in Sec. III for the T � 0
confinement phase. However, in the present finite T case,
the theory is in the quark deconfinement phase. So free F
strings could exist, and these F strings touch on the horizon
rT . As a result, N � k quarks disappear, and we find the
k-quark baryon. This implies that we could find the color
nonsinglet baryons as depicted in Fig. 7. This baryon is
therefore constructed from k�<Nc� quarks and the color
singlet D5 vertex.

For fixed k, the solution (A) is obtained at small baryon
mass or small r0 where g is positive. When the mass
becomes large, then g changes to negative value, and we
find the solution (B). From Eq. (57), we can estimate the
temperature (Tc1

) where the solution changes from (A) to
(B) as

 T <
�

�R2 q
1=4 � Tc1

; � � 0:579; (58)

where � is obtained through a numerical analysis. In any
case, we would find k�<Nc�-quark baryon at finite tem-
perature before it resolves to independent quarks com-
pletely at high enough temperature. This point is
different from the meson, which is broken from the meson
to the quark and antiquark at high temperature and there is
no middle state as in the case of baryons.

Next, we consider the no-force condition at the cusp of
the k-quark baryon for the configurations given in Fig. 7.
The tension of the D5-brane at rc is given as

 

@U
@rc
� NTFe

�=2 r0c�����������������������������
r02c � r

2
cf�rc�

2
p ; (59)

and for F strings as

 

@UF

@rc
� TFe�=2 r�c�x�������������������������������������������

r�c�2x � �rc=R�
4f�rc�

2
q : (60)

Here, for the (N � k) strings ending on the horizon in (A)
in Fig. 7, we consider the limit of the vertical lines as the
one in (B). Then the no-force condition is obtained as

 N
r0c�����������������������������

r02c � r2
cf�rc�2

p � �N � k� � k
r�c�x�������������������������������������������

r�c�2x � �rc=R�4f�rc�2
q :

(61)

Notice that r�c�x and r0c are positive for the solution (A) and
negative for (B), respectively. Then, from 0< k< N, the
no-force condition Eq. (61) is rewritten as

 r�c�x >
rc
R2 r

0
c: (62)

When this is compared with the no-force condition (19) for
the confinement phase, we can understand the above con-
dition (62) as a reasonable one. The force of the remaining
k quarks must cover the lacked part of (N � k) quarks, so it
must become larger.

Although other complicated configurations are possible,
these baryon configurations would be observed just after
the deconfinement transition occurred at high temperature,
T � T�dec�

c . The temperature increases above T�dec�
c and

nears q1=4, and then the type (B) k-string baryons will
disappear first, and the type (A) configurations remain.
When the temperature increases further, the cusp point
arrives at rmax at the temperature Tmelt. Since rc < rmax,
all the k-quark (including N quarks) baryons should be
collapsed to the free quarks in the medium of quark gluon
plasma for T > Tmelt. In other words, k-quark baryons are
observed in a range of the temperature,

 T�dec�
c < T < Tmelt:

We need some qualitative and phenomenological analyses
to estimate this temperature range. This point is very
interesting, but it is not discussed further here.

On the other hand, similar k-quark baryon configura-
tions have been proposed with the restriction, k � 5N=8,
for N � 4 supersymmetric Yang-Mills theory [13,14]. In
this theroy, the k-quark baryon is possible since the quarks
are not confined. But, the authors in [13,14] have not
considered the inner structure of the D5-brane with dis-
solved F strings. In our high temperature model, instead,
the k-quark baryon is possible for any number of k with
k < N. This difference between the condition given in
[13,14] and ours could be reduced to the fact that the
D5-brane structure is considered or not in deriving the
no-force condition.FIG. 7 (color online). k-quark baryons at finite temperature.
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Actually, the no-force condition (61) is rewritten as

 N�1�Q5� � k�1�QF�; (63)

 

Q5 �
r0c�����������������������������

r02c � r2
cf�rc�2

p ;

QF �
r�c�x�������������������������������������������

r�c�2x � �rc=R�
4f�rc�

2
q :

(64)

Since jQFj � 1, we obtain

 jQFj �

��������N�1�Q5� � k
k

��������� 1: (65)

From this, we obtain the lower bound of k as

 

N
2
�1�Q5� � k: (66)

In the case of the structureless D5-brane, we obtain Q5 �
1=4 [13,14]; then we find 5N=8 � k. However, in our
model, Q5 could approach �1 since rc could approach
the horizon rT . This implies the lower bound of k is zero.

But we must notice that we need infinite energy to
realize the limit of k � 0 since the vertex energy U ap-
proaches infinity in this limit. When the energy of the
baryon increases, its energy is used mainly to extend the
length of the F strings, namely, the value of Lq�v.
However, at finite temperature and in the deconfinement
phase, Lq�v has its maximum value due to the color
screening. In this sense, the lower bound of k would be
small but finite for T > Tdec. So we expect k � 0 in the
limit of the T ! Tdec. In our model, however, the decon-
finement temperature is T � 0, so we could find k � 0 in
the limit of T ! 0. In other words, the small-k state is seen
just above Tdec, and the lower bound of k increases with T.
So at a high enough temperature, which would be below
Tmelt mentioned above, on the other hand, we cannot see
any k�<N�-quark baryon, and only the k � N baryon is
allowed there. So the lower bound of k is dependent on the
temperature. It is important to ensure the details of this
statement in a more realistic model with a finite Tdec. This
point requires further study.

The estimations of the mass of these states should be the
subject of further studies.

VI. SUMMARY AND DISCUSSION

The baryon configuration is studied based on the
type IIB string theory by embedding the D5-brane as a
probe in the background corresponding to two kinds of
large-N Yang-Mills theories, the confining and the decon-
fining gauge theories. The D5-brane is needed as the
baryon vertex of the quarks to make a color singlet, and
the structure of the vertex is studied by solving the embed-
ding equations for the fifth coordinate (r) and a direction
(x) of our three-dimensional space.

As for the x direction, two typical configurations, the
pointlike and the split vertex, are given. In the latter case,
the quarks are separated into two clumps, and a color flux
tube is running between them. As found in other confining
models, the energy of such a configuration is proportional
to the separation between the two quark bundles. And its
tension (v), the energy per unit length, is given by a
similar formula given before for the confining theory.
Estimating v, we find a natural dependence on the color
charges of the individual clumps and that this flux is
interpreted as a bound state of a number of fundamental
strings with a finite binding energy. The vertex energy is
then given by the length of this flux times v.

As for the r direction, we first show the r direction for
the point vertex case. We find that the configurations are
characterized by the relation of the position of the cusp(s)
(rc) and the extremum point of the D5-brane volume r0, as
(A) rc > r0 and (B) rc < r0. These configurations repre-
sent the same baryon at different energy (or mass) state.
The configuration (A) corresponds to the low energy state,
and (B) does for the high energy one. So the configuration
of the fundamental strings in the rx plane changes when the
baryon energy increases. Considering both configurations,
the relation of the baryon energy (E), which is the sum of
the D5-brane and fundamental strings, and the distance
(Lq�v) between a fundamental quark in the baryon and the
vertex is examined. And we find a linear relation of E and
Lq�v at large Lq�v. The tension in this case is given by that
of the meson times the quark number N since the vertex
energy is almost constant at large Lq�v. In obtaining this
relation, the two vertex configurations (A) and (B) men-
tioned above appear. The configuration (A) is dominant at
small Lq�v, where the linear relation of E and Lq�v is not
still seen. At an appropriate Lq�v, the vertex configuration
changes from (A) to (B), and the linear relation appears.

In the case of the split vertex, the configuration should
be characterized in the xr plane as the U shaped and the cap
(
T

) shaped. The U shaped one has two type (A) cusps, and
the cap shaped one has two type (B) cusps. The problem of
adding the fundamental strings in this case could be solved
by applying the results obtained in the point vertex case to
each cusp of the split vertex. Then we would observe two
kinds of the energy scale for the heavy baryon, M and v,
for the split vertex baryon.

As an example of deconfining Yang-Mills theory, finite
temperature theory is examined. At a high enough tem-
perature, the baryon collapses to quarks completely. Before
arriving at this temperature, we find that there is an inter-
mediate temperature, where quarks are already not con-
fined but they form a ‘‘baryon’’ state, which is composed of
k quarks with k < N and a color singlet vertex. So this is a
color nonsinglet baryon. This baryon state would be made
just after the phase transition of quark confinement and
deconfinement. It is a very interesting question whether or
not we could find this kind of baryon at a high temperature.
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As the next step, we should introduce the probe brane of
the quarks and solve its embedding problem consistently
with our baryon configurations obtained here. Another
important problem is to quantize the baryon system to
obtain their mass spectrum. Some approaches in this di-
rection have been seen [18–20]
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