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Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of
glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and
branching ratios. Interestingly, while glueballs remain less well understood both theoretically and
experimentally, our results are found to be consistent with the experimental data for the scalar glueball
candidate f0�1500�. More generally, holographic QCD predicts that decay of any glueball to 4�0 is
suppressed, and that mixing of the lightest glueball with q �q mesons is small.
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I. INTRODUCTION

Glueballs, as excitations of gauge-invariant composite
operators in Yang-Mills theories, remain illusive. Although
the existence of the glueballs (of various types, such as
scalar glueballs and tensor glueballs) is expected, their
experimental identification in the hadron spectra remains
difficult.1 This difficulty is largely due to the inability to
compute reliably couplings of glueballs to ordinary mesons
in strongly coupled QCD. Lattice QCD predicts for the
mass of the lightest scalar glueball to be around 1600–
1700 MeV [3,4], but it does not yet provide enough infor-
mation on the glueball couplings and decay products/
widths, which are indispensable for their identification.

In this paper, we explicitly compute the couplings be-
tween light glueballs and light q �q mesons, by using holo-
graphic QCD. Anti-de Sitter/conformal field theory (AdS/
CFT) (gauge/gravity) correspondence (duality) [5,6] is one
of the most important developments in string theory, and
holographic QCD refers to the application of AdS/CFT to
QCD studies. The basic claim of the AdS/CFT correspon-
dence is that correlation functions of gauge-invariant com-
posite operators in large Nc gauge theories at strong ’t
Hooft coupling correspond to classical gravitational com-
putations in higher-dimensional gravity theories in curved
backgrounds. The correspondence has been applied to
(i) the computation of glueball spectrum in large Nc pure
Yang-Mills theory and to (ii) q �q meson spectra/dynamics
in large Nc QCD, which we review briefly below. These
efforts have been quite successful in reproducing lattice
and experimental data of hadrons, even though the real
QCD is recovered in the ‘‘CFT’’ side only when one
incorporates various corrections in the large Nc and large

’t Hooft coupling expansion. Here we combine these two
efforts, (i) and (ii), in order to calculate couplings between
the glueballs and the q �q mesons, in the large Nc QCD.

The key merit of using holographic QCD is the fact that
one not only can calculate the hadron spectra, but also can
compute explicitly their couplings. It provides a more
powerful method for constraining these couplings than
the chiral perturbation technique. In particular, since glue-
balls are expected to be heavier than 1 GeV, derivative
expansion in chiral perturbation becomes unreliable.
Furthermore, current lattice calculations are not well suited
for computing dynamical quantities such as decays and
couplings. Our paper represents a first principle calculation
for glueball decays, though in the approximation where the
holographic duality is valid.

Let us briefly review here the holographic study of the
two sectors (i) and (ii). Glueball studies began at the early
stage of AdS/CFT correspondence, since they should exist
in pure Yang-Mills theories whose supersymmetric version
was the basic building block of the correspondence. Witten
was the first to suggest a reliable way in breaking the
supersymmetries thus allowing one to treat the bosonic
Yang-Mills theory [7]. The gravity dual is the near horizon
limit of a classical solution of 10-dimensional type IIA
supergravity representing Nc D4-branes wrapping an S1

with an antiperiodic boundary condition for fermions.
After various developments along this direction [8–11], a
complete spectrum of scalar/tensor glueballs in four-
dimensional Yang-Mills theory was given in [12] where
they appeared as graviton/dilaton/tensor fluctuations in the
Witten’s gravity background. The calculated glueball spec-
trum is consistent with the lattice computations, and in this
paper, we compute glueball decays, based on this spectrum
[12]. The lightest glueball is a scalar state with quantum
numbers JPC � 0��. Since this state should be the easiest
one to identify in hadronic data, we concentrate here on
this lightest scalar glueball for explicit computations. The
gravity dual of this lightest scalar glueball corresponds to a
specific combination of metric fluctuations.
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The quark sector, (ii), is obtained in AdS/CFT corre-
spondence by the introduction of flavor D-branes [13]
intersecting with color Nc D4-branes. Various D-brane
configurations (and also phenomenological holographic
models) describing flavor/chiral physics have been pro-
posed (see [14–18] for a partial list). Among these, we
shall use the Sakai-Sugimoto model [17,18], which has
been quite successful in reproducing various facets of low
energy QCD dynamics while maintaining its string-
theoretical origin. The Sakai-Sugimoto model uses Nf
D8-branes and Nf anti-D8-branes as the flavor D-branes,
and their intersection with color Nc D4-branes gives rise to
string excitations corresponding to the quarks. Among
various ways of introducing flavor D-branes, the Sakai-
Sugimoto model beautifully realizes spontaneous chiral
symmetry breaking and chiral dynamics in QCD.2 The
resulting low energy theory for the quark sector is dual to
the probe D8-brane world volume theory (higher-
dimensional Yang-Mills theory) in the Witten’s supergrav-
ity background. In particular, the q �q mesons are described
as Kaluza-Klein (KK) decomposed massless fields on the
probe D8-brane.

We would like to compute the couplings between the
glueballs and the q �q mesons in this setting. In the dual
description through the AdS/CFT, they correspond to the
supergravity fluctuations and the Yang-Mills fluctuations
on the D8-branes, respectively. These two sectors are
coupled in the combined system of supergravity plus D8-
branes. We substitute the fluctuations (wave functions) of
the supergravity fields (corresponding to the glueball) and
the D8-brane massless fields (mesons) into the D8-brane
action and integrate over the extra dimensions, to obtain
the desired couplings. Combining sectors (i) and (ii) is
important not only due to its phenomenological impact
but also because this represents the first computation in
holographic QCD of the couplings between the supergrav-
ity fluctuations and the fields on the probe D-branes.

Once the couplings are obtained, we can compute the
decay widths for various decay channels of a glueball, and
study its possible mixings. Because the whole q �q meson
sector is combined into the D8-brane action, which is a
higher-dimensional Yang-Mills Lagrangian, several inter-
esting mesonic features follow.3 For example, at the lead-
ing order (in the expansion of the large ’t Hooft coupling),
glueball decay to 4�0 is prohibited. There is no direct 4�0

coupling to the glueball, and, furthermore, glueball-� me-
son coupling also does not allow the 4�0 decay mode. As
for the mixing, we can show that the lightest glueball has
no mixing with q �q mesons at the leading order of our

expansion. These are our main predictions based on the
holographic QCD.4

The organization of this paper is as follows. In Sec. II,
we explicitly compute the glueball couplings in the holo-
graphic QCD, and obtain the interaction Lagrangian. We
study generic features of the glueball decay following from
the holographic QCD. In Sec. III, we compute the decay
widths based on these interactions. We list possible decay
products, and obtain widths for various allowed decay
modes. We next compare these with the experimental
data. It has been argued that f0�1500� is the most plausible
candidate for the lightest scalar glueball [1], and we find
that our results are consistent with the hadronic data for
f0�1500�. We reproduce the narrow width of the f0�1500�,
and also the decay products/branching ratio, qualitatively.
In Sec. IV, we provide a summary, discussions, and a list of
directions for future studies.

II. GLUEBALL INTERACTION

Holographic QCD, in particular, the Sakai-Sugimoto
model, has provided a novel unified view of the mesons
in a multiflavored QCD. All the mesons appear just as KK
decomposed massless fields living in higher dimensions.
As a consequence, there exist many interesting relations
among couplings between the mesons. The Skyrm term is
one example. Here our concern is with the glueballs, which
live in a different sector in the dual side, i.e. in the super-
gravity fluctuations, not on the flavor D-branes. But the
holographic features found in the meson sector are inher-
ited also for the glueball-meson couplings. This is because
these couplings are also controlled by the flavor D-brane
action, and share the same flavor structure (commutator
structure of the non-Abelian massless fields on the D8-
branes). In this section, after reviewing the dual descrip-
tions of the glueballs and q �q mesons, we describe the
generic features for glueball decays dictated by the holog-
raphy. Finally, using the holographic QCD, we explicitly
derive the couplings between the lightest scalar glueball
and light q �q mesons.

A. Brief review of holographic QCD: glueballs and
mesons

1. Glueball sector

Glueballs are gauge-invariant composite states in Yang-
Mills theory, and their duals are fluctuations in near hori-
zon geometry of black-brane solutions. There are numer-
ous ways to break supersymmetries by deforming the
AdS5 � S5 solution with which the original AdS/CFT
correspondence was derived. Among them, the Witten’s

2Although the quarks of the model are massless (and so the
pions are massless), it does not present a problem for our
purpose. For a recent discussion on obtaining massive pions,
see [19].

3One is the reproduction of the vector-meson dominance as
shown in [18].

4We explicitly obtain numbers for the decay widths of the
glueball, but these numbers should be understood as just an order
estimation, because our evaluation in the holographic QCD is
only at the leading order of the large coupling and the large Nc
expansion.
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background [7] is ‘‘reliable’’ in the sense that it knows how
the supersymmetries are broken in the Yang-Mills side:
antiperiodic boundary condition for the fermions on the
D4-brane world volume.

Let us review briefly the description of the gravity dual
for the lightest glueball in the four-dimensional QCD. It
corresponds to supergravity fluctuations in the Witten’s
classical background in 10 dimensions. The type IIA su-
pergravity solutions can be written conveniently in the
notation of the 11-dimensional supergravity, and in that
notation the Witten’s solution is a doubly Wick-rotated
AdS7 blackhole,

 

ds2 �
r2

L2 �f�r�d�
2 � ���dx�dx�� �

L2

r2 �f�r��
�1dr2

�
1

4
L2d�2

4; (2.1)

where f�r� � 1� R6=r6. L and R are the parameters of the
solution. �, � run from 0 to 4, and the x4 direction is the
11th dimension (the M theory circle). The � direction is
compactified to a circle, and its radius is fixed as L2=�3R�
so that the background is nonsingular, and the manifold is
smooth, around the ‘‘end’’ of the spacetime solution (at
r � R).

The S4 part is not necessary in the following discussion,
so we integrate that part (and also the flux) to obtain the M
theory supergravity action reduced to 7 dimensions:

 S �
�1

2�2
11

L4

16
V4

Z
d7x

����������������������
� detGMN

p �
R�GMN� �

30

L2

�
:

(2.2)

Here V4 � 8�2=3 is the volume of a unit S4, and we have
followed the notation of [10].5

In [12], a complete bosonic spectrum was given, and the
lightest state has quantum numbers JPC � 0�� in terms of
the x0; � � � ; x3 spacetime. The metric fluctuations for this
lightest state in the action (2.2) were explicitly obtained in
[10]67 as

 

hrr��
L2

r2 f
�1 3R6

5r6�2R6
H�r�G�x�;

h44�
r2

L2

1

4
H�r�G�x�;

h���
r2

L2

�
���

1

4
H�r��

�
1

4
�

3R6

5r6�2R6
H�r�

�@�@�
M2

�
G�x�;

hr��
360r7R6

M2L2�10r6�4R6�2
H�r�@�G�x�;

h����
r2

L2fH�r�G�x�: (2.4)

Here G�x0; � � � ; x3� is the glueball field in the real 1�
3-dimensional spacetime, and M is the mass of the
glueball.8

The mass squared for this glueball state was found in
[12] to beM2 � 7:308R2=L4, by solving the eigenequation
following from the equation of motion of the seven-
dimensional AdS supergravity (2.2) given by the mass-
shell condition of the glueball field ���M2�G � 0,

 

�
d
dr
�r7 � rR6�

d
dr
H�r�

�

�
L4M2r3 �

432r5R12

�5r6 � 2R6�2

�
H�r� � 0: (2.5)

For our later purpose, it is useful to change the coordinate
to a dimensionless Z defined by

 r=R � K1=6; K � 1� Z2: (2.6)

Z � 0 corresponds to the bottom of the background r � R,
and the branch Z�	 0� is smoothly connected to the branch
Z�
 0� [17]. In this Z coordinate, the eigenequation be-
comes

 �
3

Z
d
dZ

�
3Z�1� Z2�

d
dZ

H�Z�
�

�

�
L4M2

R2 �1� Z
2���1=3� �

432

�5Z2 � 3�2

�
H�Z� � 0:

(2.7)

The appropriate boundary condition for solving this is

 

d
dZ

HjZ�0 � 0; H�Z � 0� � 0; H�Z � 1� � 0:

(2.8)

Other fluctuations (such as the state corresponding to the
2�� glueball) can be constructed in the same manner
[10,12].

5Further integration of the � and the x4 (M theory circle) gives
a five-dimensional AdS gravity action,

 S �
�L4V4

48�2��6l8sg
2
sR

Z
drd4xr2

���
f

p ����������������������
� detGMN

p �
R�GMN� �

30

L2

�
:

(2.3)
Here M, N run through (0, 1, 2, 3, r), and we have used the
M theory$ type IIA relations R11 � gsls and 2�2

11 �
�2��8l9sg3

s .
6For the analogue state in three-dimensional QCD, see [11].
7In [10] there is a typo in Eqs. (38) and (40) (the sign of the

functions c and b is opposite).

8The excitation tower for these graviton-dilaton fluctuations is
denoted as S4 in [12].
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2. q �q meson sector

The dual of the quark sector is the probe flavor D-branes
intersecting with the color D-branes. To make sure that we
are not simply constructing a phenomenological model but
‘‘deriving’’ the hadronic interactions from the first princi-
ple, we need to follow the so-called top-down approach
from string theory. The Sakai-Sugimoto model [17] is the
best known top-down construction for multiflavor quarks.

The q �q mesons are described in the Sakai-Sugimoto
model by the flavor D8-brane action in the Witten’s back-
ground (written with type IIA string metric),
 

SD8 � ��2��0�2T D8 Tr
Z
d9xe��

���������������
� det~g

p
�

1

4
~gPR~gQSFPQFRS � SChern-Simons: (2.9)

Here ~gPQ is the metric induced on the D8-brane world
volume spanning the directions 0, 1, 2, 3, r, S4 and we have
already expanded the Dirac-Born-Infeld (DBI) action to
the second order in the Yang-Mills field strength.9 The
normalization of the generators of the gauge group is
chosen as TrTaTb � 	ab. The parameters in the back-
ground metric (2.1) are related to the notation of the
Sakai-Sugimoto model by L � 2RSS, R � 2

�����������������
RSSUKK

p
,

and (2.6), where RSS denotes ‘‘R’’ in the original papers
of Sakai and Sugimoto [17,18]. The typical mass scale
appearing in all the computations in [17,18] is MKK �

�3=2�U1=2
KKR

�3=2
SS .

Again, we integrate out the irrelevant S4 part, leading to
 

SD8 �
�T D8�2��

0�2V4

4gs
Tr
Z
d4xdz

�
3R3=2

SS U
5=2
KKK�

��

� F�zF�z �
2

3
K�1=3R9=2

SS U
�1=2
KK �����
F��F�


�
;

(2.10)

where z � UKKZ and �, � � 0, 1, 2, 3. (The Chern-
Simons term in (2.9) will be irrelevant to our discussion
of the glueball decay; see Sec. III.) The KK decomposition
along z (equivalently r, Z) in [17,18] is

 Az � �0�z���x
��; A� �  1�z����x

��; (2.11)

where we suppress all the other higher components, since
we are interested in the decay of the glueball to light
mesons. The eigenfunction  1 should satisfy the eigeneq-
uation which follows from the action (2.10),

 � K1=3@Z�K@Z 1� � �1 1; (2.12)

where �1 � 0:669 for normalizable  1, leading to the mass

squared for the � meson, m2
� � �1M

2
KK. The pion is mass-

less, with its eigenfunction �0�z� / 1=K.
The trace in (2.10) is for the matrix-valued mesons. For

Nf flavors, the pions and the � mesons are Nf � Nf
matrices. The overall trace part of the pion should yield a
mass from the chiral anomaly (see [17,18] for the descrip-
tion of the supergravity counterpart) but it is not included
here. In this paper we take Nf � 2, hence the overall trace
part of the pion is � (or �0) meson, while that of the �
meson is !. Except when adjoint indices are explicitly
written, we include � (�0) and ! in the matrix notation of
the fields � and �.

B. Generic features of holographic glueball decay

Our strategy to compute the interaction between the
glueballs and the q �q mesons is very simple. Since we
know how all these hadrons are described in the dual
side (as in (2.4) and (2.11)), we substitute them into the
D8-brane action (2.9) and integrate it over the extra dimen-
sions. In the original Sakai-Sugimoto model, the induced
metric ~g in (2.9) was just the background metric, but now
the glueball appears as a fluctuation in the induced metric
and the dilaton in the D8-brane action.

Since the appearance of the glueball does not break the
non-Abelian structure of the D8-brane action, we can
expect that some generic features of the glueball coupling
may be read in the D8-brane action. As an obvious check,
the glueballs should be flavor-blind; this can be seen as the
fact that the supergravity fields are gauge invariant with
respect to the gauge transformation on the D8-brane. As a
consequence, couplings of the glueballs to q �q mesons are
universal against flavors.

Gauge invariance in higher dimensions also constrains
the meson interactions. For example, as Sakai and
Sugimoto have shown, the Skyrm term in the pion self-
interactions is encoded in the structure of the higher-
dimensional Yang-Mills Lagrangian. In our case, even
though glueballs ( � gravity and dilaton fluctuations) are
now included, this flavor structure is almost unaltered. We
note the following interesting features:

(a) There are no glueball interactions involving more
than two pions.

(b) For glueball coupling to � and pion, the � meson
couples to the pion as if the pion were charged under
the � meson gauge field.

(c) Direct coupling of a glueball, G, with more than five
mesons are suppressed by large ’t Hooft coupling.

(a) is easily seen by noting the fact that � appears in Az but
there are no �Az�n terms, with n > 2 in the D8-brane action
(2.9). (b) follows from the fact that F�z � �A�; Az
 can be
decomposed as ���; @��
. These two features are pre-
cisely what were observed in the Sakai-Sugimoto model
for the pure q �q meson sector, and now inherited to the
glueball couplings. Finally, (c) is due to the fact that the
higher-dimensional Yang-Mills action (2.9) does not have

9There is a tadpole for closed string modes, but in this paper
we neglect the backreaction to the metric due to the presence of
the D8-brane because it will be small in the large Nc limit.
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an A5 term. For (a) and (c), DBI corrections give F4 terms
but they are suppressed by �0 or equivalently the large ’t
Hooft coupling.

To be more explicit, we can list the couplings which
appear in (2.9):
 

GTr��2�; GTr��; ��; �
�; GTr���;�
2�; GTr��2�;

GTr����; �
�; GTr���; �
2�: (2.13)

Here we omit the derivatives and also possible indices.
There are in fact no other couplings, and this is a generic
result from the holographic QCD for interactions involving
a single glueball. Even for multiglueball vertices, this
flavor structure is maintained.

A direct consequence of this flavor structure is the fact
that glueballs cannot decay to 4�0. The decay channel to
4�0 appears in the F4

�z term which is in the higher DBI
corrections and thus suppressed by the large ’t Hooft
coupling. So, the holographic QCD predicts that, among
the decay products of the glueballs, 4�0 is suppressed.

It is important to note that we work here in a ‘‘holo-
graphic gauge’’ (2.11) of the D8-brane action, in which
interactions are seen in the simplest and the most transpar-
ent way. On the other hand, in the Az � 0 gauge [17] the
broken chiral symmetry is manifest because the pions
fields appear in the action as U � exp�i�=f��. Thus this
gauge is appropriate for comparison with the chiral pertur-
bation theory, but the interactions are complicated. A
different gauge choice in the D8-brane action leads to a
different field definition of the four-dimensional fields and,
of course, this does not change the physics. Therefore,
there should be some hidden structure in the QCD effective
action, at least in the large Nc limit, because of the higher-
dimensional gauge symmetry. For example, the vector-
meson dominance is its consequence [18]. The suppression
of the 4�0 in the glueball decay is also a consequence of
this hidden structure which is not manifest in a gauge
choice other than the ‘‘holographic gauge’’ (2.11).

For explicit computations, we concentrate on the cou-
plings of the lightest scalar glueball, because of its phe-
nomenological interest. But it is obvious that couplings of
other glueball excitations can be computed in the same
manner. One of the phenomenologically interesting exci-
tations is the 2�� state. Fortunately, the supergravity fluc-
tuation for this 2�� state is simple (see, for example, [10]
whose notation we follow), in particular, it consists of only
the fluctuation of the metric components of �, � � 0, 1, 2,
3. So it in fact couples to the four-dimensional part of the
energy-momentum tensor of the D8-brane Yang-Mills ac-
tion. Therefore the coupling should be of the form

 

Z
d4xG����
 Tr�F��F�
�;Z

d4xG�� Tr�@��@���;
Z
d4xG�� Tr������;

(2.14)

at the quadratic order in � and ��. Here F�� is the field
strength of the � meson at its linear order, F�� � @��� �
@���.

Also the second lightest 0�� glueball is simple, since
the supergravity fluctuation is involved with the dilaton
that has a very simple coupling to the D8-brane Yang-Mills
fields. We expect that this kind of simplicity in the glueball
couplings may give some constraint on the decay products
and decay widths, in particular, the spin dependence of the
decay product, and may serve as a smoking gun for iden-
tifying the higher glueball states in the meson spectros-
copy.10 In the next subsection, we explicitly compute the
interaction Lagrangian of the lightest scalar glueball.

C. Interaction of the lightest scalar glueball

In this subsection we derive the interaction Lagrangian
of glueballs with light q �q mesons (the pions and the �
mesons). First, we need to fix the normalization of eigen-
functions in higher dimensions, in the dual side. Then, we
substitute all the fluctuations into the D8-brane action and
perform integration over extra dimensions to obtain the
interaction Lagrangian. The interaction Lagrangian in-
cludes a possible mixing between the glueball states and
the q �q mesons; however, we show that there is no mixing
for the lightest glueball.

1. Normalization of the fluctuation fields

Sakai and Sugimoto [17,18] have determined the nor-
malization of the eigenfunctions  1�z� and �0�z� for the �
meson and the pion, respectively:

 

2

3
R9=2

SS U
1=2
KKT D8V4g

�1
s �2��

0�2
Z
dZK�1=3� 1�

2 � 1;

(2.15)

 

3

2
R3=2

SS U
7=2
KKT D8V4g�1

s �2��0�2
Z
dZK��0�

2 � 1: (2.16)

With these, substituting (2.11) into the D8-brane action
(2.9) (the metric is fixed with its background value), we
obtain canonically normalized kinetic terms for the �
meson and the pion,

 S0 � �Tr
Z
d4x

�
1

2
�@���2 �

1

4
F2
�� �

1

2
�1M2

KK�
2
�

�
:

(2.17)

The field strength F is that of the �meson, F�� � @��� �
@���.

On the other hand, the normalization of the fluctuation
eigenfunction H�Z� for the glueball has not been carried
out in the past. The normalization of H�Z� in (2.4) should

10In fact, we will find in the next subsection that there is no
mixing between the lightest 0�� glueball (or the lightest 2��)
with q �q mesons, at the leading 1=

������
Nc
p

order.
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be fixed in such a way that substitution of the expressions
(2.4) into the supergravity action (2.2) results in, after the
integration of the extra dimensions, a canonical kinetic
term for the glueball field G�x�,

 S � const�
Z
d4x

�
1

2
�@�G�

2 �
1

2
M2G2

�
�O�G3�:

(2.18)

We numerically solve the differential equation (2.7) for
H�Z�, to get11

 Z
d7x

���������������������
�detGMN

p �
R�G��

30

L2

�
��0:0574

R4

L3 �H�Z�0��2

�
Z
d4xd�dx4�@�G@�G

�M2G2
: (2.19)

So, using the expressions for the M theory gravity coupling
�11, and also the relations between the supergravity pa-
rameters and the QCD parameters [17,18]

 R3
SS �

1

2

g2
YMNcl

2
s

MKK
; UKK �

2

9
g2

YMNcMKKl
2
s ;

gs �
1

2�
g2

YM

MKKls
;

(2.20)

we obtain the normalization

 �H�Z � 0���1 � 0:009 78gYMN
3=2
c MKK: (2.21)

2. Glueball interaction Lagrangian

Once the normalization of the eigenfunctions H�Z�,
 1�Z�, and �0�Z� are determined, substituting all the fluc-
tuations (� background) into the D8-brane action (2.9)
gives us the glueball-q �q meson couplings. We concentrate
on interactions linear in the glueball field G, since we are
interested in the glueball decays.

First, because the D8-brane action is written in terms of
the type IIA string metric and the dilaton field, we need a
dimensional reduction from the 11-dimensional fields to
the 10-dimensional fields. We find

 

grr �
L
rf

�
1�

L2

2r2 h44 �
r2f

L2 hrr

�
;

g�� �
r3

L3

��
1�

L2

2r2 h44

�
��� �

L2

r2 h��

�
;

gr� �
r
L
hr�;

g�� �
r3

L3 f
�
1�

L2

2r2 h44 �
L2

r2f
h��

�
;

e4�=3 �
r2

L2 � h44:

(2.22)

Substituting these and all the expressions for the fluctua-
tions (2.4) and (2.11) into the D8-brane action (2.9), we
obtain the interaction action Sint before the integration over
the extra dimension Z:

 Sint �
�T D8�2��0�2V4

4gs
Tr
Z
d4xdZ

�
3R3=2

SS U
5=2
KKK

�
1

2
��@���

2�2
0 � �

2
� 

2
1�

~H
�
1�

�

M2

�
G� �@��@���

2
0

� ���� 
2
1�

~H
@�@�

M2 G
�
�

2

3
K�1=3R9=2

SS U
�1=2
KK

�
�

1

2
F2
�� 

2
1

~H
�
1�

�

M2

�
G� 2F��F�

� 2
1

~H
@�@�

M2 G
�

�
180K

�5K � 2�2
R3=2

SS U
3=2
KKZ 1�@Z 1�H��F��

@�

M
G
�
: (2.23)

We have defined ~H�Z� � ��1=4� � 3=�5K � 2��H�Z�. In
this action (2.23) we have kept only terms quadratic in �
and ��, for simplicity. Note that the first line in the
interaction action (2.23) vanishes for an on-shell glueball,
���M2�G � 0.

Terms of higher order in � and � in the list (2.13) can
also be computed in the same manner. (Other couplings do
not appear at this order in the large ’t Hooft coupling
expansion.) Among these additional couplings, only the
G��� coupling shown below will be relevant for the later

computations of the decay width:

 

S0int �
6iT D8�2��0�2V4

4gs

Z
d4xdZ

�

�
R3=2

SS U
5=2
KKK Tr�@�����; �
��

2
0 1

~H
@�@�

M2 G
�
:

(2.24)

In addition to this, there is another term for G��� which
vanishes for the on-shell glueball.

Finally, performing the Z integration, we obtain the
following interaction Lagrangian (in this expression, again
we have kept only terms quadratic in � and ��):

11Note that there are no higher derivative terms on the right-
hand side of this expression. This is due to a useful gauge choice
for the gravity fluctuations (2.4), introduced in [10].
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Sint ��Tr
Z
d4x

�
c1

1

4
�@���

2

�
1�

�

M2

�
G

� c2
1

4
M2
KK�

2
�

�
1�

�

M2

�
G� c1

1

2
�@��@���

@�@�

M2 G

� c2
1

2
M2
KK����

@�@�

M2 G� c3
1

8
F2
��

�
1�

�

M2

�
G

� c3
1

2
F��F��

@�@�

M2 G� c4
3

2
��F��

@�

M2G
�
: (2.25)

HereG is the lightest scalar glueball field with the massM,
JPC � 0��, and F�� � @��� � @��� is the field strength
of the rho meson ��, and the coefficients c1 � c4 are
defined as follows:

 c1 �
Z
dZ

1

K�
~H; (2.26)

 c2 �
2

3
R9=2

SS U
1=2
KKT D8V4�2��

02�g�1
s

Z
dZK�@Z 1�

2 ~H;

(2.27)

 c3 �
2

3
R9=2

SS U
1=2
KKT D8V4�2��

02�g�1
s

Z
dZK�1=3� 1�

2 ~H;

(2.28)

 

c4 �
2

3
R9=2

SS U
1=2
KKT D8V4�2��

02�g�1
s M2

KK

�
Z
dZ

20KZ

�5K � 2�2
 1�@Z 1�H: (2.29)

These are evaluated numerically,

 c1 �
44:3

gYMN
3=2
c MKK

; c2 �
5:03

gYMN
3=2
c MKK

;

c3 �
49:3

gYMN
3=2
c MKK

; c4 �
�0:0732MKK

gYMN
3=2
c

:

(2.30)

The G��� coupling (2.24) is integrated to give

 S0int � ic5

Z
d4xTr�@�����;�
�

@�@�

M2 G; with

c5 �
Z
dZ

1

K�
 1

~H �
1:43� 103

g2
YMN

5=2
c MKK

:
(2.31)

These are the basic ingredients for computing the decay of
the lightest glueball in Sec. III.

3. Mixing of glueball with q �q mesons

For the identification of the glueball state in the data of
the real hadronic spectra, mixing with other states possess-
ing the same quantum number (for the scalar glueball of
our interest, it is 0��) is quite essential. Generically, the
mixing is expected to appear, because no symmetry can

prohibit it. In holographic QCD, mixing can be computed
explicitly.12 Here we show that the lightest scalar glueball
has no mixing, in the leading order interaction Lagrangian
of our concern. This means that the mixing is largely
suppressed, so the decay of the lightest scalar glueball is
dominated by a direct decay (not through the mixing of the
mass matrix). Note that for generic glueball excitations,
this is not the case, as we will see below.

First, let us give a generic argument on the mixing of a
generic glueball and q �q mesons, in the holographic QCD.
We can show that the mixing is suppressed by 1=

������
Nc
p

. The
mixing, a linear coupling between a glueball and a q �q
meson, originates in a linear coupling between supergrav-
ity fields and Yang-Mills/scalar fields in the D8-brane
action (2.9). The order of the mixing can be identified after
canonically normalizing the glueball field G and a meson
field X. We already know that the normalization of the
glueball field G is given by (2.21), while that of the X
meson can be characterized by that of the � meson, (2.15).
Using the relations (2.20), the prefactor in (2.15) can be
computed as g2

YMN
2
c=108�3. The D8-brane action has the

same prefactor (since the prefactor in (2.15) is basically for
canonically normalizing the � meson kinetic term in the
D8-brane action), so the mixing term can be written as

 

Smix �
g2

YMN
2
c

108�3

Z
d4xXG

Z
dZ �X�1 H

�
�g2

YMN
2
c�

�g2
YMN

2
c�

1=2�gYMN
3=2
c �

Z
d4xXG

�
1������
Nc
p

Z
d4xXG: (2.32)

This means that the mixing is of order 1=
������
Nc
p

.13

Although it is suppressed in the large Nc limit, this has a
significant effect on the decay process. The direct meson
decay process comes from meson interactions which are of
order g�1

YMN
�1
c . So, combining this with the mixing, the

total decay amplitude through the mixing is �g�1
YMN

�3=2
c .

On the other hand, the couplings computed in (2.30) mean
that the direct decay amplitude of the glueball is of order
g�1

YMN
�3=2
c , which is the same as the mixing decay ampli-

tude. Therefore in generic glueball decay, direct decay
process is comparable to the decay through the mixing
term.

12See [20] for glueball mixing to �0 meson in a different
holographic model of QCD based on flavor D6-branes [16].

13This suppression can be understood more easily. The super-
gravity fields are normalized with the 1=g2

s factor in front of the
supergravity action, while the D8-brane gauge fields are normal-
ized with the 1=gs factor in the tension of the D8-brane T D8.
Therefore, if one canonically normalizes the kinetic terms of the
fluctuation fields, the above-mentioned mixing coupling receives
a

�����
gs
p

factor, and in view of the AdS/CFT correspondence this
factor is just a 1=

������
Nc
p

correction.
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Our interest here is primarily on the lightest glueball,
and let us show that there is no mixing for this lightest
glueball. First, note that the � meson and the pion appear
quadratically in the D8-brane action. This already shows
that for the glueballs originating in the dilaton and the
graviton fluctuations have no mixing with the � meson
and the pion. (For glueballs coming from Neveu-Schwarz
(NS)-NS B-field or Ramond-Ramond (RR) gauge fields
may have mixings.) So the lightest glueball can mix only
with other types of mesons which are not in the higher-
dimensional Yang-Mills field; that is the transverse scalar
field y on the D8-brane. This y is not written explicitly in
(2.9) but included in the induced metric and the dilaton.
The KK decomposition of the field y produces scalar
mesons with quantum number 0��. This y is again an
Nf � Nf matrix. When Nf � 3, among N2

f � 9 matrix
elements, we have two elements with isospin zero, which
mix with the glueball. These two q �q meson states can be
identified with f0 mesons (other than the glueball candi-
date f0�1500�); near f0�1500�, there are f0�1370� and
f0�1710�, which may be identified with these two q �q
mesons coming from y.

Possible mixings among these three f0 mesons have
been studied phenomenologically (see for example
[4,21]). However, we show below that holographic QCD
predicts there is no mixing at the leading order.14 From the
induced metric in the D8-brane action, we are interested in
terms linear in the field y, which would lead to possible
mixing. These are

 g�yjy�0@�y�z; x
��; g�yjy�0@zy�z; x

��;

gzyjy�0@�y�z; x��; gzyjy�0@zy�z; x��;

y�@yg��;rr;�r;��
y�0; y�@y�
y�0;

(2.33)

where the last term is of course from the dilaton. Here the
bulk coordinates y and z � ZUKK are [17]

 y �

0@UKK

���������������
r6

R6
� 1

s 1A cos
;

z �

0@UKK

���������������
r6

R6
� 1

s 1A sin
; 
 �
3

2

U1=2
KK

R3=2
SS

�:

(2.34)

It is easy to show that in fact the metrics and the dilaton
appearing in (2.33) which include the glueball fluctuations
(2.4) disappear at y � 0 where the D8-brane is located,
after transforming the metric by using the �r;�; �� space-
time coordinates. So we conclude that there is no mixing of
the lightest glueball with mesons, at the leading order in
1=

������
Nc
p

.15 Precisely the same argument shows that the

lightest 2�� glueball also does not participate in mixing
at this order.

III. DECAY OF THE LIGHTEST SCALAR
GLUEBALL

Starting from the interaction Lagrangian (2.25) and
(2.31), we can directly study the decay products and their
decay widths. In this section, we first enumerate the kine-
matically allowed decay processes by analyzing the masses
of particles involved. This provides a list of decay products
for the lightest glueball. We then compute the decay widths
by using the interaction Lagrangians (2.25) and (2.31)
including explicit numerical coefficients (2.30). Finally,
we compare the widths with experimental data for the
glueball candidate f0�1500�. We find that the prediction
of holographic QCD qualitatively reproduces the total
width as well as the branching ratios of the f0�1500�.

A. Decay products

Let us study the kinematical constraints on the decay of
the lightest glueball in the holographic QCD. The lightest
glueball massM is given [12] byM �

��������������
7:31=9

p
MKK, while

the � meson mass is m� �
������
�1

p
MKK �

������������
0:669
p

MKK. So
we have a relation

 m� <M< 2m� (3.1)

in the holographic QCD. This means, our lightest glueball
cannot decay to two on-shell � mesons.16

In (2.13), we listed all the coupling terms appearing in
the interaction Lagrangian with a single glueball field G.
From those terms one can construct Feynman diagrams for
the decay processes. We will work with two flavors, for
definiteness. The list (2.13) can be grouped into two cate-
gories, as follows:

(i) GTr��2�, GTr��; ��;�
�, GTr��2�, G�0�0

(ii) GTr���;�
2�, GTr����; �
�, GTr���; �
2�, G!!
We have written explicitly and separately the trace
part of the q �q mesons: �0 for the pions and ! for the
� mesons. In addition to these, there are couplings
coming from the Chern-Simons term,

(iii) GTr�����, G�0 Tr����, G!Tr����, G�0!! for
which the spacetime indices are contracted by the
epsilon tensor. The category (i) is important for the
decay processes, while the categories (ii) and (iii) are
almost irrelevant kinematically, since with the cou-
plings (ii) and (iii) the final decay product includes
more than five pions (or four pions and one �0). To
understand this, note that the � meson can decay to
two pions, and ! decays to three pions.17 When the

14The components with isospin � 1 are identified as a0�1450�
meson [17].

15Here we only consider the U�Nf� singlet of the transverse
scalars. We can show that the other non-Abelian scalars do not
mix with the lightest glueball as in the case of the � mesons.

16For the most probable candidate of the glueball f0�1500�,
M � 1507 MeV, so this mass relation is satisfied in the experi-
mental data (m� � 776 MeV).

17Couplings to photons are described in the last section.
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number of the pions are large, typical momentum for
the final pion state is small. Pion couplings are
accompanied by derivatives, then the amplitude is
expected to be suppressed. By this reason, we restrict
our analysis to the cases where the final decay prod-
uct is induced by the couplings (i).

Since the mass of the glueball is not larger than twice the
� meson mass, the final decay products should have less
than two � mesons. All possible decay chains obtained by
these couplings are categorized by the decay products:

(a) G! �� (Fig. 1)
(b) G! ���, G! ��! ��� (Fig. 2)
(c) G! ���! ����, G! ��! ���� (Fig. 3)
(d) G! �0�0 (Fig. 1)

If we think of G as the f0�1500�, then this list is consistent
with what is known in the particle data book [1]. The
branching ratio given in [1] is 35% for (a), 49% for G!

4� (corresponding to �b� � �c�18), and 7% for (d).19 So we
can reproduce the main decay channels of the f0�1500�. In
the next subsection, we compute the decay widths for each
of these decay branches.

B. Decay widths

Let us evaluate the decay widths for these groups.
Groups (a) and (d) are two-body decays so that the decay
widths can be computed analytically. For the remaining
groups, (b) and (c), integrations over final momenta are
complicated that we computed the decay widths
numerically.20

1. G! ��, G! ��

Two-body decays are simple to analyze, for which we
have for the decay width,

 � �
jpj

8�M2 jMj
2; (3.4)

where M is the amplitude of the graph responsible for the
decay, and p is the final momentum of one of the identical
particles in the decay product.

In the rest frame of the glueball, the first line in the
interaction Lagrangian (2.25) vanishes. For the 2� decay,
the relevant coupling in that frame is

 

1
2 c1@0�

a@0�
aG: (3.5)

For definiteness we consider a specific adjoint index for the
pion �a (a � 1, 2, 3). We have two pions as a final state,
��1� and ��2�, then

 M � 1
2c1ip

��1�
0 ip�

�2�

0 � 2; (3.6)

where the last factor 2 is for the symmetry of exchanging

FIG. 1. A glueball G decaying to two pions �.

FIG. 2. A glueball G decaying to two pions � and a single �.
There are two graphs, the decay with a single vertex (left) and
the decay with two vertices (right). In both graphs, solid lines are
glueballs, dashed lines are �1 and �3, and wavy lines are �2.

FIG. 3. A glueball G decaying to four pions �. There are two
graphs, the decay with two vertices (left) and the decay with
three vertices (right). Pions (dashed lines) in both the graphs are
labeled from the top to the bottom as �a, �c, �d, and �f. �
mesons (wavy lines) are �e (left), and (�b (top) and �e (bottom))
(right).

18In [1], (b) is not explicitly written, but we interpret that (b) is
included in the G! 4� decay in [1] because the on-shell �
meson in (b) would decay to 2�.

19We are working in the case of two flavors, so we do not
distinguish � and �0, and ignore K.

20We worked in the supergravity convention, but to compute
the decay widths it is convenient to go to the metric convention
��1;�1;�1;�1�. The new action S � S0 � Sint quadratic in
the q �q meson fields is

 S0 � Tr
Z
d4x

�
1

2
�@����@��� �

1

4
F��F�� �

1

2
�1M2

KK���
�
�
;

(3.2)
 

Sint � Tr
Z
d4x

�
c1

1

4
�@����@

���
�
1�

�

M2

�
G

� c2
1

4
M2
KK���

�
�
1�

�

M2

�
G� c1

1

2
�@��@���

@�@�

M2 G

� c2
1

2
M2
KK����

@�@�

M2 G� c3
1

8
F��F

��
�

1�
�

M2

�
G

� c3
1

2
F��F

�� @
�@�
M2 G� c4

3

2
��F

�� @�
M2 G

�
: (3.3)
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the two final identical particles. The kinematics shows that
p�

�1�

0 � p�
�2�

0 � jpj � M=2 because the pions are massless,
so we obtain

 M � �c1M2=4: (3.7)

The decay width summed over a � 1, 2, 3 is

 �G!�� �
jc1j

2M3

256�
� 3�

1

2
: (3.8)

The last factor 1=2 is necessary because the final state has
two identical particles.

For evaluating the numerical value of the decay width,
we need � � g2

YMN
2
c=108�3 � 7:45� 10�3 which was

used in [17] to fit the pion decay constant, and Nc � 3.
Using these as inputs, we finally obtain the decay width
divided by the glueball mass

 

�G!��
M

�
3

512�

�
44:3

gYMN
3=2
c MKK

�
2
� ���������

7:31

9

s
MKK

�
2

� 0:040: (3.9)

This is to be compared with the experimental data in [1],

 

��ex�
G!��

M
�

109

1507
� 34:9% � 0:0252; (3.10)

with which we find a qualitatively good agreement.
Another two-body decay channel is forG! ��. The �0

mass evaluated in the holographic QCD in [17]21 is found
to be too large, 2m�0 >M, so in the holographic QCD this
decay channel cannot be described. However, if we adopt,
as a trial, the �0 mass as a free parameter in this holo-
graphic QCD, then we obtain the decay width

 

�G!��
M

�
�G!��
M

�
1

3
�

�������������������
1�

4m2
�

M2

s
: (3.11)

The factor 1=3 is to suppress the effect of the three kinds of
the pions, and the last factor is necessary to replace jpj of
the pion with that of the � meson. If we substitute the real
observed ratio m�=Mf0�1500� � 547:5=1507, we obtain

 

�G!��
M

� 0:0090: (3.12)

We compare this with the experimental data,

 

��ex�
G!�� � ��ex�

G!��0

M
�

109

1507
� 7:0% � 0:005 06; (3.13)

again this is qualitatively in agreement with our result.

2. G! ���

First we describe the decay G! ��� which uses the
single vertex (2.31), see Fig. 2 (left). The SU�2� generators
are normalized as 
a=

���
2
p

, so the interaction (2.31) is
written explicitly as

 �
���
2
p
c5�abc@��

a�b��
c @

�@�

M2 G �
���
2
p
c5�abc@0�

a�b0�
cG;

(3.14)

where we have used a relation in the rest frame of the
glueball G,

 

@�@�
M2

G �
	�0 	

�
0�ip

0
G�

2

M2 G � �	�0 	
�
0G: (3.15)

Labeling the decay products as �1�p�1�� � �2
��p���� �

�3�p�2��, the amplitude is

 M �
���
2
p
c5�ip�1�0 � ip�2�0��0; (3.16)

where �0 � jp���j=m� is the zeroth component of the �
meson polarization vector,

 �� �
�
jp���j
m�

;
�p���0
jp���jm�

p���

�
: (3.17)

Other polarization vectors have vanishing �0.
Next, we evaluate the amplitude for the process G!

��! ���, see Fig. 2 (right). Let us list the Feynman
rules: The �a�b��cG vertex is the same as before,���

2
p
c5ip

��a�
0 	�0�abc, and the �d�e��f vertex was obtained

in [17] as

 

���
2
p
c6ip

��d�
� �def; where c6 �

Z 1
�1

dZ
1

�K
 1 �

24:0
NcgYM

:

(3.18)
The �a��a�G vertex (no sum over a) is
 

1

2
c2M

2
KK	

�
0 	

�
0 �

1

2
c3�p



���p���
�

�� � p����p
�
����

�
1

2
c3�p���0p���0��� � p����p���0	

�
0 � p

�
���p���0	

�
0

� p
���p���
	
�
0	

�
0 � �

3

4
c4

1

M
�p���0��� � p

�
���	

�
0

� p���0��� � p����	
�
0 �; (3.19)

and the � meson propagator is

 

1

p2
��� �m

2
� � im���

�
	�� �

p�
���p����

m2
�

�
	be: (3.20)

Here we need the � meson decay width, ��=m� �

c2
6=24�, which can be evaluated as ��=m� � 0:307 in

the holographic QCD [17,18]. This is close to the experi-
mental value ��=m� � 149:4=775:5 � 0:1927 in [1]. As
for the polarization vectors, in addition to (3.17), we have
two more vectors. One is

 ���
�
0;

p���2���������������������������������
�p���1 �

2��p���2 �
2

q ;
�p���1���������������������������������

�p���1 �
2��p���2 �

2
q ;0

�
(3.21)

21The expression is m�0 �
1

3
��
6
p
�

�����
Nf
Nc

q
�g2

YMNc�MKK � 17:4MKK.
This value, which is a subleading term in the large Nc expansion,
is too large, if compared with the mass of the real �0. We expect
that the mass formula above, derived in supergravity approxi-
mation, would receive large corrections of Nf. Note that the �
mesons and other massive mesons have masses independent of
Nf, in the leading approximation of [17]. Taking into account the
supergravity backreaction of the flavor D8-branes (equivalently,
the dependence in Nf) is quite difficult technically.
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and the other gives the same decay width with that of the
polarization (3.21). Using all of these Feynman rules, we
can compute the decay amplitude for the process G!
��! ���.

The total expression for the decay width is lengthy, and
we here provide only the numerical results after substitut-
ing the necessary inputs used also in the evaluation of the
�G!��. We obtain

 

�G!���
M

� 3� �1:1� 10�8 � 2� �2:1� 10�7��

� 1:3� 10�6: (3.22)

The factor 3 is for the sum over possible flavor indices.
(The decay width we computed is for the decay G!
�1�2�3, and there are two other possible combinations
for the indices.) Terms in the parentheses are for different
polarizations of the final � meson.

Our result (3.22) is very small. The smallness mainly
comes from the fact that the integration region of the
momentum is so small because m� is very close to M in
our holographic computation. In reality, the mass of
f0�1500� is much larger than the mass of the � meson.
So, as a trial, in our computation of the decay width, let us
modify22 the input glueball mass M such that M=m� co-
incides with the experimental value in [1]. Then, we obtain

 

�G!���
M

� 0:096: (3.23)

Since the decay product ��� seems to be included inG!
4� in [1], we compare our result with the experimental
value after adding the decay width of G! 4� which we
compute next.

3. G! 4�

The computation of this amplitude is done in the same
manner, and we do not write it explicitly, except for some
important points. First, it is easy to find out that the decay
product is only in the combination G! 2�i2�j�i � j�, so
one can specifically choose i � 1, j � 2 for the computa-
tion. (This determines the index for the � meson as �3.)
Since the amplitude is proportional to

 	be�abc�def � 	ad	cf � 	af	cd; (3.24)

all possible ways to assign the adjoint index for each of the
final pions are

�1�p�1�� a d a d a f a f c f c f c d c d
�1�p�2�� d a d a f a f a f c f c d c d c
�1�p�3�� c c f f c c d d a a d d a a f f
�1�p�4�� f f c c d d c c d d a a f f a a

sign � � � � � � � � � � � � � � � �

We have to sum the amplitude with these substitutions,
with the sign indicated in the table.

The main difficulty in the computation resides in the
evaluation of the integration of the final momenta,R
d3p�1�d3p�2�d3p�3�d3p�4�. In the integrand of the decay

width, there is a four-dimensional delta function coming
from the total energy-momentum conservation. The inte-
gration

R
d3p�4� trivially eliminates three delta functions of

the momentum conservation. Furthermore, using spatial
rotation symmetry, we can orient one of the remaining
momenta as ~p�3� � �p; 0; 0�, then the remaining single
delta function for the energy conservation can be elimi-
nated by the integration

R
d3p�3� � 4�

R
p2dp.

Specifically, the delta function is expressed as

 

	
�
p�

�������������������������������������������������������������������������������
p2 � 2p�p�1�x � p�2�x� � jp�1� � p�2�j2

q
� jp�1�j � jp�2�j �M

�

�
2�M� jp�1�j � jp�2�j��p�1�x � p�2�x� � jp�1� � p�2�j2 � �M� jp�1�j � jp�1�j�2

2�M� jp�1�j � jp�2�j � p�1�x � p�2�x�2

� 	
�
p�
�M� jp�1�j � jp�2�j�2 � jp�1� � p�2�j2

2�M� jp�1�j � jp�2�j � p�1�x � p�2�x�

�
: (3.25)

So the integration over p results in a constraint for the
remaining momenta p�1� and p�2�. This constraint corre-

sponds to a restriction on the integration region, jp�1�j �
jp�2�j � jp�1� � p�2�j 
 M.

Numerical integration for the remaining momenta gives
the decay width,23

 

�G!4�

M
� 2:2� 10�5: (3.26)

If we adjust the glueball mass to the experimental value

22There is a possibility that this hand-waving argument may be
justified by slightly modifying the probe D8-brane configura-
tions. (For example, the location of the D8-brane can be shifted
off the tip of the bulk geometry.) It may change the mass scale of
the � mesons compared to the mass scale of the glueballs, while
the structure of the glueball-meson couplings is maintained. In
this paper, we have not calculated anything on possible mod-
ifications of the probe D8-brane configuration. Here we simply
shifted only the glueball mass as a first trial.

23This value includes a factor 3 accounting for different com-
binations of the species of the final decay product.

GLUEBALL DECAY IN HOLOGRAPHIC QCD PHYSICAL REVIEW D 77, 086001 (2008)

086001-11



(while fixing the � meson mass by m� �
������
�1

p
MKK) as was

done before, we obtain

 

�G!4�

M
� 0:0087: (3.27)

Let us compare our results (3.23) and (3.27) with the
experimental values. Adding these two, we obtain

 

�G!4� � �G!���
M

� 0:105; (3.28)

while the experimental data [1] shows

 

��ex�
G!4�

M
�

109

1507
� 49:5% � 0:0358: (3.29)

One can see that the order of this decay width is reproduced
in the holographic QCD.24

IV. CONCLUDING REMARKS

We have presented here the first attempt in computing
decays of glueballs to q �q mesons using holographic QCD.
We have adopted a string-theoretic setup, (which is of the
so-called ‘‘top-down’’ type), the Sakai-Sugimoto model.
The glueball sector lives in supergravity fluctuations in the
Witten’s background of non-Bogomol’nyi-Prasad-
Sommerfield (BPS) black 4-branes, and the mesons live
on the probe D8-branes. The coupling between the two
sectors is encoded in the D8-brane action, and KK decom-
position and integration over extra dimensions gives the
desired couplings in four spacetime dimensions.

Explicit couplings between the lightest glueball and the
q �q mesons are given, and the associated decay products/
widths are calculated. We find that our results are consis-
tent with the experimental data of the decay for the
f0�1500� which is thought to be the best candidate of a
glueball in the hadronic spectrum.

The most important merit of the holographic QCD is that
one can go beyond the chiral perturbation theory; one can
compute coefficients which cannot be fixed solely by the
chiral symmetry. At low energy the chiral perturbation
works well, but at the energy scale of the glueball mass
the derivative expansion in the chiral perturbation becomes
unreliable. Furthermore, glueballs are flavor-blind, so it is
quite difficult to constrain possible interactions from the
chiral symmetry. The holographic description obtained in
the holographic QCD is, in principle, equivalent to QCD,
though in the large Nc and large ’t Hooft coupling limit.25

We therefore expect that the holographic approach should
provide interesting information on strong coupling physics
of QCD. In fact, we have discussed generic features of the
glueball interactions predicted in holographic QCD (see
Sec. II B). For example, we have argued that, among the
decay products of glueballs, 4�0 should be suppressed.

One of the reasons why the f0�1500� is expected to be a
glueball state is that the f0�1500� does not decay to 2�. In
the holographic QCD, we can compute relevant photon
coupling in the same manner, and find that G�� coupling
is vanishing at the leading order (see [17,18] for the way to
introduce the electromagnetic field as an external back-
ground of the massless fields on the D8-branes). Since we
have shown that there is no mixing with q �q mesons at the
leading order, our result of the suppressed photon coupling
reproduces the experimental data.

In this paper, we have explicitly computed for the
decay of the lightest glueball, which is of the most phe-
nomenological interest. There are also many other inter-
esting directions, e.g., generalizing our results using
various approaches in holographic QCD. Here are some
examples:

(i) Multi-glueball couplings.—Self-couplings of the
glueballs can be computed in the supergravity sector.
Emission of mesons from a propagating glueball can
be described by the D8-brane action similarly. For
highly spinning glueballs whose holographic dual
are closed fundamental strings in the confining su-
pergravity background, their decay into two glue-
balls was briefly described in [22].

(ii) Universally narrow width of glueballs.—If one can
show in the holographic QCD that the total decay
width of any glueball state is narrow, that would
provide support for this widely held belief. In this
paper we have shown the narrowness only for the
lightest glueball. Explicit calculation of the widths is
possible for other glueball excitations, as they are
available in [12]. The 2�� glueball coupling has
been described in (2.14) for example.

(iii) Glueballs with other JPC quantum numbers.—
Glueball states originating in the RR fields in the
supergravity may possess interesting structure in the
meson couplings. The 0�� glueball is described by a
RR one-form C� whose fluctuation is completely
decoupled from the others, and it appears in the
Chern-Simons coupling in the D8-brane action.
The 1�� glueballs reside in the NS-NS two-form
field, and it should have a large mixing with the
meson fields. This is a consequence of the gauge
invariance in the supergravity, requiring the gauge-
invariant combination BNSNS � F in the D8-brane
action.

(iv) Thermal/dense QCD.—One can modify the super-
gravity background, or introduce a background for
the D8-brane fields, to describe the finite tempera-

24If we include the mass of the pions in some way, the decay
width (3.28) to the four pions is expected to become significantly
smaller and close to the experimental data.

25Precisely speaking, the limit to QCD includes MKK ! 1
(there should be a double-scaling limit with a simultaneous
scaling of the ’t Hooft coupling), after incorporating an infinite
number of 1=Nc corrections. The background receives large
stringy corrections and becomes essentially a purely stringy
background.
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ture/baryon density,26 that surely will modify the
couplings which we have computed. Glueball cou-
plings should be sensitive to the deconfinement tem-
perature, and, near the transition temperature, they
should become singular in some sense. This is of
phenomenological interest in view of the onset of the
LHC.

(v) Computation of the glueball couplings in other mod-
els of holographic QCD.—For a single-flavor case,
flavor D6-branes enable one to introduce easily the
quark mass [16], which might shed some light on
how our results may be modified by the pion masses.
To apply our strategy to the so-called bottom-up

phenomenological approach in holographic QCD
may reveal how universal the glueball couplings
obtained in our paper are. All of these would be
interesting to investigate.
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