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An SUð5Þ grand unification scheme for effective 3þ 1-dimensional fields dynamically localized on a

domain-wall brane is constructed. This is achieved through the confluence of the clash-of-symmetries

mechanism for symmetry breaking through domain-wall formation, and the Dvali-Shifman gauge-boson

localization idea. It requires an E6 gauge-invariant action, yielding a domain-wall solution that has E6

broken to differently embedded SOð10Þ � Uð1Þ subgroups in the two bulk regions on opposite sides of the
wall. On the wall itself, the unbroken symmetry is the intersection of the two bulk subgroups, and contains

SUð5Þ. A 4þ 1-dimensional fermion family in the 27 of E6 gives rise to localized left-handed zero modes

in the 5� � 10 � 1 � 1 representation of SUð5Þ. The remaining ten fermion components of the 27 are

delocalized exotic states, not appearing in the effective 3þ 1-dimensional theory on the domain-wall

brane. The scheme is compatible with the type-2 Randall-Sundrum mechanism for graviton localization;

the single extra dimension is infinite.
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I. INTRODUCTION

If our universe is a 3þ 1-dimensional brane [1–9] ex-
isting in a 4þ 1-dimensional spacetime, then the most
likely field-theoretic origin for the brane is a scalar-field
domain-wall (DW) or kink [1]. This generic idea is natu-
rally compatible with the type-2 Randall-Sundrum (RS2)
mechanism for producing effective 3þ 1-d gravity on the
brane [9] (see, for example, Refs. [10–12] for the extension
of thin-brane RS2 to a domain-wall brane). The challenge
is to dynamically localize all the other ingredients neces-
sary for a phenomenologically successful effective theory
on the brane: gauge bosons, fermions, and Higgs bosons.
Various localization ideas for these disparate classes of
fields have been recently combined to produce an effective
brane theory that is plausibly very similar to the standard
model [13].

The purpose of this paper is twofold. First, we wish to
point out a very elegant generic connection between the
clash-of-symmetries (CoS) mechanism for symmetry
breaking through domain-wall formation [14–17],1 and
the Dvali-Shifman (DS) idea for dynamical gauge-boson
localization [22]. Second, we use this remarkable conflu-
ence to construct an explicit scheme that realizes an SUð5Þ
gauge-invariant effective theory on the brane. In a sense, it
is a grand unified extension of the model of Ref. [13], but
the way in which the Dvali-Shifman mechanism is realized

is quite different, and we shall argue that it is in fact
conceptually more advanced. Remarkably, this scheme
immediately produces a realistic spectrum of localized
fermion zero modes [23] (for a review see [24]) using the
simplest possible mechanism. While it is beyond the scope
of this paper to write down a complete phenomenologically
acceptable domain-wall-brane localized SUð5Þ theory, we
shall conclude with brief remarks about how this could be
attempted.
The clash-of-symmetries phenomenon [14–20] auto-

matically arises when the simple Z2 kink is extended to a
theory with a continuous internal symmetry group G in
addition to the discrete symmetry. Taking the scalar-field
multiplet to be in a nontrivial representation of G, the
domain-wall configuration spontaneously breaks G in ad-
dition to reflecting the disconnected vacuum manifold
topology created by the spontaneous breaking of the dis-
crete symmetry. Two classes of domain-wall solutions
exist: those which respect the same subgroup H of G at
all values of the bulk coordinate y, and those where the
unbroken subgroup varies in the bulk. We shall call the first
class ‘‘non-CoS domain walls,’’ contrasted with the ‘‘CoS
domain walls’’ of the second class. Clash-of-symmetries
DWs can arise when the subgroups respected asymptoti-
cally (at y ¼ �1) are isomorphic but differently embedded
subgroups, H and H0. The symmetry group at finite y is
typically the intersection H \H0, which is of course
smaller than both H and H0.
The last observation provides an immediate connection

with the Dvali-Shifman proposal for dynamical gauge-
boson localization. The DS mechanism, as originally pro-
posed [22], envisaged a domain-wall configuration where
the full group G is restored in the bulk, but broken to H
in the wall. The gauge bosons of H propagate on the
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wall either as massless Abelian gauge fields or glueballs
formed from non-Abelian gauge fields. In the bulk, all
gauge bosons have to be incorporated into massive
G-glueballs.2 Thus, the massless Abelian gauge fields on
the wall have to become incorporated into massive glue-
balls in the bulk, and the energy cost associated with
the mass gap then plausibly localizes them to the wall.
This heuristic argument is bolstered by the dual-
superconductivity model [26,27] for the confining bulk:
the electric field lines from a source charge in the wall are
repelled from the interface with the dual-superconducting
bulk [28,29], just as magnetic field lines are Meissner-
repelled from an ordinary superconductor. The non-
Abelian gauge fields of H are also plausibly localized if
the mass of the G-glueballs exceeds the mass of the
H-glueballs.

The fact that the full symmetry G is asymptotically
restored is clearly not a necessary condition. In the CoS
situation, the brane-group H \H0 is a subgroup of both H
and H0, the unbroken symmetries in the two semi-infinite
bulk regions. By the DS reasoning, provided H and H0
contain confining non-Abelian factors, at least some of the
gauge bosons of H \H0 will be localized. For a realistic
theory, we need the localized gauge bosons to include
those of the standard model. The model builder needs to
engineer the theory to achieve this effect. While this en-
gineering shall be the main concern in the rest of the paper,
our first generic point has already been made: the clash-
of-symmetries automatically gives rise to Dvali-Shifman
gauge-boson localization. This CoS alternative realization
of the DS mechanism seems conceptually neater than the
original, because it can be achieved using scalars in a
single irreducible representation of G. The original re-
quires two multiplets: a G-singlet to form a kink, which
in turn forces a G-multiplet to condense in the core of
the wall.

We shall show that the CoS-DS confluence can naturally
produce an SUð5Þ effective theory on the brane. The basic
ingredients are G ¼ E6, with the DW-producing scalar
field in the adjoint or 78 representation. The groups H
and H0 will be the differently embedded maximal sub-
groups SOð10Þ �Uð1ÞE and SOð10Þ0 �Uð1ÞE0 , respec-
tively. Their intersection is SUð5Þ �Uð1Þ �Uð1Þ, with
SUð5Þ of course being a subgroup of both SOð10Þ and
SOð10Þ0. Taking both of those as confining gauge theories
in the bulk, the localization of SUð5Þ gauge bosons follows

from the DS effect. The gauge fields ofUð1Þ �Uð1Þ are not
completely localized. When 4þ 1-d fermions in the 27 of
E6 are Yukawa coupled to the scalar multiplet, we shall
show that 3þ 1-d left-chiral zero modes in the phenom-
enologically realistic 5� � 10 � 1 � 1 representation of
SUð5Þ are localized. The remaining ten fermion compo-
nents remain 4þ 1-d, and are thus absent from the effec-
tive brane theory. The result that the chiralities of the zero
modes come out to be phenomenologically correct is very
nontrivial, as we shall explain.
We review the clash-of-symmetries idea in Sec. II.

Section III describes a warm-up example featuring
SOð10Þ CoS domain walls, and explains why the extension
to E6 constructed in Sec. IV is needed. We conclude in
Sec. V.

II. THE CLASH OF SYMMETRIES

Consider a theory (an action) whose symmetry group is
the direct product of a continuous symmetry groupG and a
discrete symmetry Z. It is important that Z is not a sub-
group of G. Suppose the global minima of the Higgs
potential spontaneously break G to subgroup H, and si-
multaneously break Z to a smaller discrete group. For
the sake of definiteness, we shall take the Z ¼ Z2 ¼
f1; z s:t: z2 ¼ 1g example in what follows, with the Z2

completely broken.
The vacuum manifold then consists of two disconnected

copies of the coset space G=H, with the copies related by
the spontaneously broken z 2 Z2. This is an immediate
generalization of the simple Z2 kink situation, where the
vacuum manifold consists of just two disconnected points
related by Z2. Each such point is expanded into the non-
trivial manifold G=H. We shall call the disconnected
pieces G=H and ðG=HÞz. The Z2 must not be a subgroup
of G for the two disconnected pieces to exist.
Let j0i be an element of G=H. By definition, hj0i ¼ j0i

for all h 2 H. Since the Higgs potential is G-invariant, if
we apply a transformation g 2 G=H (that is, a transforma-
tion such that g 2 G but g =2 H) to j0i, we obtain a
degenerate vacuum state j0; gi � gj0i. By considering all
possible g’s, these transformations generate theG=H piece
of the vacuum manifold. Applying the nonidentity trans-
formation z 2 Z2 from the discrete group, we obtain the
discrete image j0iz � zj0i of j0i. This image is a point in
the other disconnected piece ðG=HÞz of the full vacuum
manifold. By applying all possible g 2 G=H to j0iz, the
space ðG=HÞz is generated. Figure 1 illustrates this
situation.
The degenerate vacua j0i and j0;gi respect differently

embedded but otherwise isomorphic subgroups H and Hg,

respectively. This is elementary: Let h1; h2 2 H such that
h1h2 ¼ h3 2 H. Then the conjugates gh1;2;3g

�1 respect

the same multiplication table and hence the set gHg�1 is
precisely Hg which is isomorphic to H but a different sub-

set of G. If hj0i ¼ j0i, then trivially ghg�1gj0i ¼ gj0i,

2The Dvali-Shifman mechanism requires a confining 4þ
1-dimensional gauge theory to live in the bulk. The issue of
confinement in 4þ 1 dimensions is not completely understood,
so the Dvali-Shifman mechanism in that context has the status of
being a plausible conjecture. There is good lattice gauge theory
evidence that pure SUð2Þ Yang-Mills theory with an ultraviolet
cutoff is confining in 4þ 1 dimensions when the gauge coupling
constant exceeds a certain critical value [25]. It is thus plausible
that a variety of 4þ 1-dimensional gauge theories exhibit con-
finement at sufficiently large coupling strength.
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which simply says that the conjugated elements preserve
the other vacuum: ðghg�1Þj0; gi ¼ j0; gi. Similar state-
ments are true for ðG=HÞz.

The boundary conditions at y ¼ �1 for domain-wall
configurations are chosen from the vacua. If the chosen
vacua are either both fromG=H, or both from ðG=HÞz, then
the ‘‘domain-wall’’ configurations are not topologically
stable: they are in the same topological class as any of
the spatially homogeneous vacua j0; gi, or respectively
j0; giz, and will dynamically decay to one of these vacua.
They may be metastable, depending on the Higgs-potential
topography,3 so while they are of some interest we shall not
consider them further in this paper.

Topologically nontrivial DW configurations have one
boundary condition from G=H and the other from ðG=HÞz.
Evidently, there is an uncountable infinity of such choices,
and thus potentially an uncountable infinity of DW solu-
tions, all within the same nontrivial topological class.
Figure 1 illustrates the plethora of choices. This potential
richness has no analogue for the simple Z2 kink.

Suppose that the boundary condition at y ¼ �1 is j0i
and at y ¼ þ1 it is j0iz. Then if hj0i ¼ j0i, it also fol-
lows that

hj0iz � hzj0i ¼ zhj0i ¼ zj0i � j0iz; (2.1)

because by assumption the symmetry isG � Z so that gz ¼
zg8z 2 Z, g 2 G and hence hz ¼ zh always. Thus, the
unbroken symmetry at y ¼ �1 is precisely the same setH
as at y ¼ þ1. A domain-wall configuration that interpo-
lates between these vacua is then expected to respect the

same subgroupH at all y. This is an example of a non-CoS
domain wall. Clearly, taking the vacua as any pair j0;gi
and j0;giz produces a similar outcome (the resulting con-
figuration is nothing more than the g transform of the
original one). A non-CoS domain wall is the simplest
possible generalization of a Z2 kink for a G-invariant
theory.
However, there is obviously a second, more interesting

possibility: if the vacuum is j0i at y ¼ �1, then the
vacuum at y ¼ þ1 can also be a j0; giz for g � 1. In
that case, the subgroups respected asymptotically are the
differently embedded but isomorphic groups H and Hg,

respectively. This defines a CoS-style domain wall [14–
20]. At finite y, the configuration would be expected to
respect the smaller group H \Hg due to the fact that the

solution has to ‘‘reconcile’’ boundary conditions that have
different stability groups that ‘‘clash.’’4

So, there will be an infinite family of non-CoS DWs,
trivially related to each other by global transformations
g 2 G=H. They all have the same energy density, because
the Hamiltonian is invariant underG. The CoS DWs have a
more complicated spectrum. Consider two configurations,
�1ðyÞ and �2ðyÞ, with �1 interpolating between j0i and
j0; g1iz, while �2 interpolates between j0i and j0; g2iz,
such that g1 � g2. Suppose, for the moment, that G is
a global but not a local symmetry. These two solutions
cannot be transformed into each other by a global
G-transformation, so they would be expected to have dif-
ferent energy densities (their configurations trace different
paths through the Higgs-potential topography). As a cor-
ollary, the non-CoS solutions should have a different en-
ergy density from the CoS solutions. All these solutions are
in the same topological class, so finite-energy dynamical
evolution between them is allowed. Hence, the special
configurations within that topological class that minimize
the energy density will be topologically stable. The others
should be unstable to decay to the minimum-energy con-
figurations, which play the role of ‘‘vacua’’ for the ‘‘kink-
sector.’’ This general reasoning cannot tell you which
configuration has the minimum energy density: you need
to calculate that within a specific model. For example, in
the toy model considered in Ref. [14] the sign of a Higgs-
potential parameter determined whether the non-CoS or a
CoS solution was energetically favored.
Suppose now that G is a gauge symmetry, and again

consider the configurations discussed in the previous para-
graph, together with the specification of vanishing gauge
fields AM at the solution level. The non-CoS solutions
remain connected through global transformations. Two

FIG. 1. The vacuum manifold of a G � Z2 ! H model. The
two circles schematically depict the disconnected coset spaces
G=H and ðG=HÞz. Each point along the G=H circle corresponds
to a vacuum j0;gi for some g 2 G, with the corresponding
situation for the ðG=HÞz circle. The three broken lines represent
possible domain-wall configurations, with the endpoints at y ¼
�1 on various choices of vacua. The dotted line represents a
possible nontopological domain-wall configuration. The short-
dashed line represents a non-clash-of-symmetries domain-wall
configuration, while the long-dashed line is a clash-of-
symmetries domain wall.

3We dread to use the term ‘‘landscape’’.

4From experience, we have found that H \Hg is the usual
outcome. The specifics depend on the case considered. Some-
times there is enhanced symmetry at y ¼ 0 because some of the
scalar multiplet components instantaneously vanish there. This
enhancement on a set of measure zero has yet to find application,
although speculations exist [17,30].
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CoS scalar-field configurations, �1 and �2, can be written
as local G-transforms of each other. Suppose that

�2ðyÞ ¼ UðyÞ�1ðyÞ; (2.2)

where UðyÞ is a local-G element. Then the original first
solution

� ¼ �1ðyÞ; AM ¼ 0 (2.3)

is gauge equivalent to

� ¼ �2ðyÞ; AM ¼ � i

e
ð@MUÞUy; (2.4)

where e is the gauge coupling constant, but it is not gauge
equivalent to

� ¼ �2ðyÞ; AM ¼ 0; (2.5)

which is the original second solution. Thus the two solu-
tions � ¼ �1, AM ¼ 0 and � ¼ �2, AM ¼ 0 have different
energy densities, even though the scalar-field portions are
related by a local symmetry transformation. Although
AM ¼ � i

e ð@MUÞUy is a pure-gauge configuration, it con-

tributes to the energy density through the �� AM interac-
tion terms.

Setting the gauge fields to zero at the solution level is
basically a convenient choice of gauge, one we shall adopt
from now on. Of course the solutions can be made to look
very different by gauge-transforming them, but their physi-
cal consequences cannot change. This circumstance is no
different from the monopole or local-string cases, where
again the solutions look different in different gauges.
Actually, it is no more complicated than the usual homo-
geneous vacuum expectation value (VEV) case. If h�i is a
homogeneous VEV, then it can be gauge transformed to a
nonhomogeneous configurationUðxÞh�i but the scalar gra-
dient energy is canceled by the gauge-field contribution.

The alert reader may have noticed the following: we
have not proven that the minimum-energy DW configura-
tion must have a gauge-field sector that is gauge equivalent
to zero. This does indeed appear to be a loose end. We shall
make the assumption that it is in fact true for the purposes
of the rest of this paper. Ultimately, one could uncover its
hypothetical falsity by a perturbative stability analysis for
the DW, but that is well beyond the scope of the present
investigation.

Finally, a technical point: The set of Hg contains an

uncountable infinity of differently embedded but isomor-
phic subgroups. However, there is a certain useful sense in
which the number of embeddings can be considered finite.
Let the Cartan subalgebra GC of G be a certain particular
set of generators, corresponding to a particular choice of
basis for the Lie algebra. If we require that the Cartan
subalgebras of two subgroups Hg1 and Hg2 are both sub-

spaces of GC, then the number of distinct embeddings is
finite. A familiar example of this concerns the SUð2Þ
subgroups of SUð3Þ. While there is an uncountable infinity

of ways of embedding SUð2Þ in SUð3Þ, there are only three
embeddings that have the SUð2Þ Cartan subalgebras as
subspaces of the given Cartan-subalgebra space of SUð3Þ.
These are usually called I-spin, U-spin, and V-spin. When
we say ‘‘different embeddings’’ below, this is what we
shall mean.5

III. SOð10Þ WARM-UP EXAMPLE:
THE NEED FOR E6

We now discuss aG ¼ SOð10Þmodel that serves both as
a warm-up for E6 and explains why the extension to E6 is
necessary. We shall make use of theOð10Þ-kink analysis of
Ref. [17]. While some recapitulation is necessary for com-
pleteness, we shall be as brief as possible, and the reader is
referred to Ref. [17] for a detailed discussion.
Let � be a scalar multiplet in the adjoint representation,

the 45, of SOð10Þ. The most general quartic Higgs poten-
tial is

V ¼ 1
2�

2Trð�2Þ þ 1
4�1Trð�2Þ2 þ 1

4�2Trð�4Þ; (3.1)

where � ¼ f�X̂
� with the X̂’s being matrix representa-

tions of the generators in the fundamental of SOð10Þ
while the f�’s are the components of the adjoint multi-
plet. The matrix � is antisymmetric and transforms as
per �! A�AT , where A is an SOð10Þ fundamental-
representation matrix. The parameter �2 is chosen to be
positive since Trð�2Þ is negative definite. The cubic invari-
ant Trð�3Þ identically vanishes so there is an accidental
discrete Z2 symmetry, �! ��, which shall play the role
of Z. It is not a subgroup of Oð10Þ.
The global minimization of such a potential was per-

formed by Li [32] (see also [33]). Using an SOð10Þ trans-
formation, one may always bring a VEV pattern into the
standard form

� ¼ diagðf1�; f2�; f3�; f4�; f5�Þ; (3.2)

where the fi are real and

� � i�2 ¼ 0 1
�1 0

� �
: (3.3)

The five independent fields fi correspond to the five gen-
erators in the SOð10Þ Cartan subalgebra. In this basis,

5Note that taking linear combinations of Cartan generators to
define different embeddings is in accord with Dynkin’s general
theory of embeddings [31]. In that formalism, the embedding of
an algebra H into a simple or semisimple algebra G is fully
defined by a mapping F from the Cartan subalgebra of H into
the Cartan subalgebra of G, as per H� ! FðH�Þ ¼P
n
a¼1 F�aGa, where H�ð� ¼ 1; 2; . . . ; mÞ and Gaða ¼

1; 2; . . . ; nÞ are the Cartan generators of H and G, respectively.
The matrix ðF�aÞ is the defining matrix of the embedding, and
two embeddings are different if their defining matrices are
different.
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V ¼ ��2
X5
i¼1

f2i þ �1

�X5
i¼1

f2i

�
2 þ 1

2
�2

X5
i¼1

f4i : (3.4)

For �2 > 0, the global minima of V are at

f2i ¼
�2

10�1 þ �2

� f2min8i; (3.5)

where we define fmin �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=ð10�1 þ �2Þ

p
and the unbro-

ken subgroup is H ¼ Uð5Þ. The values of fi at the minima
are specified up to a sign that can be chosen independently
for each component

fi ¼ �fmin: (3.6)

Different choices for these signs correspond to two fea-
tures: different embeddings of Uð5Þ in SOð10Þ and also a
choice of which Z2 sector the minimum lies in.

To explore this further, let us turn to possible domain-
wall configurations. Suppose that at y ¼ �1, we choose
as our boundary condition

�ð�1Þ ¼ �fð5Þmin � �fmindiagð�; �; �; �; �Þ: (3.7)

This defines a certain Uð5Þ unbroken at y ¼ �1, and the
VEV lies in one of the two disconnected pieces of the
vacuum manifold. At y ¼ þ1, there are three choices that
lie in the other piece of the vacuum manifold, disconnected
from the first by the spontaneously broken Z2:

�ðþ1Þ ¼

8>><
>>:
fð5Þmin � fmindiagð�; �; �; �; �Þ
fð3;2Þmin � fmindiagð�; �; �;��;��Þ
fð4;1Þmin � fmindiagð�;��;��;��;��Þ:

(3.8)

(Permutations of the minus signs in the last two of these
vacua are just a trivial rearrangement of the representation
space and need not be separately considered.) Vacua with
an odd number of minus signs on the right-hand side on
Eq. (3.8) are continuously connected to �ð�1Þ by SOð10Þ
and shall not be considered as they would give rise to
nontopological domain walls.

The three vacua in Eq. (3.8) are invariant under differ-
ently embedded subgroups of SOð10Þ: Uð5Þ1, Uð5Þ2, and
Uð5Þ3. The superscripts (5), (3, 2), and (4, 1) denote the
numbers of plus and minus signs in the VEVs. But they
also usefully describe the unbroken symmetry of the do-
main wall at finite y, respectively

Uð5Þ; Uð3Þ �Uð2Þ and Uð4Þ �Uð1Þ; (3.9)

as we now explain.
The ansatz for domain-wall configurations that interpo-

late between the stated boundary conditions is �ðyÞ ¼
hðyÞ�ð�1Þ þ gðyÞ�ðþ1Þ, where the functions h and g
obey self-evident boundary conditions. The first configu-
ration, which interpolates between�fmin andþfmin for all
components fiðyÞ, breaks SOð10Þ to Uð5Þ1 at all values of

y, because the relative magnitudes of the components are
always the same at a given y. It is a non-CoS domain wall.
The second configuration has an equal-magnitude 3� 3
block (of 2� 2 submatrices), and an equal-magnitude
2� 2 block. The unbroken symmetry is then

Uð3Þ �Uð2Þ ¼ Uð5Þ1 \Uð5Þ2: (3.10)

Similarly, the third configuration’s block structure leads to
Uð4Þ �Uð1Þ ¼ Uð5Þ1 \Uð5Þ3.
The Euler-Lagrange equations

f00i ¼ 2

"
��2 þ 2�1

X5
j¼1

f2j

#
fi þ 2�2f

3
i ; (3.11)

with the three types of boundary conditions above may be
solved numerically. However, a simple way to prove that
solutions exist is to consider the �1 ¼ 0 slice through
parameter space. The equations can then be solved analyti-
cally to yield

fiðyÞ ¼ fmin tanhð�yÞ 8i (3.12)

for the first boundary condition choice,

fiðyÞ ¼ fmin tanhð�yÞ for i ¼ 1; 2; 3 and

fiðyÞ ¼ fmin for i ¼ 4; 5
(3.13)

for the second choice, and

fiðyÞ ¼ fmin tanhð�yÞ for i ¼ 1 and

fiðyÞ ¼ fmin for i ¼ 2; 3; 4; 5
(3.14)

for the third choice. The surface energy densities are in the
ratios 5:3:1 for the first to the third solutions [17], so
Eq. (3.14) gives the topologically stable configuration.
From a Dvali-Shifman point of view, this stable configu-

ration has an unbroken SUð4Þ on the brane that is em-
bedded in SUð5Þ1 on the y < 0 side of the wall, and SUð5Þ3
on the y > 0 side. The SUð4Þ gauge bosons are thus local-
ized to the wall, if the Dvali-Shifman mechanism is cor-
rect, because by assumption both SUð5Þ1 and SUð5Þ3 are in
confinement phase in their respective bulk regions. This
establishes the connection between clash of symmetries
and Dvali-Shifman by way of an explicit rigorously
worked-out solution. It is, however, just a toy model since
the symmetry breaking pattern is not what is required
phenomenologically.
The second configuration, with

Uð3Þ �Uð2Þ ¼ SUð3Þ � SUð2Þ �Uð1Þ �Uð1Þ (3.15)

on the brane, is closer to what we need for a realistic model.
While the analytic solution of Eq. (3.13) is unstable to
dynamical evolution to Eq. (3.14), it could well be that in
another region of Higgs-potential parameter space the
Uð3Þ �Uð2Þ solution is the stable one. This has not been
established, but let us suppose it is true. The model then
still does not quite work, although it comes close.
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It is certainly true that the SUð3Þ � SUð2Þ factor in
Eq. (3.15) is Dvali-Shifman-localized, because it is a sub-
group of both SUð5Þ1 (the bulk symmetry for y < 0) and
SUð5Þ2 (the bulk symmetry for y > 0). However, there is a
problem with the hypercharge gauge boson corresponding
to Uð1ÞY . To see this, we need to examine the Uð1Þ gen-
erators more closely.

The asymptotic gauge groups are

Uð5Þ1 ¼ SUð5Þ1 �Uð1ÞX1
and

Uð5Þ2 ¼ SUð5Þ2 �Uð1ÞX2
:

(3.16)

Denote by Y1 the hypercharge generator inside SUð5Þ1, and
Y2 the one inside SUð5Þ2. The two Uð1Þ’s in Eq. (3.15) can
be taken to be generated either by Y1 and X1, or by Y2 and
X2, and each pair can be written as linear combinations of
the other pair. Now, either Y1 or Y2 can be the physical
hypercharge Y. Which one is selected will be an accident
of spontaneous symmetry breaking. At some scale above
the electroweak, the breaking

Uð1ÞY1 �Uð1ÞX1
¼ Uð1ÞY2 �Uð1ÞX2

! Uð1ÞY; (3.17)

with either Y ¼ Y1 or Y ¼ Y2, will have to take place to
produce an effective standard model at low energies (this
will require an additional Higgs field). Suppose Y ¼ Y1 is
spontaneously selected. Then the hypercharge gauge boson
cannot propagate into the y < 0 bulk, but a component of it
will propagate into the y > 0 bulk. The generator Y ¼ Y1 is
a linear combination of Y2 and X2, so the hypercharge
gauge field is a linear combination of the gauge fields of
Y2 and X2. But only the Y2 part is unable to propagate into
the y > 0 region; the X2 part is immune from the Dvali-
Shifman effect because it is not confining. After electro-
weak symmetry breaking, this will imply that both the
photon and Z0 will leak into the y > 0 bulk, which is
phenomenologically ruled out. If Y2 happens to become
the physical Y, then leakage into y < 0 will occur.

This structure, with localized gluons and W� bosons,
but semidelocalized photons and Z0’s, almost works. But
understanding its pathology also provides the cure: We
need to expand the symmetry on the brane to contain a
full SUð5Þ, with the physical hypercharge identified with
one of its generators. Further, this brane-SUð5Þ must be a
subgroup of confining non-Abelian groups on both sides of
the domain wall. These two features automatically arise
when we upgrade from SOð10Þ to E6 as the symmetry of
the action.

IV. THE E6 DOMAIN-WALL BRANE

A. Group theory

Take a scalar-field multiplet � in the 78-dimensional
adjoint representation of E6. In the next subsection, we
shall analyze the associated Higgs potential and produce
domain-wall solutions. But for now, we just need to use the

fact that for a range of parameters the global minima of the
potential will induce

E6 ! SOð10Þ �Uð1Þ; (4.1)

which is a maximal subgroup. Now consider different
embeddings of SOð10Þ �Uð1Þ in E6.

6 We shall show be-
low that there is a pair of embeddings, which we shall call
simply SOð10Þ �Uð1ÞE and SOð10Þ0 �Uð1ÞE0 , that is of
particular interest for model-building.7 The domain-wall
solution we shall find in the next subsection interpolates
between � VEVs that break E6 to these different but
isomorphic subgroups on opposite sides of the wall. The
symmetry on the wall is then

½SOð10Þ �Uð1ÞE� \ ½SOð10Þ0 �Uð1ÞE0 �
¼ SUð5Þ �Uð1ÞE �Uð1ÞE0 ; (4.2)

as we shall establish. Since SUð5Þ 	 SOð10Þ \ SOð10Þ0,
the Dvali-Shifman mechanism localizes all the SUð5Þ
gauge bosons to the domain wall, including the photon
and the Z0.
Let us look at the group theory in more detail. Under

E6 ! SOð10Þ �Uð1ÞE ! ½SUð5Þ �Uð1ÞX� �Uð1ÞE;
(4.3)

the fundamental 27-dimensional representation of E6

branches as per

27 ! 1ð4Þ þ 10ð�2Þ þ 16ð1Þ
! 1ð0;4Þ þ ½5ð2;�2Þ þ 5�ð�2;�2Þ�

þ ½1ð�5;1Þ þ 5�ð3;1Þ þ 10ð�1;1Þ�: (4.4)

The notation for SOð10Þ �Uð1ÞE representations is
Dð12EÞ, whereD is the dimension of the SOð10Þmultiplet,
and the Uð1ÞE generator has been normalized as per

Tr 27ðE2Þ ¼ 1
2: (4.5)

(We use 12E to make the charges integers for con-
venience.) The SUð5Þ �Uð1ÞX �Uð1ÞE notation is

Dð4 ffiffiffiffi
15

p
X;12EÞ with

Tr 27ðX2Þ ¼ 1
2; Tr27ðEXÞ ¼ 0: (4.6)

The second embedding is revealed by considering the
linear combinations

X0 ¼ �1
4ðX þ ffiffiffiffiffiffi

15
p

EÞ; E0 ¼ 1
4ð�

ffiffiffiffiffiffi
15

p
X þ EÞ (4.7)

that correspond to

E6 ! SOð10Þ0 �Uð1ÞE0 ! ½SUð5Þ �Uð1ÞX0 � �Uð1ÞE0 :

(4.8)

6We mean the finite number of embeddings in the sense of the
final paragraph of Sec. II.

7The second embedding has been used in unified model
building [34–37].
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Rewriting the multiplets from Dð4 ffiffiffiffi
15

p
X;12EÞ notation to

Dð4 ffiffiffiffi
15

p
X0;12E0Þ notation, we see that

1ð0;4Þ ¼ 1ð�5;1Þ 5ð2;�2Þ ¼ 5ð2;�2Þ
5�ð�2;�2Þ ¼ 5�ð3;1Þ 1ð�5;1Þ ¼ 1ð0;4Þ

5�ð3;1Þ ¼ 5�ð�2;�2Þ; 10ð�1;1Þ ¼ 10ð�1;1Þ;

(4.9)

so the 5�’s flip roles as do the singlets. Let us now redun-
dantly denote the multiplets through

Dð4 ffiffiffiffi
15

p
X;12EÞ

ð4 ffiffiffiffi
15

p
X0;12E0Þ: (4.10)

The 10 of SOð10Þ0 is
5ð2;�2Þ
ð2;�2Þ � 5�ð3;1Þð�2:�2Þ; (4.11)

whereas the 10 of the original SOð10Þ was instead
formed by

5ð2;�2Þ
ð2;�2Þ � 5�ð�2;�2Þ

ð3;1Þ : (4.12)

Similarly, the 16 of SOð10Þ0 consists of
1ð0;4Þð�5;1Þ � 5�ð�2;�2Þ

ð3;1Þ � 10ð�1;1Þ
ð�1;1Þ; (4.13)

whereas the 16 of the original SOð10Þ consisted of

1ð�5;1Þ
ð0;4Þ � 5�ð3;1Þð�2;�2Þ � 10ð�1;1Þ

ð�1;1Þ: (4.14)

The SOð10Þ0 singlet is 1ð�5;1Þ
ð0;4Þ , whereas the original SOð10Þ

singlet is 1ð0;4Þð�5;1Þ.
Because all higher-dimensional representations of E6

are formed from products of 27’s, the feature that some
SUð5Þ �Uð1Þ2 submultiplets flip when ðX;EÞ ! ðX0; E0Þ
propagates to all irreducible E6 representations. The sub-
multiplets can be packaged in SOð10Þ �Uð1ÞE multiplets,
or repackaged into SOð10Þ0 �Uð1ÞE0 multiplets. This es-
tablishes, constructively, that the two embeddings exist,
and that Eq. (4.2) is true.8 Note that the additional Uð1Þ’s
are there because adjoint configurations cannot rank
reduce.

Let us repeat this exercise for the adjoint of E6:

78 ! 1ð0Þ þ 45ð0Þ þ 16ð�3Þ þ 16�ð3Þ (4.15)

! 1ð0;0Þð0;0Þ

þ
h
1ð0;0Þð0;0Þ þ 10ð4;0Þð�1;�3Þ þ 10�ð�4;0Þ

ð1;3Þ þ 24ð0;0Þð0;0Þ
i

þ
h
1ð�5;�3Þ
ð5;3Þ þ 5�ð3;�3Þ

ð3;�3Þ þ 10ð�1;�3Þ
ð4;0Þ

i
þ

h
1ð5;3Þð�5;�3Þ þ 5ð�3;3Þ

ð�3;3Þ þ 10�ð1;3Þð�4;0Þ
i
: (4.16)

The flipping of roles is evidently

1ð0;0Þð0;0Þ $ 1ð0;0Þð0;0Þ; 10�ð�4;0Þ
ð1;3Þ $ 10�ð1;3Þð�4;0Þ;

10ð4;0Þð�1;�3Þ $ 10ð�1;�3Þ
ð4;0Þ ; 1ð�5;�3Þ

ð5;3Þ $ 1ð5;3Þð�5;�3Þ:
(4.17)

The SUð5Þ adjoint 24ð0;0Þð0;0Þ is common to both SOð10Þ em-

beddings, as befits its status of being in the intersection of
the two.

The two 1ð0;0Þð0;0Þ multiplets play important roles. Giving a

VEV to the 1(0) in Eq. (4.15) breaks E6 to SOð10Þ �
Uð1ÞE, while a VEV for the second singlet in Eq. (4.16)
breaks E6 to SOð10Þ0 �Uð1ÞE0 . A clash-of-symmetries
kink interpolates between these two VEVs imposed as
boundary conditions. At jyj<1, both SUð5Þ �Uð1Þ2 sin-
glet components of the 78 have nonzero values, and this is
precisely why the configuration breaks E6 to the intersec-
tion of the two subgroups. To analyze this further, we must
consider the dynamics.

B. Higgs potential and domain-wall solutions

The adjoint scalar multiplet � shall be represented by

� ¼ f�X̂
�; � ¼ 1; . . . ; 78; (4.18)

where X̂’s are matrix representations of the generators for
the 27 of E6, and the f’s are the field components. It
transforms according to

�! U�Uy; (4.19)

whereU is group representation matrix for the 27. We shall
only be concerned with two of the 78 fields: those asso-
ciated with ðE; E0Þ, equivalently ðX; EÞ or ðX0; E0Þ depend-
ing on what basis we choose for the Lie algebra.
We thus specialize to

� ¼ fEEþ fXX � ~fEEþ fE0E0 (4.20)

with

~f E � fE þ fXffiffiffiffiffiffi
15

p ; fE0 � � 4fXffiffiffiffiffiffi
15

p ; (4.21)

according to Eq. (4.7). The ðX; EÞ basis is the more con-
venient for solving the Euler-Lagrange equations, because
E and X are orthogonal as per Eq. (4.6). The ðE; E0Þ basis,
however, is the simplest one for thinking about the two
embeddings.
The VEVs we want for the boundary conditions are

ð~fE; fE0 Þ ¼ vð1; 0Þ; (4.22)

which corresponds to E6 ! SOð10Þ �Uð1ÞE. The other
VEV is

8By considering additional Cartan generators beyond E and X,
more embeddings of SOð10Þ can be found. This is discussed
further in the Appendix.
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ð~fE; fE0 Þ ¼ �vð0; 1Þ (4.23)

which gives E6 ! SOð10Þ0 �Uð1ÞE0 . The relative minus
sign between Eqs. (4.22) and (4.23) comes from the break-
ing of a

�! �� (4.24)

discrete symmetry we shall impose on the Higgs potential,
and it is crucial for two reasons. First, the spontaneous Z2

breaking will ensure that our domain walls are topologi-
cally nontrivial. Second, it leads to a remarkable outcome
for fermion zero-mode localization, to be explained in the
next subsection.

In terms of the ðX; EÞ basis, these same VEVs are

ðfX; fEÞ ¼ vð0; 1Þ and v

� ffiffiffiffiffiffi
15

p
4
;� 1

4

�
; (4.25)

respectively.
We now need to find a Higgs potential with these two

VEVs as degenerate global minima. The Higgs potential is
constructed out of adjoint invariants, which according to
Eqs. (4.18) and (4.19) are

In ¼ Trð�nÞ ¼ TrðX̂�1X̂�2 
 
 
 X̂�nÞf�1
f�2


 
 
 f�n:
(4.26)

They are simply the nth-order Casimir invariants. Ac-
cording to Refs. [38,39], the independent invariants are

I2; I5; I6; I8; I9; I12; (4.27)

which immediately has an interesting consequence: the
fact that I5;9 are nonzero means that the discrete Z2 of

Eq. (4.24) is not a subgroup of E6, because imposing it
eliminates the otherwise present odd-power invariants.

It is sensible to truncate the Higgs potential at order six:

V ¼ ��1I2 þ �2ðI2Þ2 � 2304�I6 þ 4
3�3ðI2Þ3; (4.28)

where some peculiar numbers and signs have been inserted
for later convenience. In the extra-dimensional setting,
field-theoretic models must generally be considered as
effective theories valid below an ultraviolet cutoff scale
�, because they are almost inevitably nonrenormalizable.
In writing down a Higgs potential, one simply adds terms
of ever higher mass dimension and truncates appropriately,
given that the higher the mass dimension the more sup-
pressed it should become. For the E6 application, it is not
helpful to truncate at fourth order, because the only fourth-
order invariant is ðI2Þ2 and I2 is invariant under an acci-
dental Oð78Þ symmetry. The presence of I6 reduces the

symmetry of the Higgs potential to E6 (presumably), and
eliminates a pseudo-Goldstone boson issue.9

Equation (4.28) is a complicated sextic in 78 fields. But
to perform the global minimization analysis, one can al-
ways transform any VEV pattern to a standard form given
by linear combinations of just the six generators in the
Cartan subalgebra of E6. This produces a still quite com-
plicated sextic in six fields. To make our discussion as
simple as possible, in the main body of the paper we shall
further truncate to just the two Cartan-subalgebra gener-
ators of interest, and use Eq. (4.20). We extend the global
minimization analysis to all six fields in the Appendix.
With just fE;X � 0, the nth-order invariant simplifies to

In ¼
Xn
k¼0

n
n� k

� �
TrðEn�kXkÞfn�kE fkX: (4.29)

The traces can be worked out by hand, because we know
the matrix representations of E and X from the branching
rules in Eq. (4.4). We obtain

I2 ¼ 1
2ðf2E þ f2XÞ; (4.30)

I6 ¼ 1

2304

�
�
f6E þ 5f4Ef

2
X þ 7f2Ef

4
X � 48

5
ffiffiffiffiffiffi
15

p fEf
5
X þ 83

25
f6X

�
:

(4.31)

To understand the extrema of Eq. (4.28), it is helpful to use
the polar decomposition

fE ¼ r cos�; fX ¼ r sin�: (4.32)

The VEVs of Eq. (4.25) are then

ð10;þÞ: � ¼ 0; (4.33)

ð100;�Þ: cos� ¼ � 1

4
; sin� ¼

ffiffiffiffiffiffi
15

p
4
: (4.34)

The notation ð10;þÞ means that the VEV of Eq. (4.33)
induces E6 ! SOð10Þ �Uð1ÞE, and we have (arbitrarily)
assigned it a positive Z2 ‘‘parity’’ which signals that it lies
in G=H rather than ðG=HÞz. Similarly, ð100;�Þ means
E6 ! SOð10Þ0 �Uð1ÞE0 and it lies in ðG=HÞz. There is
another pair, with the opposite Z2 parities:

9An alternative is to truncate the classical theory at fourth
order, but to add a Coleman-Weinberg potential generated
through quantum corrections that explicitly break the Oð78Þ
[39].
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ð10;�Þ: � ¼ 	; (4.35)

ð100;þÞ: cos� ¼ 1

4
; sin� ¼ �

ffiffiffiffiffiffi
15

p
4
: (4.36)

The topological CoS domain wall connects ð10;þÞ and
ð100;�Þ, accompanied by a CoS antidomain wall con-
necting ð10;�Þ and ð100;þÞ. The topological non-CoS
domain walls connect ð10;þÞ with ð10;�Þ [breaking E6

to SOð10Þ �Uð1ÞE at all y], and ð100;þÞ with ð100;�Þ
[breaking E6 to SOð10Þ0 �Uð1ÞE0 at all y]. There are also
nontopological configurations: (i) ð10;þÞ connected to
ð100;þÞ, and (ii) ð10;�Þ connected to ð100;þÞ, which
are both CoS-like.

Figure 2 display the invariants �I6=r6, �I8=r8,
�ðI5Þ2=r10, and �I12=r12 as functions of �. They show a
remarkably similar structure. It is evident that the global
minima for all four invariants are precisely the four VEVs
of Eqs. (4.33), (4.34), (4.35), and (4.36). It is clear from this
that choosing to truncate at the sextic level, as in Eq. (4.28),
does not sacrifice much in terms of generality. We can be
confident that our simplified potential leads to solutions
whose qualitative characteristics would be retained were a
wider class of higher-order potentials considered. In addi-
tion, the Appendix shows that there are no deeper minima
than ð10;�Þ and ð100;�Þ in the whole six-dimensional
Cartan domain.

The sign in front of I6 must be negative to achieve the
desired extrema as minima rather than maxima. The other
terms in the Higgs potential, Eq. (4.28), are independent of
�, depending only on the radial function r. Hence, it is
clear that Eq. (4.28) has the global minima we require.
Figure 3 shows a contour plot of the Higgs potential for a
certain parameter choice illustrating this conclusion. It is

important to realize that although the minima ð10;þÞ and
ð100;þÞ [similarly ð10;�Þ and ð100;�Þ] look as though
they are disconnected by E6, this is just an illusion created
by only plotting the two-dimensional ðfX; fEÞ slice through
the 78-dimensional adjoint representation space. Minima
with opposite parities are definitely disconnected from
each other.10

In the examples presented below, we further simplify the
Higgs potential by setting �2 ¼ 0 as this term does not play
an important role. It is then easy to show that at the
degenerate minima,

r ¼ v �
�

�1

�3 � 22�

�
1=4
; (4.37)

so we must take �3 > 22�, and that the value of V at the
minima is

Vmin ¼ � 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3
1

�3 � 22�

s
: (4.38)

The latter must be subtracted from the potential

V ! V � Vmin (4.39)

to produce finite energy densities for the domain-wall
configurations. Figure 3 is a contour plot of the potential
energy showing the four degenerate global minima.
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FIG. 2. The invariants �I6=r6, �I8=r8, �ðI5Þ2=r10, and �I12=r12 as functions of �. Note the remarkable similarity. The global
minima for all four, reading from left to right, are ð10;�Þ, ð100;þÞ, ð10;þÞ, ð100;�Þ, and then ð10;�Þ again (see text for explanation
of this notation).

10While it is certainly true that the Z2 is not a subgroup of E6,
so that in general � and �� are disconnected from each other,
one may worry that there is nevertheless an E6 transformation
that takes the specific configuration ð10;þÞ to ð10;�Þ. However,
this is not the case. Explicit calculation of the E6 invariant I5
reveals a nonzero f5E term. Hence, fE ! �fE must be outside of
E6. It does not matter that I5 has been omitted from the Higgs
potential, as it is a purely group-theoretic argument.
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Having understood the global minima, we may now
solve the Euler-Lagrange equations

f00XðyÞ ¼
@V

@fX
; f00EðyÞ ¼

@V

@fE
(4.40)

using those VEVs as boundary conditions. Numerical so-
lutions for CoS domain walls interpolating between
ð10;þÞ at y ¼ �1 and ð100;�Þ at y ¼ þ1 with two
different parameter choices are displayed in Fig. 4.
Figure 5 depicts non-CoS domain-wall solutions for the

same parameter choices. The function fX is zero, while fE
interpolates between v and�v in archetypal kink fashion.
This means that the non-CoS configurations feel the large
potential-energy maximum at fX ¼ fE ¼ 0, while the CoS
configuration ‘‘skirts around’’ that central maximum. This
immediately implies that the CoS solutions have lower
energy density than the non-CoS solutions. Although
they are in the same topological class, the CoS domain
walls are stable while the non-CoS domain walls are
unstable. Figure 6 shows a three-dimensional plot of the
potential and where the two DW configurations sit with
respect to the topography. There is a tall maximum at the
origin, and a corrugated valley encircling it, with four low
points at the VEVs. Figure 7 compares the energy densities
of CoS and non-CoS domain walls.
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FIG. 4. Clash-of-symmetries domain-wall solutions interpolating between ð10;þÞ at y ¼ �1 and ð100;�Þ at y ¼ þ1. The
parameters used in the left plot are � ¼ 0:2, �1 ¼ 1:5, �2 ¼ 0, and �3 ¼ 22:0; those in the right plot are � ¼ 0:8, �1 ¼ 1:0,
�2 ¼ 0, and �3 ¼ 22:0.
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two field components fE and fX. The parameters used are � ¼
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the global minima in the order ð10;þÞ, ð100;�Þ, ð10;�Þ, and
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�2 ¼ 0, and �3 ¼ 22:0.
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C. Fermion zero-mode localization

The CoS E6 domain-wall solutions described above are
a good starting point for the creation of domain-wall-brane

models featuring SUð5Þ-invariant effective 3þ 1-d theo-
ries for localized fields. To actually create such a model,
fermions, additional Higgs bosons, and gravitons have
to be added. In this subsection, we demonstrate that a
phenomenologically-acceptable fermion localization pat-
tern is obtained using the simplest possible mechanism.
We explain why this is a remarkable result.
We simply Yukawa-couple a five-dimensional fermion

multiplet in the 27 of E6,

�� 27; (4.41)

to the adjoint scalar, as per

L Y ¼ �h ����: (4.42)

We now substitute in the background CoS DW configura-
tion for � and solve the resulting Dirac equations, which
take the form

i�M@M�
ðX;EÞðx�; yÞ
� h½fXðyÞX þ fEðyÞE��ðX;EÞðx�; yÞ ¼ 0: (4.43)

The notation�ðX;EÞ signifies the component of the 27 with
the specified ðX; EÞ charges, as given in Eq. (4.4). The
various components couple to different background field
configurations,

bðX;EÞðyÞ ¼ fXðyÞX þ fEðyÞE; (4.44)

given by the DW configuration and the charges.
The Dirac matrices are �M ¼ ð
�;�i
5Þ. We search for

separated-variable solutions

�ðx�; yÞ ¼ FðyÞ ðx�Þ; (4.45)

demanding that  have definite chirality, 
5 ¼ � , and
obey the 3þ 1-d massless Dirac equation, i
�@� ¼ 0.

The solution for a profile is well known:

FðX;EÞðyÞ ¼ NðX;EÞe�h
R
y
bðX;EÞðy0Þdy0 ; (4.46)

where N is a normalization factor. For the profile to rep-
resent localization, it must be square integrable with re-

spect to y. For this to happen, bðX;EÞ must pass through zero.
If so and it is an increasing function of y (kinklike), then
a left-(right-)handed zero mode occurs for h > 0ðh < 0Þ.
If it passes through zero as a decreasing function (anti-
kinklike), then a left-(right-)handed zero mode occurs for
h < 0ðh > 0Þ.
Figure 8 show the kinklike functions bðX;EÞ for the two

parameter choices we have been using as examples. Let us
take h to be negative:

h < 0: (4.47)

Using the notation Dð4 ffiffiffiffi
15

p
X;12EÞ once again for the fermion

multiplets, the following displays these functions and
states the localization outcome, which is either ‘‘localized

fE

fX

(10,+)(10,–)

(10´,+)

(10´,–)

FIG. 6. Three-dimensional plot of the Higgs potential as a
function of the two field components fE and fX. The white
lines show the clash-of-symmetries domain wall (topmost) and
the non-CoS domain wall (bottommost). The parameters used
are � ¼ 0:8, �1 ¼ 1:0, �2 ¼ 0, and �3 ¼ 22:0.
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FIG. 7. The difference in energy densities between the non-
CoS and CoS domain-wall solutions, Enon-CoS � ECoS. We have
numerically scanned through the parameter space with 0< �<
1 along the horizontal axis, and each successive curve represents
a different �1, beginning at �1 ¼ 0:05 at the bottom and
increasing in steps of 0.05 to �1 ¼ 1:5 at the top. The energy
difference is always positive, so the CoS domain wall has a lower
energy. We set �2 ¼ 0 for simplicity.
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as left-handed (LH) zero mode’’ or ‘‘localized as right-
handed (RH) zero mode’’ or ‘‘delocalized’’:

1ð0;4Þ:
1

3
fE; localized LH

5ð2;�2Þ:
1

2

�
1ffiffiffiffiffiffi
15

p fX � 1

3
fE

�
; localized RH

5�ð�2;�2Þ: � 1

2
ð 1ffiffiffiffiffiffi

15
p fX þ 1

3
fEÞ delocalized

1ð�5;1Þ:
1

4

�
� 5ffiffiffiffiffiffi

15
p fX þ 1

3
fE

�
; localized LH

5�ð3;1Þ:
1

4

�
3ffiffiffiffiffiffi
15

p fX þ 1

3
fE

�
; delocalized

10ð�1;1Þ
ð�1;1Þ:

1

4

�
� 1ffiffiffiffiffiffi

15
p fX þ 1

3
fE

�
; localized LH:

(4.48)

The two 5�’s are delocalized because the associated field
never goes through zero. The 5 and the 10 are localized at
y ¼ 0 with opposite chiralities because their background
fields are kinklike and antikinklike, respectively. The two
singlets are localized at nonzero y values, so the overall
spectrum is ‘‘split’’.

This is a remarkable outcome for two reasons. First,
because the 5 is localized RH, it is equivalent to a LH-
localized 5�. Thus the localized spectrum consists of LH
zero-modes in the SUð5Þ representation

5� � 10 � 1 � 1; (4.49)

in other words one standard family plus two singlet neu-
trinos. Second, apart from the extra singlet, all the exotic
fermions in the 27 of E6 are delocalized and thus do not
feature in the effective 3þ 1-d theory on the brane. These
benign outcomes depend crucially on the boundary condi-
tion choice embodied by the CoS domain-wall solution,
including the Z2 minus sign.

Finally, there is an amusing aspect to this spectrum. It
resembles a usual SOð10Þ family plus an extra singlet.
However, the LH 5�, which is obtained from a 4þ 1-d 5,
and the 10 do not come from a 16 of either SOð10Þ or
SOð10Þ0.

V. CONCLUSION

We find it extremely encouraging that, in the E6 context,
the clash-of-symmetries idea leads to good outcomes
for both gauge-boson localization (assuming the Dvali-
Shifman mechanism works) and fermion localization;
that is the main point of this paper.
In summary, we have established a general connection

between the clash-of-symmetries mechanism for simulta-
neous brane creation and internal-symmetry breaking with
the Dvali-Shifman mechanism for gauge-boson localiza-
tion. The two together provide a strong basis upon which to
construct realistic domain-wall-brane models. These mod-
els should be compatible with type-2 Randall-Sundrum
graviton localization (see Ref. [16] for a CoS-style toy
model featuring a background warped metric).
More specifically, we have found a domain-wall solution

in an E6 adjoint-Higgs model that produces an SUð5Þ �
Uð1Þ2 symmetry on the wall itself. In one half of the bulk,
the symmetry is enhanced to SOð10Þ �Uð1Þ, while in the
other half of the bulk the enhancement is to SOð10Þ0 �
Uð1Þ0. The unprimed and primed groups are differently
embedded but isomorphic subgroups of E6. Because the
brane-SUð5Þ is contained in both SOð10Þ and SOð10Þ0, the
Dvali-Shifman localization of its gauge bosons follows.
The simplest possible mechanism for fermion zero-mode
localization produces a realistic spectrum, an outcome that
depends on the generic features of our domain-wall
configuration.
To complete a realistic model, one needs to add grav-

ity (which is expected to be straightforward) and to
arrange for the additional spontaneous symmetry break-
ing cascade SUð5Þ �Uð1Þ2 ! SUð3Þ � SUð2Þ �Uð1ÞY !
SUð3Þ �Uð1ÞQ. To achieve the latter, suitable additional

Higgs multiplets need to be introduced, and their back-
ground field configurations have to be nonzero inside the
domain wall to trigger the additional spontaneous sym-
metry breaking. An example of this kind of dynamical
structure is described in Ref. [13], where the dominant
background domain-wall configuration breaks SUð5Þ to
SUð3Þ � SUð2Þ �Uð1Þ, and then an additional Higgs field
induces electroweak symmetry breaking inside the wall.
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FIG. 8. Clash-of-symmetries fermion localizing profiles interpolating between ð10;þÞ at y ¼ �1 and ð100;�Þ at y ¼ þ1. The
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�2 ¼ 0, and �3 ¼ 22:0. The top to bottom order of the SUð5Þ fermion multiplets in the box on the right matches the order in
Eq. (4.48).

DAVIDSON, GEORGE, KOBAKHIDZE, VOLKAS, AND WALI PHYSICAL REVIEW D 77, 085031 (2008)

085031-12



ACKNOWLEDGMENTS

R.R.V. and A.K. were supported by the Australian
Research Council, D. P. G. by the Puzey Bequest to the
University of Melbourne, and K. C.W. in part by funds
provided by the U.S. Department of Energy (D.O.E.)
No. DE-FG02-92ER40702. A.D. is supported in part by
the Albert Einstein Chair in Theoretical Physics.

APPENDIX: FULL MINIMIZATION ANALYSIS

We do this in two steps. We first extend the Higgs-
potential minimization analysis by adding a third adjoint

component, associated with the Cartan subalgebra genera-
tor identified as weak hypercharge Y. This is useful be-
cause the result can be graphically visualized, and it reveals
a third embedding of SOð10Þ that is related to the two
embeddings used in the main body of the text. In the
second step, we report on a numerical study of the whole
six-dimensional Cartan subspace.
The truncated multiplet is thus first increased to

� ¼ fEEþ fXX þ fYY; (A1)

where

E ¼ 1

12
diagð4;�2;�2;�2;�2;�2;�2;�2;�2;�2;�2; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1Þ;

X ¼ 1

4
ffiffiffiffiffiffi
15

p diagð0; 2; 2; 2; 2; 2;�2;�2;�2;�2;�2;�5; 3; 3; 3; 3; 3;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1Þ;

Y ¼ 1

2
ffiffiffiffiffiffi
10

p diag

�
0; 1; 1;� 2

3
;� 2

3
;� 2

3
;�1;�1;

2

3
;
2

3
; 0;�1;�1;

2

3
;
2

3
;
2

3
;
1

3
;
1

3
;
1

3
;
1

3
;
1

3
;
1

3
;� 4

3
;� 4

3
;� 4

3
; 2

�
;

(A2)

have been normalized as per

TrðE2Þ ¼ TrðX2Þ ¼ TrðY2Þ ¼ 1=2;

TrðEXÞ ¼ TrðEYÞ ¼ TrðXYÞ ¼ 0:
(A3)

The sextic invariant is

I6 ¼ Tr½ðfEEþ fXX þ fYYÞ6�: (A4)

To visualize its structure, we go to a spherical-polar de-
composition

fE � r sin� cos�; fX � r sin� sin�;

fY � r cos�;
(A5)

which produces

I6 ¼ r6

518 400

�
710cos6�þ 30cos4�

�
51þ 4 cos2�� 4

ffiffiffiffiffiffi
15

p
sin2�

�
sin2�þ 60

ffiffiffi
2

p
cos3� sin�

�
2

ffiffiffi
3

p þ 3
ffiffiffi
3

p
cos2�

� ffiffiffi
5

p
sin2�

�
sin3�� 45cos2�

�
�34þ 2 cos2�þ 7 cos4�� 2

ffiffiffiffiffiffi
15

p
sin2�þ ffiffiffiffiffiffi

15
p

sin4�
�
sin4�

þ 3

2
�

�
440þ 15 cos2�þ 84 cos4�þ 11 cos6�� 15

ffiffiffiffiffiffi
15

p
sin2�þ 12

ffiffiffiffiffiffi
15

p
sin4�� 3

ffiffiffiffiffiffi
15

p
sin6�

�
sin6�

þ 144cos5�ð ffiffiffiffiffiffi
10

p
cos� sin�� ffiffiffi

6
p

sin� sin�
��
: (A6)

Figure 9 plots�I6=r6 as a function of � and �. The ðE; XÞ
plane is the line � ¼ 	=2, along which the VEVs ð10;�Þ
and ð100;�Þ can be seen. Degenerate with them are two
more VEVs with fY � 0, located at

� ¼ arccos

0
@� 1

2

ffiffiffi
5

2

s 1
A; � ¼ arccos

�
� 3ffiffiffiffiffiffi

10
p

�
(A7)

and

� ¼ � arccos

0
@1
2

ffiffiffi
5

2

s 1
A; � ¼ arccos

�
3ffiffiffiffiffiffi
10

p
�
: (A8)

The first VEV corresponds to a nonzero value for the
adjoint component associated with the generator �E00,
where

E00 ¼ 1

4
E� 1

4

ffiffiffi
3

5

s
X þ 3ffiffiffiffiffiffi

10
p Y: (A9)

As the notation suggests, this minimum breaks E6 to yet a
third differently embedded subgroup which we can call
SOð10Þ00 �Uð1ÞE00 , with negative Z2 parity: ð1000;�Þ. The
second VEV is just ð1000;þÞ.
The three groups SOð10Þ, SOð10Þ0, and SOð10Þ00 share a

common SUð3Þ � SUð2Þ subgroup, but the SUð5Þ con-
tained in SOð10Þ \ SOð10Þ0 is not a subgroup of SOð10Þ00
[this is obvious, since E00 contains an admixture of Y which
is a generator of that SUð5Þ]. One can imagine a domain-
wall junction configuration that utilizes all three of these
embeddings for boundary conditions, but such a model
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would have a similar photon and Z-boson leakage problem
as the warm-up example of Sec. III.

The functions �I8=r8, �ðI5Þ2=r10, and �I12=r12 have
exactly the same qualitative structure as �I6=r6. Thus
ð10;�Þ, ð100;�Þ, and ð1000;�Þ will be the degenerate
global minima for a large class of potentials. The quadratic
invariant is �, �-independent,

I2 ¼ 1
2ðf2E þ f2X þ f2YÞ (A10)

so one can simply add appropriate ðI2Þn terms to the
potential to ensure it is bounded from below, and to gen-
erate a definite value for r at the global minima. The
positions of the global minima are determined entirely
from the angular structure of the nonisotropic terms.

One can extend the analysis to all six Cartan components
using a six-dimensional hyperspherical polar decomposi-

tion. The six fields are represented by one modulus, r, four
zenith angles 0 � �1;2;3;4 � 	, and one azimuthal angle

�	 � � < 	. Because the group-theoretic character of an
extremum is determined entirely from the angular structure
of the invariants, a numerical study can readily be per-
formed on the finite domain ð�1;2;3;4; �Þ. This study con-

firmed that the E6 ! SOð10Þ �Uð1Þ VEVs are the global
minima of�I6;8;12 and�ðI5Þ2. The additional field dimen-

sions simply revealed more degenerate vacua, correspond-
ing to extra embeddings of SOð10Þ in E6. These new
embeddings must correspond, physically speaking, to
choosing different SUð3Þ � SUð2Þ subgroups for color
and isospin. The total number of E6 ! SOð10Þ �Uð1Þ
extrema was found to be 54, consisting of 27 Z2-related
pairs. This implies that, overall, there are 27 embeddings of
SOð10Þ �Uð1Þ in E6. Though we shall not display the re-
sults here, we have analytical expressions for the 27 linear
combinations of Cartan generators that correspond to these
VEVs. In the breakdown 27 ! 1 � 10 � 16, these 27 linear
combinations turn out to be correlated with the choice of
which component to assign as the SOð10Þ singlet in the
decomposition. A deeper reason for the number 27 is
perhaps the following: according to the SUð3Þ � SUð3Þ �
SUð3Þ maximal subgroup of E6, there are three indepen-
dent choices for the color group. The weak-isospin group
can then be selected as the I-, U-, or V-spin subgroup of
either of the two remaining SUð3Þ’s. This gives 3� 6 ¼ 18
choices for SUð3Þ � SUð2Þ embeddings. According to our
previous analysis, each SUð3Þ � SUð2Þ is contained in the
intersection of three different SOð10Þ’s, which suggests
there should be 18� 3 ¼ 54 embeddings of SOð10Þ.
However, recognizing that SOð10Þ contains an SUð2Þ �
SUð2Þ subgroup, we see that the correct number of inde-
pendent embeddings is actually 54=2 ¼ 27.
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