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The standard model extension with additional Lorentz violating terms allows for redefining the

equation of motion of a propagating left-handed fermionic particle. The obtained Dirac-type equation

can be embedded in a generalized Lorentz-invariance-preserving algebra through the definition of Lorentz

algebralike generators with a lightlike preferred axis. The resulting modification to the fermionic equation

of motion introduces some novel ingredients to the phenomenological analysis of the cross section of the

tritium � decay. Assuming lepton number conservation, our formalism provides a natural explanation for

the tritium �-decay end point via an effective neutrino mass term without the need of a sterile right-

handed state.
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I. INTRODUCTION

Although Lorentz symmetry is one of the most basic
features of our description of nature, there has been evi-
dence in the context of string/M-theory [1,2] and loop
quantum gravity [3] that such a symmetry, at least in
principle, might be broken. Observational information on
the violation of Lorentz invariance would provide essential
insights into the nature of the fundamental theory of uni-
fication, however, no decisive experimental evidence has
been detected so far. Furthermore, the most recent results
with regard to ultrahigh energy protons suggest that there is
no need for violation of Lorentz invariance for explaining
the data [4].

However radical, the idea of dropping the Lorentz sym-
metry has been repeatedly considered in the literature. For
instance, a background or constant cosmological vector
field has been suggested as a way to introduce a velocity
with respect to a universe’s preferred frame of reference
[5]. It has also been proposed, based on the behavior of the
renormalization group � function of non-Abelian gauge
theories, that Lorentz invariance could be just a low-energy
symmetry [6]. Furthermore, higher dimensional theories of
gravity that are not locally Lorentz invariant have been
considered in order to obtain light fermions in chiral
representations [7]. The breaking of Lorentz symmetry
due to nontrivial solutions of string field theory has been
first discussed in Refs. [1,2]. These nontrivial solutions
arise in the context of the string field theory of open strings
and may have striking implications at low energy. The
Lorentz violation could, for instance, give rise to the break-
ing of conformal symmetry and this together with inflation
may lie at the origin of the primordial magnetic fields

which are required to explain the observed galactic mag-
netic fields [8]. In addition, putative violations of the
Lorentz invariance could contribute to the breaking of
CPT symmetry [2]. Tensor-fermion-fermion interactions
expected in the low-energy limit of string field theories
give rise, in the early universe, and after the breaking of
CPT symmetry, to a chemical potential that creates in
equilibrium a baryon-antibaryon asymmetry in the pres-
ence of baryon number violating interactions [9]. In this
scenario, the breaking of CPT symmetry allows for an
explanation of the baryon asymmetry of the Universe
[9,10].
These theoretical investigations have been considered in

the context of a perturbative framework developed to
analyze certain classes of departures from Lorentz invari-
ance. Space-time translations along with exact rotational
symmetry in the rest frame of the cosmic background
radiation have been, for instance, considered, also to treat
small departures from boost invariance in this privileged
frame [11,12]. Furthermore, inspired in the possibility of
spontaneous symmetry breaking of Lorentz symmetry in
string theory, a Lorentz violating (LV) extension of the
standard model (SM) has been developed [13]. In this
context, LV modifications to the Dirac equation and to
the associated neutrino sector have become the object of
several phenomenological studies [14–16].
Still from the theoretical point of view, the so-called

very special relativity (VSR) approach is based on the
hypothesis that the space-time symmetry group of nature
is smaller than the Poincaré group, and consists of space-
time translations described by only certain subgroups of
the Lorentz group. The formalism of VSR has been ex-
panded for studying some peculiar aspects of neutrino
physics with the VSR subgroup chosen to be the 4-
parameter group SIM(2) [17]. Since neutrinos are known
to be massive, several mechanisms have been devised in
order to allow for neutrino masses in the standard model
Lagrangian [18]. An interesting implication of VSR is that
it can endow neutrinos with an effective mass without the
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need of violation of lepton number or additional sterile
states [17]. In spite of not being Lorentz invariant, the
lepton number conserving neutrino masses are VSR invari-
ant. There is, however, no certainty that neutrino masses
have a VSR origin, but if so, their magnitude may be an
indication of the strength of the LVeffects in other sectors.
For instance, a connection with the existence of a preferred
axis in the cosmic radiation anisotropy might be examined.
This is particularly welcome as experimental evidence
suggests that neutrinos are massive and this is incompatible
with the SM structure.

Aiming to quantify LV effects in the neutrino sector, we
consider the LV extension of the SM [13] and follow the
usual mathematical procedure for obtaining the corre-
sponding dispersion relations and the equation of motion
for propagating left-handed fermionic particles [19]. In
particular, we compute the corrections to the dispersion
relation arising from a LVextension of the SM and adapt it
in order to examine the neutrino sector. From this LV SM
extension, after combining boosts and rotations through a
specific transformation, we introduce a preferential direc-
tion with the aid of a lightlike vector defined as n�ð�
ð1; 0; 0; 1ÞÞ, n2 ¼ 0. The transformation is chosen to bring
the equation of motion of left-handed neutrinos with a
dynamics similar to that of VSR in what concerns the
existence of a preferred space direction, even though the
corresponding Lorentz algebra is preserved. We find that
this procedure gives origin for a neutrino effective mass
effect without the need of a sterile right-handed state.
Interestingly, this effective mass term does affect the
�-decay end point. Thus, the mechanism that we propose
here introduces additional ingredients to the phenomeno-
logical analysis of the tritium�-decay cross section, which
can be tested through modifications on its end point. The
effects considered here are complementary to other studies
of LVeffects on other sectors of the SM (see e.g. Ref. [20]
for a complete list).

II. LV EXTENSION OF THE SM TO THE
NEUTRINO SECTOR

It is widely believed that, in spite of its phenomenologi-
cal success, the SM is most likely a low-energy approxi-
mation of some more fundamental theory where
unification with gravity is achieved and the hierarchy
problem solved. It is quite conceivable that, in the context
of this more fundamental underlying theory, which is most
likely higher dimensional, CPT symmetry and Lorentz
invariance may undergo spontaneous symmetry breaking
[1,2]. If one assumes that this breaking extends down to the
four-dimensional space-time, they might manifest them-
selves within the SM and their effects detected. Notice also
that, in higher dimensional bulk-brane models, it is pos-
sible that Lorentz invariance is spontaneously broken in the
bulk space, but preserved on the brane, as discussed in
Ref. [21].

In order to account for the CPT spontaneous breaking
and LV effects, an extension to the minimal SUð3Þ �
SUð2Þ �Uð1Þ SM has been developed [13] based on the
idea that CPT spontaneous breaking and LV terms might
arise from the interaction of tensor fields with Dirac fields
once Lorentz tensors acquire nonvanishing vacuum expec-
tation values. Interactions of this form are expected to
arise, for instance, from the string field trilinear self-
interaction, as in the open string field theory [1,2]. In order
to preserve power-counting renormalizability within the
SM, only terms involving operators with mass dimension
four or less are considered. The fermionic sector contains
CPT-odd and CPT-even contributions to the extended
Lagrangian density which, including these LV terms, reads

L LV ¼ 1
2i
� ��@

$�
 þ a� � �� þ b� � �5�� 

þ 1
2ic��

� ��@
$�
 þ 1

2id��
� �5�

�@
$�
 

þH��
� ��� �m �  ; (1)

where the coupling coefficients a� and b� have dimen-

sions of mass, c�� and d�� are dimensionless and can have

both symmetric and antisymmetric components, while
H�� has dimension of mass and is antisymmetric. All the

LV coefficients are Hermitian and only kinetic terms are
kept, since we are interested in deducing the free particle
energy-momentum relation. These parameters are flavor
dependent and some of them may induce flavor changing
neutral currents whether nondiagonal in flavor.
In case of fermionic fields  corresponding to purely

chiral eigenstates with a negative (left-handed) chiral
quantum number, �5� ¼ ��, the mass dependent term
and the H�� term in the above Lagrangian density vanish.

In order to reduce the number of free parameters, the ones
with dimension of mass (a� and b�) and the dimensionless

(c�� and d��) ones can be naturally regrouped so that the

effective LV Lagrangian density can be written as

L LV ¼ 1
2i ����@

$�
�þ a� �����þ 1

2ic�� ���
�@
$�
�; (2)

where, in order to simplify the notation, b� and d�� have

been absorbed by a� and c��, respectively, without any

physical implication concerning the chirality of the
particles.
Recall that in the Dirac picture, lepton number is con-

served and neutrinos acquire their masses via Yukawa
couplings to sterile SU(2)-singlet neutrinos [22]. In the
Majorana picture, lepton number is violated and neutrino
masses result from the seesaw mechanism involving heavy
sterile states or via dimension-6 operators resulting from
ad hoc new interactions [23]. As we shall see in the
following, the lepton number conserving Lagrangian den-
sity (2), for left-handed chiral particles, suggests a general-
ization for the equation of motion.
Indeed, the Dirac-type equation of motion arising from

Eq. (2),
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½i��ð@� þ c��@�Þ þ ��a���L ¼ 0; (3)

introduces a new quadratically invariant four-momentum
~p� ¼ p� þ a� þ c��p� with an associated dispersion re-

lation,

~p� ~p
� ¼ p�p

� þ a�a
� þ p�p

�c��c
�
�

þ 2ða�p� þ p�c
�
�p

� þ p�c
�
�a

�Þ ¼ 0: (4)

In the following, we examine the possibility of obtaining
the above dispersion relation from a Lorentz invariant
framework, i.e. a setting which looks as if the Lorentz
algebra holds. For that, one must obtain a generator D of
a transformation Uðp�; a�; c��Þ such that

Uðp�; a�; c��Þ � p� � ~p�ðp�; a�; c��Þ.
Let us first define the momentum space M, the four-

dimensional vector space of momentum vectors, p�. In

this space, the ordinary Lorentz generators act as

L�� ¼ p� ~@� � p� ~@�; (5)

where ~@� � @=@p�, and we assume the Minkowski metric

signature and that all generators are anti-Hermitian (where
our notation is as follows:�, � ¼ 0, 1, 2, 3, and i, j, k ¼ 1,
2, 3 and c ¼ 1). The ordinary Lorentz algebra is con-
structed in terms of the usual rotations Ji � �ijkLjk and

boosts Ki � Li0 as

½Ji; Kj� ¼ �ijkKk; ½Ji; Jj� ¼ ½Ki; Kj� ¼ �ijkJk: (6)

In order to introduce the nonlinear action that modifies the
ordinary Lorentz generators, but that preserves its algebra,
we suggest the following Ansatz for the generalized trans-
formation,

D � ða� þ p�c
�
� Þ~@�; (7)

which acts on the momentum space as

D � p� � a� þ p�c
�
�: (8)

Notice that the modified four-momentum ~p� does not arise

from a conformal transformation. Therefore, there is no
general rule for obtaining the generatorD [24]. We assume
that the new action can be considered to be a nonstandard
and nonlinear embedding of the Lorentz group into a
modified nonconformal group which, despite the modifi-
cations, satisfies precisely the ordinary Lorentz algebra (6).
To exponentiate the new action, we observe that

ki ¼ U�1ðDÞKiUðDÞ and ji ¼ U�1ðDÞJiUðDÞ; (9)

where the transformation UðDÞ for the LV-dependent term
is given by UðDÞ � exp½D�. The nonlinear representation
is then generated by UðDÞ and, despite not being unitary
[UðDðp�; a�; c��ÞÞ � p� � p�], it must preserve the al-

gebra, which is enforced by the constraint

½½L��;Dðp�; a�; c��Þ�; Dðp�; a�; c��Þ� ¼ 0; (10)

from which we can set

ki ¼ Ki þ ½Ki;D� and ji ¼ Ji þ ½Ji; D�: (11)

At this point, to explicitly constrain parameters a� and c��
so to satisfy the condition Eq. (10), we compute the com-
mutation relation

½L��;D� ¼ ½L��; ða� þ p�c
�
�Þ~@��

¼ ða� ~@� � a� ~@�Þ þ ðp�c�� ~@� � p�c�� ~@
�

þ p�c
�
�
~@� � p�c

�
�
~@�Þ; (12)

from which follows

½½L��;D�; D� ¼ ða�c�� ~@� � a�c
�
�
~@�Þ þ 2p�ðc��c��

� c��c��Þ~@� þ ðp�c��c�� ~@�
� p�c��c

�
� ~@� þ p�c

�
�c

�
� ~@�

� p�c
�
�c

�
� ~@�Þ: (13)

If c�� is a symmetric tensor, c�� ¼ 1=2ðq�n� þ q�n�Þ,
then the second term in the above equation vanishes.
However, in order to satisfy the condition Eq. (10), a
stronger constraint must be set:

a�c
�
� ¼ c��c

�
� ¼ 0: (14)

This condition can be satisfied introducing a preferred
direction with the help of a lightlike vector defined as n� �
ðn0;nÞ, such that c�� ¼ �n�n� and a� ¼ �s� for

s�n
� ¼ 0, that is, a lightlike vector s� � n� or a spacelike

vector s� � ð0; sÞ with n � s ¼ 0. Notice that the phe-

nomenological coefficients � and � have mass dimension
one and zero, respectively.
The above constraints allow for obtaining a Lorentz-like

algebra in terms of the generators given by Eq. (9) [14].
Therefore, for the chiral neutrino sector, the LV parameters
modify the covariant momentum in a way to allow for
embedding it into a quasi-Lorentz invariance framework.
These transformations are not quadratically invariant in the
momentum space. However, there is a modified invariant
kUðDðp�; a�; c��ÞÞ � p�k2 ¼ 0 which leads to the fol-

lowing dispersion relation:

kUðDðp�; a�; c��ÞÞ � p�k2 ¼ p2 þ a2 þ 2ða � pÞ
þ 2�ðn � pÞ2 ¼ 0 (15)

for which the U-invariance can be easily verified through
application of the transformation UðDðp�; a�; c��ÞÞ.
Continuous deformations of Lie algebras have been

extensively explored, both from the mathematical and
physical viewpoints, in the context of Lie-algebra coho-
mology [25]. Implications for doubly special relativity
(DSR), for instance, have been considered in Ref. [26].
Here we present a brief account so to allow for a simple and
easy manipulation scheme for determining the deforma-
tions of a given Lie algebra and its structure constants.
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In this context, a similar procedure was performed for
embedding VSR into a Lorentz preserving-algebra frame-
work [15,24], resulting in differences with respect to the
original VSR formulation [17], for which space-time sym-
metries are subgroups of the Poincaré group. These sub-
groups, characteristic of the VSR, contain space-time
translations together with at least a 2-parameter subgroup
of the Lorentz group isomorphic to that generated by the
association of boost (K) and rotation (J) Lorentz genera-
tors, Kx þ Jy and Ky � Jx, which can be embedded in a

quasi-Lorentz algebra. In here we have shown how a
physical realization of the equation of motion derived
from the LV SM Lagrangian can be obtained from a
deformed quasi-Lorentz algebra, in the same sense that
the VSR physical realizations can be reobtained from a
quasi-Lorentz algebra embedding [15,24].

Furthermore, there is one interesting and important con-
sequence of the emergence of this quasi-Lorentz algebra.
As in the usual Lorentz algebra, this algebra can be inter-
preted both as the algebra of space-time symmetries, the
gauge algebra of gravity, and the algebra of charges asso-
ciated to particles (energy-momentum and spin). The idea
of preserving the Lorenz algebra in spite of modifying (i.e.
deforming) the Lorentz generators follows an analogous
procedure as in DSR where a 	-deformed Poincaré (or
Lorentz) algebra can be interpreted as an algebra of
Lorentz symmetries of momenta if the momentum space
is a de Sitter space of curvature 	 [27]. In particular, it is
suggestive that one can extend this algebra to the full phase
space algebra of a point particle, by adding four (non-
commutative) coordinates [27] in the same way as it has
been done for VSR [15,24].

Finally, in what concerns the phenomenological impli-
cations, it is important to emphasize that our results, in
spite of establishing a preferential direction, likewise in
VSR, they lead to modified dispersion relations, in oppo-
sition to what happens in that formalism. This implies a
fundamental difference in the calculation of cross sections.
However, as we shall see in the next section, the observable
signals arising from the SM extension are not significantly

different from those of VSR or its quasi-Lorentz embedded
version.
In what follows we shall disregard any effect related to

flavor changing neutral currents when more than one flavor
is involved, and use the above dispersion relation to exam-
ine the phenomenological implications to the tritium
�-decay end point. We shall consider in our analysis the
scenario where a� is also a lightlike vector, that is a� ¼
�s� ¼ �n�, since, if it were spacelike, LV effects would

either disappear or be phenomenologically unfeasible.

III. PHASE INTEGRAL AND THE CROSS SECTION
OF THE �-DECAY

Before analyzing the phenomenological implications of
the new dispersion relation, let us first consider the Lorentz
invariant phase integral in the momentum space, ~p,

Z d4 ~p

ð2
Þ4 2
�ð~p
2Þ �

Z d4p

ð2
Þ4 Jð~p; pÞ2
�ð~p
2ðp�; a�; c��ÞÞ;

(16)

where Jð~p; pÞ is the Jacobian determinant of the variable
transformation p! ~p,

Jð~p; pÞ ¼
��������
@~p�
@p�

��������¼ j��� þ �n�n�j ¼ 1þ �n�n� ¼ 1;

(17)

given the constraint on c��. For the purpose of computing

cross sections involving neutrinos, it is convenient to write
the phase integral in spherical coordinates as

1

ð2
Þ3
Z

d�
Z

dE
Z

dpp2�ðfðp�; a�; c��ÞÞ

¼
Z
d�

Z
dE

Z
dpp2 �ðpÞ

ð@f=@pÞjp¼pðE;�Þ ; (18)

where, from here onwards, p � jpj, d� ¼ dðcosð�ÞÞd’,
and

pðE; �Þ � pðE; xÞ ¼ ð�þ 2�EÞxþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 � 2�E2Þx2 þ ð1þ 2�ÞE2 þ 2�E
p

1� 2�x2
(19)

is the root of the new dispersion relation,

fðp�; a�; c��Þ � fðp; E; �Þ � fðp; E; xÞ
¼ p2 � E2 � 2�ðEþ pxÞ

� 2�ðEþ pxÞ2 ¼ 0; (20)

and x ¼ � cosð�Þ. Upon integration in ’ and p, one ob-
tains

1

ð2
Þ2
Z þ1

�1
dx

Z 1

0
dE

p2ðE; xÞ
ð@f=@pÞjp¼pðE;xÞ ; (21)

where

@f

@p

��������p¼pðE;xÞ
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � 2�E2Þx2 þ ð1þ 2�ÞE2 þ 2�E

q
:

(22)

Once we have established these new dynamical features,
the analysis of the energy spectrum in the end-point region
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of the tritium � decay can be straightforwardly addressed.
This analysis corresponds actually to the well-known
method of direct determination of the neutrino mass [28].
The usual differential decay rate for the d! ue� ��e tran-
sition is related to the decay amplitude by [29]

d� ¼ G2
F

X
spins

j �uðpeÞ�0ð1� �5Þ
ðp�Þj2 d3pe
ð2
Þ3Ee

� d3p�
ð2
Þ3E�

2
�ðE0 � Ee � E�Þ; (23)

where E0 is the energy released to the lepton pair,GF is the
Fermi constant, and the indices e and � refer to electron
and neutrino variables, respectively.

For the new dynamics related to the dispersion relation
equation (20), the phase space restriction is modified by a
change in the relevant matrix and in the phase integral, as
quantified in Eq. (21). Although the weak leptonic charged
current J� must be modified to ensure its conservation, the
LV �-dependent term contribution is entirely negligible
near the end point. This yields a maximal correction of
order �=me; that is, this correction is suppressed by the
electron mass. Therefore, besides the modification to the
neutrino phase integral, the other relevant contribution
arises from the square matrix element 
ð~pÞ �
ð~pÞ,


ð~pÞ �
ð~pÞ ¼ 1� �5

2
~p���

¼ ½p��� þ a��� þ p�c�����; (24)

where we have suppressed the neutrino index for simplic-
ity. Performing now the sum over spins, one obtains

X
spins

j �uðpeÞ�0ð1� �5Þ
ð~pÞj2 ¼ 8½Ee ~Eþ pe � ~p�: (25)

Notice that the element pe � ~p yields a null contribution
after the angular integration over ð’e; �eÞ relative to the
electron momentum coordinates. Introducing the new neu-
trino phase integral equation (21), after rewriting Eq. (23)
in terms of Eq. (25) and performing the ’e, �e integration,
the differential cross section for the � decay can be written
as

d�

dpe
¼ p2

e

4G2

ð2
Þ3
Z þ1

�1
dx

Z 1

0
dE

� p2ðE; xÞ ~EððE; xÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 � 2�E2Þx2 þ ð1þ 2�ÞE2 þ 2�E
p

� �ðE0 � Ee � EÞ; (26)

where ~EððE; xÞÞ ¼ Eþ �ðEþ pðE; xÞxÞ. Evaluating the
integral over the x and E variables, one gets after some
mathematical manipulation

1

p2
e

d�

dpe
¼ G2


3

1� �

ð1� 2�Þ2 ðEþ�Þ2; (27)

where E ¼ E0 � Ee ¼ ðKmax þmeÞ � ðK þmeÞ.
At first glance, the Kurie plot rate p�1

e ðd�=dpeÞ1=2 as a
function of the neutrino energy (E� E0) near the end point
of the tritium �-decay spectrum (Kmax ¼ 18:6 keV) for
just one (pseudo) mass eigenstate does not seem to be
phenomenologically interesting. However, since the final
state neutrinos are not detected in the tritium �-decays
experiments, for the electron spectrum, one should con-
sider the incoherent sum

d�

dpe
¼ X2

j¼1

jUejj2 d�

dpe
ð�j; �jÞ: (28)

In this case, by considering the possibility of superimpos-
ing, at least, two LV neutrino eigenstates, �ð�j;�jÞ, j ¼ 1,

2, one could easily reproduce the phenomenology of the
�-decay end point for the usual neutrino mass scales if one
imposes some constraints on the LV parameters. In order to
establish realistic values for the LV parameters �j and �j,

we first define the auxiliary phenomenological variables:

a1 � 1� �1

ð1� 2�1Þ2
sinð�Þ2ðLVÞ;

a2 � 1� �1

ð1� 2�1Þ2
cosð�Þ2ðLVÞ;

(29)

subjected to the following constraints:

a1þa2 ¼ 1 ðprobability conservationÞ;
a1�1þa2�2 ¼ 0 ðasymptotic behaviorÞ;

a1�
2
1þa2�

2
1 ¼

m2
1þm2

2

2
ðsuitable order of magnitudeÞ:

(30)

For typical values, say m1 ¼ 1 eV and m2 ¼ 0:5 eV, we
obtain the corresponding LV parameters for some suitable
choices of a1 and a2. In Fig. 1 we compare the Kurie plot

rate p�1
e ðd�=dpeÞ1=2 with the usual ones.

We see that the tail of the spectrum is distinctly different
for each preferred frame scenario. The minimum of the
curve corresponds to the case of massless neutrinos, so
that, at the end point, Kmax ¼ E0 ¼ Ee. For two of the
three sets of parameters that we have considered, one finds
an excess (rather than a deficiency) of events close to the
end point, as compared with the zero-mass case. On quite
general grounds, the knowledge of the neutrino mass spec-
trum is decisive for the understanding of the origin of
neutrino masses and mixing. If, for instance, the
KATRIN [30] experiment, currently in preparation, detects
a positive effect due to the neutrino mass, then m�ð�Þ �
m�1;2;3 . Whether nonvanishing neutrino mass effects are not

observed, it is, of course, crucial to improve the sensitivity
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of the �-decay experiments. One should be aware that the
KATRIN experiment, as well as its predecessors, measure
the integrated energy spectrum from the end point down-
ward. This is proportional to

�ðKÞ ¼
Z Kmax�m�

K

d�

dK
dK; (31)

where KðE� ¼ E� E0Þ is defined as the electron kinetic
energy K ¼ E�me ¼ Kmax þ E�. In any case, one can
see that the proper knowledge of the experimental inputs
allows for fitting scenarios for values of � and � and for
comparison with the well-known mechanisms for neutrino
mass generation. For sure, once experimental data are
available, the effect of neutrino mass could be conveniently
expressed as the difference from the massless case in terms
of �m�¼0ðKÞ � �ðKÞ as a function of the neutrino energy

(E� E0).

IV. DISCUSSIONS AND CONCLUSIONS

In this work we have shown that the parameters of a LV
extension of the SM have sizable implications for the
neutrino sector and, in particular, for the end point of the
tritium � decay. We have obtained a nonconformal trans-
formation through which a new four-momentum is defined
and hence a new dispersion relation found. Although pre-

serving the Lorentz algebra, we have implemented a pre-
ferred direction scenario for the equation of motion of a
propagating fermionic particle. Focusing on the neutrino
sector, the parameters of the LVextension of the SM can be
directly confronted with the next generation of tritium
�-decay end-point experiments.
It is worth reminding that LV effects for the neutrino

sector, concerning neutrino-oscillation experiments and
CPT violation, were extensively studied in Ref. [31].
The currently accepted solution for the oscillation data
sets mass matrix elements in the eV scale with mass-
squared differences of 10�3 eV and 10�5 eV. If one as-
sumes that the mass matrix is nearly diagonal and that
neutrino oscillations are primarily or entirely due to LV,
then individual masses ofO ðeVÞ or greater can be allowed
with little or no effect on the existing neutrino-oscillation
data [31] even though, in the context of our analysis, we
find that a non-negligible signature in the �-decay end-
point experiments is expected.
Actually, two other phenomenologically interesting sce-

narios are feasible: (i) Changes in the predictions concern-
ing neutrinoless double �-decay [32], and (ii) small
changes in the oscillation picture due to LV interactions
that couple to active neutrinos, and which may eventually
allow for an explanation of all neutrino data [33]. One
could also mention that LV terms prevent the mechanism
of Dirac chirality conversion [34] which is otherwise con-
strained for Dirac mass terms. This could also alter phe-
nomenological predictions concerning neutrino polar-
ization [35].
Given that one of the most fundamental tasks in particle

physics in the forthcoming future is the determination of
the neutrino mass scale, our proposal, which meets this
end, can be also regarded, under conditions, as a phenome-
nological implication of quantum gravity and string theory
models. It is our belief that further implications for cos-
mology and astrophysics are worth being considered in the
future.
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Superior Técnico, Lisboa, Portugal, where this work was
carried out. O. B. would like to acknowledge the partial
support of Fundação para Ciência e Tecnologia
(Portuguese Agency) under Project No. POCI/FIS/56093/
2004.
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[20] V. A. Kostelecký and N. Russel, arXiv:0801.0287.
[21] O. Bertolami and C. Carvalho, Phys. Rev. D 74, 084020

(2006).

[22] C.W. Kim and A. Pevsner, Neutrinos in Physics and
Astrophysics (Harwood Academic Publishers, Chur,
1993).

[23] R. N. Mohapatra, Unification and Supersymmetry
(Springer-Verlag, Berlin, 1986).

[24] R. da Rocha, A. E. Bernardini, and J. Vaz Jr.,
arXiv:0801.4647.

[25] M. Levy-Nahas, J. Math. Phys. (N.Y.) 8, 1211 (1967).
[26] G. Amelino-Camelia and T. Piran, Phys. Rev. D 64,

036005 (2001); G. Amelino-Camelia, Nature (London)
418, 34 (2002); Phys. Lett. B 510, 255 (2001); Int. J.
Mod. Phys. D 11, 35 (2002).

[27] A. Blaut, J. Kowalski-Glikman, and D. Nowak-
Szczepaniak, Phys. Lett. B 521, 364 (2001).

[28] E. Fermi, Z. Phys. 88, 161 (1934); F. Perrin, Comp. Rend.
197, 1625 (1933).

[29] F. Halzen and A.D. Martin, Quarks & Leptons: An
Introductory Course to Modern Particle Physics (John
Wiley & Sons, New York, 1984).

[30] A. Osipowicz et al. (KATRIN Collaboration), arXiv:hep-
ex/0109033.
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