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Aspects of super-Planckian gravitational scattering and black hole formation are investigated, largely
via a partial-wave representation. At large and decreasing impact parameters, amplitudes are expected to
be governed by single-graviton exchange, and then by eikonalized graviton exchange, for which partial-
wave amplitudes are derived. In the near-Schwarzschild regime, perturbation theory fails. However,
general features of gravitational scattering associated with black hole formation suggest a particular form
for amplitudes, which we express as a black hole ansatz. We explore features of this ansatz, including its
locality properties. These amplitudes satisfy neither the Froissart bound nor, apparently, the more
fundamental property of polynomial boundedness, through which locality is often encoded in an
S-matrix framework. Nevertheless, these amplitudes do satisfy a macroscopic form of causality, expressed
as a polynomial bound for the forward-scattering amplitude.
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I. INTRODUCTION

The puzzles of quantum gravity come into particularly
sharp focus in nonperturbative contexts, such as black
holes and quantum cosmology. One avenue towards better
framing these puzzles and investigating their possible
resolution is via study of high-energy gravitational scatter-
ing. Above the Planck energy, such scattering can probe the
nonperturbative sector, through what is classically de-
scribed as black hole formation. However, unlike in cos-
mology, in the scattering context one can place such
questions in a more tractable framework because one ex-
pects a simple description of asymptotic in and out states.
Thus, working about a flat background geometry, one can
investigate properties of the gravitational S-matrix.

The description of such scattering hinges on the fate of
quantum black holes. For example, if Hawking’s original
picture of information loss [1] were correct, scattering
should instead be described by a superscattering matrix,
that parametrizes nonunitary evolution of density matrices.
Likewise, a scenario with black hole remnants would have
important consequences for final state properties.
However, both of these proposals appear to lead to unac-
ceptable physics (violations of energy conservation [2]
and/or Lorentz invariance [3], and instability,1 respec-
tively), and thus the belief has grown that the resolution
of the information paradox2 will involve unitary evolution
without remnants. Such a scenario, in which information
escapes in Hawking radiation from a macroscopic black
hole, appears to require macroscopic violations of local-
ity3; early proposals in this direction include [8] and the
holographic ideas of ’t Hooft [9] and Susskind [10].

While the question of the exact mechanism for unitarity
restoration in black hole evaporation remains mysterious,
we consider it a likely result. Moreover, in an S-matrix
context, one does not necessarily have to commit to such
an internal explanation in order to investigate some aspects
of the physics; assuming that the physics is indeed unitary,
one can explore properties of the corresponding S-matrix
directly.

If there is indeed a fundamental breakdown of locality in
nonperturbative gravity, it is ultimately important to char-
acterize this breakdown and understand its consequences.
Even formulating the principle of locality is difficult in a
gravitational theory. Because of diffeomorphism invari-
ance, precise local observables appear not to exist, and
instead seem to be recovered only approximately in certain
states from ‘‘proto-local’’ observables, as is described in
[11,12]. This complicates usual formulations of microcau-
sality phrased in terms of commutativity of local operators.
But another set of criteria for locality involves properties of
the S-matrix, particularly various bounds on its high-
energy behavior. A basic approach of this paper will be
to assume expected general properties of high-energy scat-
tering, such as black hole formation and unitary evolution;
the result is a black hole ansatz for the structure of partial-
wave scattering amplitudes. One can then inquire whether
this ansatz yields an S-matrix that respects usual locality
criteria. We will find that it apparently does not—not only
does it violate the Froissart bound [13], but it also does not
respect a more fundamental constraint of locality, polyno-
mial boundedness of amplitudes. Interestingly and impor-
tantly, though, it does appear to respect constraints of
causality through a polynomial bound on the forward-
scattering amplitude. Such scattering behavior seems like
a potentially important further clue about the status of
locality in gravity, and about the ultimate structure of the
quantum theory.

In Sec. II we will discuss some basic issues of scattering
in gravity, and, in particular, argue that an S-matrix ap-
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proach is plausibly justifiable in gravity.
We also summarize some of the important regimes for
gravitational scattering, organized by decreasing impact
parameter, and review aspects of partial-wave decomp-
ositions in general dimensions. Section III then treats
scattering in the large impact parameter regime; at the
longest distances this is simply Born exchange, and
at shorter distances the Born amplitudes are unitarized
by the eikonal amplitudes. The latter correspond
nicely to a classical description, providing additional
evidence that one is justified in relying on features of
the semiclassical picture in the strong-gravity regime,
where the impact parameter reaches the Schwarzschild
radius given by the center-of-mass energy. Section IV
turns to a description of the quantum physics in this
regime, in terms of very general assumptions about
properties of black holes that would appear as reson-
ances in the scattering amplitude. As a result, we out-
line a black hole ansatz for the two-two exclusive
S-matrix, given in terms of its partial-wave ampli-
tudes. Section V then investigates asymptotic properties
of this ansatz, and, in particular, the status of the Froissart
[13] and Cerulus-Martin [14] bounds, and polynomial
boundedness, revealing the apparently nonlocal but causal
behavior.

The reader wishing to proceed directly to the interesting
features of the strong-gravity regime may choose to
quickly peruse Sec. II, then read Secs. IV and V.

II. BASICS OF GRAVITATIONAL SCATTERING

A. Framework

Our interest is gravitational scattering at energies well
above the Planck scale. We currently lack a complete
description of quantum-gravitational dynamics making
predictions for such scattering. Moreover, there are signifi-
cant indications that such a theory will not simply be a
local field theory, say, based on quantization of the Einstein
action supplemented by some matter terms.4 For that rea-
son, we will fall back to a more basic viewpoint, and
inquire about the essential features of the S-matrix describ-
ing this scattering.

Given an underlying microphysics, one ordinarily ex-
pects to be able to compute the S-matrix (in cases where it
exists); conversely, given the S-matrix, one also expects to
be able to learn a great deal about the microphysics. Our
specific approach will be to investigate properties of the
S-matrix that follow from generic behavior expected of a
gravitational theory. In the light of the fact that gravity is
likely not described by a local field theory, it is important to
outline what we believe are valid assumptions about such a
theory.

Specifically, we will assume that the theory is quantum
mechanical.5 We will moreover assume that states of the
theory exist corresponding to excitations of flat Minkowski
space, and can be labeled by ‘‘in’’ and ‘‘out’’ basis repre-
sentations as with familiar S-matrix theory. These states
include a vacuum, and excited states described asymptoti-
cally as multiparticle states of widely separated particles.
These should include graviton states, as well as states of
the matter fields. (In the case of string theory, these asymp-
totic states are multistring states of the stable string
modes.) We will also assume that the theory is Lorentz
invariant. By this we mean that there is a unitary action of
the Lorentz group on the asymptotic states, such that the
vacuum is invariant, and such that the S-matrix (see below)
is Lorentz covariant. However, it is important to stress that
we will not necessarily assume that there is a more local
notion of Lorentz invariance, or even a precise local notion
of space and time. But we will assume that there is a regime
where there is a semiclassical approximation to the full
quantum dynamics described by general relativity plus
matter fields.

As a simple example, one might consider a theory that in
the semiclassical limit corresponds to gravity minimally
coupled to a single massive scalar field. This theory will be
kept in mind as a model for generic dynamics, although
one may wish to consider more elaborate matter contents,
or strings.

Given a labeling of asymptotic states j�iin, j�iout, as
described above, one may define the S-matrix,

 S�� � outh�j�iin: (2.1)

However, due to masslessness of the graviton (and possibly
other fields) there may be subtleties in its definition result-
ing from soft particle emission and corresponding infrared
divergences. While our ultimate interest is in four non-
compact dimensions, we will largely sidestep these issues
by working in spacetime dimension D> 4. (We thus im-
plicitly assume these issues are not fundamental.)
Dimension D � 5 is sufficient to eliminate soft-graviton
divergences, and D � 7 is needed for existence of the total
cross section. Even here, as we will see, masslessness of
the graviton has various consequences for analyticity prop-
erties of the S-matrix.

B. Scattering regimes

We will particularly focus on scattering of massive
particles, e.g. scalars, of momenta p1, p2. The
Mandelstam parameters are

 s � ��p1 � p2�
2 � E2; (2.2)

and, in the case of exclusive 2! 2 scattering to particles
with momenta p3, p4,

4For some further discussion, see [7].

5A proposal for a quantum framework sufficiently general to
incorporate quantum gravity appears in [15].
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 t � ��p1 � p3�
2; u � �p1 � p4�

2: (2.3)

As is outlined in [16,17], there are different regimes with
different dynamics dominating the scattering behavior;
much earlier work on this scattering has been done by
Amati, Ciafaloni, and Veneziano [18–21]. These can be
classified in terms of s and t, or even more intuitively, in
terms of the center-of-mass (CM) energy E and impact
parameter b, and are determined by the D-dimensional
gravitational constant GD, as well as other parameters
such as, for example, the string scale, etc. The three regions
of generic interest are as follows:

(1) The Coulomb (or Born) regime.—Here the scatter-
ing is well described by one-graviton exchange.
This regime corresponds to b * �GDE

2�1=�D�4�.
(2) The eikonal regime.—Here scattering is well de-

scribed by the sum of ladder diagrams, exponentiat-
ing the single-graviton exchange diagram. This
closely corresponds to classical gravitational scat-
tering, and is expected to be valid in a region
bounded by �GDE2�1=�D�4� * b * RS�E� �
�GDE�

1=�D�3�.
(3) The strong-gravity or black hole regime.—Here a

perturbative description of the dynamics fails.6 In a
semiclassical picture this regime corresponds to
black hole formation; the appropriate quantum de-
scription of this regime is a central problem. This
occurs at impact parameters RS�E� * b.

String theory, or other theories representing new dynamics
(e.g. composite structures) at a given scale, add possible
subregimes, where tidal excitation of strings or composite
structure, etc., can play a role in the description of the
asymptotics.

We will also work in an angular-momentum (partial-
wave) representation. While to be precise, one should
convert to this representation via an impact-parameter,
angular-momentum transformation, the above regimes
can be approximately converted into regimes for l using
the classical relation

 l � Eb=2: (2.4)

In particular, this leads to the definition of a critical angular
momentum,

 L�E� � ERS�E�=2 / �GDED�2�1=�D�3�; (2.5)

below which one enters the strong-gravitational regime.

C. Partial-wave essentials

A partial-wave representation will be particularly useful
for describing features of the scattering. This subsection
will collect some of the basic formulas needed for our
analysis, and more are provided in Appendix A. The
transition matrix element T for exclusive scattering may

be defined via S � 1� iT , with

 T p3p4;p1p2
� �2��D�D�p1 � p2 � p3 � p4�T�s; t�:

(2.6)

This has partial-wave expansion [22]

 T�s; t� �  �s
2�D=2

X1
l�0

�l� ��C�l �cos��fl�s� (2.7)

where � � �D� 3�=2,

  � � 24��3������; (2.8)

and C�l are Gegenbauer polynomials. Here we use the
ultrarelativistic relation for the scattering angle,

 � t=s � q2=s � sin2 �
2
: (2.9)

The individual partial-wave amplitudes fl�s� can be
derived from (2.7) using the orthogonality of the C�l (see
Appendix A) with the result

 fl�s� �
s�D�4�=2

�DC
�
l �1�

Z �

0
d�sinD�3�C�l �cos��T�s; t�; (2.10)

with

 �D � 2�
�
D� 2

2

�
�16���D�2�=2: (2.11)

The partial-wave amplitudes should satisfy the unitarity
conditions [22]

 Im fl�s� � jfl�s�j2: (2.12)

In general, such amplitudes can be written in terms of the
real parameters �l and �l:

 fl�s� �
e2i�l�s��2�l�s� � 1

2i
: (2.13)

The real and imaginary parts, and the norm, are

 rl�s� � Refl�s� �
1
2e
�2�l�s� sin�2�l�s��; (d2.14)

 al�s� � Imfl�s� �
1
2�1� e

�2�l�s� cos�2�l�s��	; (2.15)

 jfl�s�j
2 � 1

4�1� 2e�2�l�s� cos�2�l�s�� � e
�4�l�s�	: (2.16)

III. SCATTERING IN THE EIKONAL AND BORN
REGIMES

In order to begin understanding the partial-wave de-
scription of gravitational scattering, we first investigate
this scattering in the large impact parameter regime. As
stated, in this regime ladder and crossed-ladder diagrams
are dominant contributions to scattering. Working in the
approximation�t=s
 1, one can sum all such amplitudes
to obtain the eikonal amplitude [18,19,23,24],6Even apparently in string theory.
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 iTeik�s; t� � 2s
Z
dD�2x?e

�iq?�x?�ei��x?;s� � 1�: (3.1)

Here q? is the �D� 2�-vector component of the momen-
tum transfer q perpendicular to the CM collision axis; in
terms of CM variables, jq?j � �

���
s
p

sin��=2. (Note that at
small angles, q2

? � q2.) ��x?; s� is the eikonal phase,
which is given by 1=s times the Fourier transform of the
one-graviton exchange or tree amplitude,

 Ttree�s; t� � �8�GDs2=t: (3.2)

This Fourier transform is taken with respect to the trans-
verse momentum variable, giving

 ��x?; s� �
1

2s

Z dD�2k?
�2��D�2 e

�ik?�x?Ttree�s;�k2
?�

�
4�

�D� 4��D�3

GDs

xD�4
?

; (3.3)

where

 �n �
2��n�1�=2

���n� 1�=2	
(3.4)

is the volume of the unit n-sphere.
The small expansion parameter justifying use of the

leading eikonal amplitude (3.1) is thus �
 1. Higher-
order loop diagrams corresponding to connecting the two
external lines with multipoint graviton tree diagrams can
be seen [19] to be subleading in an expansion in
�RS=b�D�3 � �, and thus are also small for �
 1.

Partial-wave amplitudes in this regime are straightfor-
wardly derived. Since ��x?; s� is a function only of the
magnitude of the �D� 2�-vector x?, we can integrate over
angles in Eq. (3.1) to get [23]
 

Teik�s; t� � �2is�2���D�2�=2q��D�4�=2
?

Z 1
0
dx?x

�D�2�=2
?

 J�D�4�=2�q?x?��ei��x?;s� � 1�; (3.5)

where J	 is a Bessel function. We can now plug Eq. (3.5)
into Eq. (2.10) to get the eikonal approximation for the
partial-wave amplitudes,
 

feik
l �s� � �i

l�1 �4��
��1

�D

C�l �0�

C�l �1�
s���1�=2


Z 1

0
dx?x�?Jl��

�
1

2

���
s
p
x?

�
�ei��x?;s� � 1�; (3.6)

where again � � �D� 3�=2. Note that the result is pro-
portional to C�l �0�, which vanishes for odd l; see
Appendix A. This would follow from t$ u crossing sym-
metry, but we have not assumed that our initial particles are
identical, and so should not expect t$ u crossing symme-
try to hold as a general result. Instead, it is an artifact of the
small-angle approximation used to derive the amplitude.
Such a small-angle approximation cannot accurately pre-
dict fine-scale structure of the partial-wave coefficients as a

function of l, but should only be trusted to give an overall
envelope function that changes slowly with l. We will
revisit this issue below.

Defining a new integration variable v � x?
���
s
p
=2l and

plugging in the values of C�l �0� and C�l �1� from
Appendix A, we get (for l even)
 

feik
l �s� � �i

2����12 �l� 1�	l��1

��12 �l� 1� � �	

Z 1
0
dvv�Jl���lv�

 �eil"�l;s�=v
D�4
� 1	; (3.7)

where

 "�l; s� � �4����D�4�=2�
�
D� 4

2

�
GDs�D�2�=2

lD�3

�

����
�
p
�D� 2����D� 4�=2	

4���D� 1�=2	

�
L�E�
l

�
D�3

: (3.8)

Here L�E� is the critical angular momentum defined in
Eq. (2.5), with E � s1=2. We will be in the eikonal regime
for l� L�E�; here " is small. Since we are interested in
high energies, we have L�E� � 1, and so we can also take
l� 1 in Eq. (3.7). We can then write the Bessel function as

 Jl���lv� �
1

2�

Z ��
��

d
ei�l���
�ilv sin
 �O�1=l�; (3.9)

this formula is exact if l� � is an integer. Inserting this in
Eq. (3.7), and taking the large-l limit in the prefactor, we
find
 

feik
l �s� �

�il
2�

Z ��
��

d

Z 1

0
dv�vei
��eil�
�v sin
�

 �eil"=v
D�4
� 1� �O�1=l�: (3.10)

We can now evaluate this double integral by stationary
phase. Then we must minimize S � 
� v sin
�
"=vD�4 with respect to both 
 and v. For "
 1, the
solution is v � 1�O�"2� and 
 � �"�O�"3�; at this
point, S � "�O�"3�, and the determinant of the matrix of
the second derivatives of S is �1�O�"2�. We can then
account for the�1 term in the integrand by subtracting the
result with " set to zero. (A more careful analysis shows
that this is correct up to corrections that are suppressed by a
relative factor of "1=2.) For l� 1 and "
 1, we thus find

 feik
l �s� �

�il
2�

�
2�
l

�
�eil" � 1� � �i�eil" � 1� (3.11)

for even l, and (as previously noted) zero for odd l.
Comparing with Eq. (2.13), we see that this even-l result
is too large by a factor of 2 to be unitary. However, as
previously discussed, we cannot trust the eikonal approxi-
mation to get the correct fine structure of the partial-wave
amplitudes as a function of l, but only to give an envelope
function that changes slowly with l. Since the odd-l am-
plitudes are zero, we get this envelope function by taking
half of Eq. (3.11), and applying it for both even and odd l.
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This gives a unitary result, with the real and imaginary
parts of the partial-wave phase shifts given by

 �eik
l �s� �

����
�
p
�D� 2����D� 4�=2	

8���D� 1�=2	

L�E�D�3

lD�4 ;

�eik
l �s� � 0:

(3.12)

In the Coulomb regime, �eik
l �s� 
 1, this is simply the

partial-wave phase shift corresponding to the tree-level
Coulomb amplitude. Thus we see that the eikonal approxi-
mation provides a unitarization of the tree-level phase
shifts.

As one leaves the regime �
 1, corrections to the
leading eikonal phase shifts (3.12) become important.
The leading contributions from the iterated tree graph
exchanges have been argued [20,21] to yield corrections
to the eikonal phase (3.3) that correspond to higher-order
classical corrections to the linearized metric. Specifically,
these corrections appear to match the classical picture,
which is scattering of Aichelburg-Sexl shock waves [25].
This serves as motivation7 to rely on features of the semi-
classical picture in the regime b� RS.

One should also note that various corrections can lead to
nonzero absorptive coefficients �l. A universal contribu-
tion comes from gravitational bremsstrahlung of soft grav-
itons. Using methods of [28], one can estimate their
contributions to have parametric dependence

 �SG
l � L

3D�9=l3D�10 (3.13)

in the eikonal regime.
There are also model-dependent contributions arising

from the substructure of the scattered states. An example
of this is scattering of strings: at sufficiently small impact
parameter, tidal forces become large enough to excite
internal vibrations of the scattered strings [16]. If one
scatters any other composite objects (for example, hydro-
gen atoms or neutrons), one likewise expects a tidal exci-
tation threshold where the internal structure becomes
excited. In the string case, this excitation is the diffractive
excitation found in [18,19], and the corresponding absorp-
tive coefficients have size

 �TS
l �

�lsE�
2

L

�
L
l

�
D�2

; (3.14)

where ls is the string length. Absorptive coefficients in
other cases clearly depend on the details of the composite
structure.

IV. THE BLACK HOLE ANSATZ

A. Quantum scattering

As we have discussed, some basic features of high-
energy gravitational scattering at large impact parameter

are well described by semiclassical and/or perturbative
physics. In particular, the leading eikonal diagrams repre-
sent the leading contribution to what is essentially classical
scattering, working to lowest order in an expansion in
RS=b, and [20,21] have argued that subleading eikonal
diagrams correspond to higher-order terms in the expan-
sion of the classical metric in RS=b. Thus, one has what
appears to be a relatively reliable picture of the scattering
for b * RS. However, such an expansion should clearly
break down in the impact parameter regime b & RS, where
the perturbation theory apparently diverges.

This is the regime where the collision would classically
form a black hole [29,30]. An explicit derivation of quan-
tum amplitudes in this regime apparently requires knowl-
edge of the nonperturbative dynamics of quantum gravity.
However, since in the classical picture the resulting black
hole is large, and has weak curvature at the horizon, one
might expect that at least crude features of the quantum
dynamics are captured by the semiclassical description.
Semiclassically, one predicts black hole formation, and
subsequent Hawking evaporation. We will assume that
this describes gross features of the true quantum dynamics.

Specifically, we will assume that the full quantum dy-
namics has a spectrum of states corresponding to black
holes, whose decay rates and spectra are approximately
predicted by semiclassical Hawking radiation. However,
we do make one very important assumption that deviates
strongly from this picture: we will assume that amplitudes
for formation and evaporation of a black hole respect
unitary evolution. If this is correct, the thermal description
of Hawking radiation must only be an approximation to
more fundamental amplitudes where appropriate phases
and correlations restore quantum purity. Then the black
hole states should appear as resonances in scattering
amplitudes.

It appears that any dynamics that could produce such
unitary evolution must have intrinsic nonlocality. Indeed,
[31] has argued for a breakdown of perturbative gravity at
an intermediate step in calculating Hawking’s mixed-state
density matrix [1]. Whether or not there is some valid
perturbative approach to calculating this density matrix, a
plausible conjecture is that [16,32,33] nonperturbative
gravitational effects provide sufficient nonlocality to pro-
duce quantum-mechanical evolution, and unitarize ampli-
tudes for black hole formation and evaporation.

In the S-matrix context we do not need to understand
how the dynamics respects unitarity, only that it does. (In
turn, as we will discuss, properties of scattering respecting
unitary evolution may furnish clues to the ‘‘how’’ ques-
tion.) Among the quantum amplitudes representing differ-
ent possible final states of our two-particle collision are the
amplitudes for a two-particle final state, which will be of
the form (2.6), (2.7), and (2.13). In general, properties of
the phase shift �l and absorptive coefficients �l depend on
properties of the intermediate states. Thus in the regime of7Additional motivation is discussed in [26,27].
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interest, l & L�E�, these will be related to properties of
black holes.

B. Black hole spectrum

Basic features of the black hole spectrum appear to be
the following. First, a black hole of energy E and momen-
tum l has a Bekenstein-Hawking entropy SBH�E; l�, which
for l
 ERS�E�, takes the form

 SBH�E; 0� �
RS�E�

D�2�D�2

4GD
; (4.1)

with �D�2 given in (3.4). For more complete angular-
momentum dependence, see Appendix B. We expect this
entropy to characterize the density of quantum black hole
states. Specifically, the number of black hole states in an
energy range �E;E� �E� is expected to be

 N �E;E� �E; l� � ��E; l��E; (4.2)

where the behavior of the density of states ��E; l� is
determined by the entropy,

 ��E; l� � eS�E;l�: (4.3)

Here S�E; l� also incorporates possible subleading correc-
tions to the Bekenstein-Hawking entropy. These states are
to be thought of as resonances, as they have characteristic
decay widths

 ��E; l� � 1=RS�E�; (4.4)

given by the typical time to emit a Hawking quantum. In
particular, note that the spacing between states is exponen-
tially small as compared to their widths. The comparatively
large widths lead to a smooth average density of states
(4.3).

C. Exclusive amplitudes

We are now prepared to investigate properties of the
partial-wave amplitudes for the two-particle final state.
Since these correspond to what is classically described as
black hole formation, we expect that absorption dominates
the elastic amplitude. In particular, the semiclassical pic-
ture is that the two incoming particles form a black hole,
which then evaporates. The probability that this black hole
will evaporate into precisely a two-particle final state is
expected to be of order expf�S�E; l�g; we conjecture that
this basic feature is not modified in the full unitary dynam-
ics.8 This immediately leads to an ansatz for the absorption
parameters in the black hole regime:

 �l � S�E; l�=4; l & L�E�: (4.5)

While several important features of the scattering appear
to depend on the absorption parameters alone, it is also of
interest to explore possible forms for the phase shifts. Here,

we recall that formation of a resonant state contributes� to
the phase shift. Thus, from the collection of black hole
states described above, we could conjecture that the gross
features of the phase shift are captured by an expression of
the form

 �l�E� � �
Z E

dE��E; l� � �eS�E;l�: (4.6)

At first sight, (4.6) may seem puzzling in another con-
text, which is the identification of the phase shift with the
time delay, through the formula

 ��E; l� �
d�l�E�
dE

: (4.7)

This produces a time delay for decay into the two-particle
state that is exponentially large in the entropy, and seems at
odds with the expected Hawking decay time of the black
hole, which is of order RSS�E; l�. However, note that this
actually fits with the statement above, that the partial width
of the black hole into the two-particle final state is of order
expf�S�E; l�g. This in turn means that the corresponding
decay time into such an atypical final state is indeed
exponentially long, and thus supports the conjectured
form (4.6).

Thus, we conjecture that gross features of high-energy
scattering amplitudes in the regime of strong-gravitational
dynamics are summarized by the amplitudes of such a
black hole ansatz,
 

TBHA�s; t� �
i
2
 �s2�D=2

XL
l�0

�l� ��C�l �cos��

 �1� e�2�l�E��2i�l�E�	; (4.8)

with �l and �l approximated by (4.5) and (4.6).

D. Transition to black hole regime

It is also of interest to understand the transition between
the eikonal regime and that of strong gravity; in particular,
this is where perturbative gravitational calculations appar-
ently fail. At our current level of understanding we can
only outline the transition at the level of the expected
change in the partial-wave amplitudes. Specifically, imag-
ine fixing l and increasing E into the regime where l� L.
As we see from (3.12), below this energy threshold the
leading eikonal phase shifts are approaching a value of
order �l � L� ED�2. However, past the threshold one
expects the behavior (4.6). Thus, at the threshold we ap-
parently find a very rapid variation of the phase. Part of this
variation may be captured by the eikonal contributions
corresponding to the higher-order corrections to the clas-
sical metric.

The absorptive coefficients are also typically expected to
jump, but not as severely. Moreover, their change is related
to model-dependent properties of the scattering, as out-
lined in Sec. III. For example, in the case of string theory,8For a related discussion, see [34].
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tidal string excitation becomes an important contribution to
the asymptotic structure of the states as one approaches the
black hole threshold. (The arguments of [16,17], however,
strongly suggest that string excitation occurs on different
time scales than horizon formation, and thus does not
critically modify the picture that strong gravity becomes
relevant.) Estimated absorptive coefficients for soft-
graviton emission and tidal string excitation are given in
(3.13) and (3.14), and can be compared to the expected
absorption coefficients (4.5) in the black hole regime,
which for fixed l have energy dependence

 �BHA
l / E�D�2�=�D�3�: (4.9)

Note that the soft-graviton absorption coefficients at l ’ L
are comparable in size, in accord with a semiclassical
picture in which a nonzero fraction of the collision energy
is emitted in gravitational radiation.

V. BOUNDS, ANALYTICITY, AND LOCALITY

High-energy scattering behavior of a theory can convey
important information about its structure, in particular,
through the asymptotics of amplitudes at high energies,
which contain information about locality of the theory. As
we have described, there are some reasons to believe that
nonperturbative gravity is intrinsically nonlocal. We can
take a different tack on this question by asking whether or
not scattering amplitudes that have the basic properties
expected of a gravitational theory also have asymptotics
corresponding to those of local theories.

To explore contributions to scattering from the strong-
gravity region, let us examine the black hole ansatz (4.8).
Note that the second term in brackets is exponentially
suppressed in the energy. Moreover, the sum over the first
term can be performed explicitly [35]. The result is an
expression of the form
 

TBHA�s; t� �
i
2
 �s2�D=2

��
L
2
� �

�
C�L�cos��

� ��1� cos��C��1
L�1�cos��

�
�O�e�S�E�=2�:

(5.1)

Begin by considering the total cross section, given by the
optical theorem in terms of the � � 0 limit of this expres-
sion. Evaluating (5.1) at � � 0, and using (A3) and the
asymptotic behavior of the gamma functions, we find that
for large E and thus L,

 T;BHA � RS�E�
D�2 �O�e�S=2�: (5.2)

This is as expected for formation of an object of size RS�E�.
While the total cross section receives contributions from

the other regimes as well, one can imagine isolating the
contribution (5.2) from, for example, Coulomb scattering,
by focusing on the absorptive part of the cross section.
(Strong absorption due to tidal/bremsstrahlung effects can

however be an additional confounding factor.) In any case,
our expectations are that contributions of other regimes do
not reduce the total cross section from the value (5.2).

This is a first hint of nonlocality of the dynamics. Local
quantum field theories satisfy the Froissart bound [13],
whose D-dimensional version [35] states that the total
cross section has a bound of the form

 T � �R0 logE�D�2 (5.3)

for some constant R0. However, violation of this bound
does not conclusively imply nonlocality, as one of the
assumptions in deriving the Froissart bound is the exis-
tence of a mass gap, which is not expected in gravitational
dynamics.

Another important bound in local theories is the
Cerulus-Martin bound [14], which is a lower bound on
fixed-angle scattering, of the form

 T�s; �� � e�f���E logE: (5.4)

The fixed-angle asymptotics of (5.1) are readily found from
asymptotic expressions for the Gegenbauer polynomials
[36]. At angles �L� 1, we find
 

TBHA�s; t� �
i �

2���� 1�!

s2�D=2L�

sin��1�

�
sin
�
�L� ����

��
2

�

� sin
�
�L� �� 1���

��
2

�
�O

�
1

L sin�

��

�O�e�S=2�: (5.5)

This expression does not violate the Cerulus-Martin
bound.9 While amplitudes from the regime l > L also
make contributions, there is no reason to expect that these
contributions lead to cancellations such that the total fixed-
angle amplitude violates the lower bound (5.4).

However, the behavior (5.5) is interesting from another
perspective. In particular, at large energies, it exhibits the
feature of not being polynomial bounded. Specifically, if
we use L� ERS�E� and continue to complex E, we find an
exponentially growing amplitude. Or, if we rewrite � in
terms of t and s, and continue to positive t (which involves
going around the Coulomb pole of the full amplitude), we
find behavior of the form

 TBHA�s; t > 0� � e2RS�E�
��
t
p

; (5.6)

again violating polynomial bounds. [Here we reasonably
assume no cancellation from the O�e�S=2� terms.]

Polynomial boundedness is in fact a way that locality
enters into the assumptions in proving the Froissart bound.
Thus we have tracked the behavior (5.2) to a more primi-
tive source, which is independent of the issue of a gap.
Indeed, boundedness of amplitudes in the complex energy
plane is essential for causality, as the usual discussion of

9This appears in contradiction to expectations expressed in
[34].
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dispersion relations shows. The basic idea is that if we have
a system with a linear response, such that the response r�t�
to a signal s�t� is of the form

 r�t� �
Z 1
�1

dt0S�t� t0�s�t0�; (5.7)

then causality implies the condition that the Fourier trans-
form of S�t� be analytic and bounded in the upper half-
plane. Exponential growth, such as

 S�E� � e�ImE; (5.8)

corresponds to acausal behavior with a time advance of
size �.

Translated to the scattering context, and considering
forward scattering, � � 0, then the scattered wave should
not traverse the scattering region faster than a correspond-
ing wave traveling at infinity at the speed of light. This
condition likewise implies polynomial boundedness of the
forward-scattering amplitude T�s; 0�. This is actually not in
conflict with the above statements, as the asymptotic ex-
pression (5.5) is not valid at zero angle. Indeed, we found a
polynomial-bounded expression in evaluating (5.2).

Violation of a polynomial bound at nonzero angle does
not necessarily imply violation of causality, if the scatter-
ing is finite in range. The reason is that a finite range
scatterer can shorten the path the incoming wave takes to
become an outgoing wave if � � 0. For an interaction of
fixed range R, this corresponds to a relative time advance
� 2R sin��=2� � 2Rjqj=E. Note that this nicely accords
with the behavior (5.6), with the identification that the
characteristic scattering range is the radius of the strong-
gravity region.

Thus, the black hole ansatz and behavior of the form
(5.5) and (5.6) respect a macroscopic form of causality,
which is good—were they to do otherwise, one would
suspect basic inconsistencies. However, the lack of a non-
forward polynomial bound corresponds to an interaction
range that grows with energy. This is not local behavior by
traditional measures.

Notice that these conclusions rely only on very general
features of the expected behavior of high-energy gravita-
tional scattering. Thus, either some of these features are not
present, or this behavior supports the statement that non-
perturbative gravity is not local in the standard sense. Note
also that these conclusions really only apparently depend
on the expected form (4.5) of the absorption coefficients.
Because these are very large, the expressions (5.1) and
(5.2) and (5.5) and (5.6) appear essentially insensitive to
the real phase shifts �l. Indeed, note that the black hole
ansatz is very similar to black disk scattering. In particular,
the elastic cross section is
 

el�s� /
X1
l�0

�l� ���1� 2e�2�l�s� cos�2�l�s�� � e
�4�l�s�	

�
XL
l�0

�l� �� �O�e�S=2�; (5.9)

and, in the same units, the total absorption cross section is

 abs�s� /
X1
l�0

�l� ���1� e�4�l� �
XL
l�0

�l� �� �O�e�S=2�:

(5.10)

From these, el � abs. The elastic contribution is that of
diffraction scattering and should exhibit the appropriate
diffractive peak.

As a final comment, we note that due to the masslessness
of the graviton, we do not expect all the usual analyticity
properties of a gapped theory. In particular, cuts in the s or t
planes can extend all the way to their origins. This feature
raises a possible subtlety with crossing symmetry, an issue
we leave for future examination.

VI. CONCLUSION

If quantum gravity admits a state corresponding to the
Minkowski vacuum, and excitations about this state, an
S-matrix investigation of its theory appears appropriate.
We have outlined features of such an S-matrix, at super-
Planckian energies, beginning first with large impact pa-
rameters, and then with impact parameters that enter the
strong-gravity regime. At larger impact parameters, the
Born or Coulomb amplitudes match onto the eikonal am-
plitudes, and the latter appear to yield a unitary extension
of the former to smaller impact parameters. As one ap-
proaches the regime b� RS�E�, diagrams corresponding to
exchange of gravitational tree amplitudes also become
important, matching a classical picture. As one reaches
b� RS�E�, the perturbation series apparently diverges.
However, approximate validity of the classical picture in
this vicinity suggests the utility of a semiclassical descrip-
tion of black hole formation and evaporation for inferring
general properties of scattering in the strong-gravity re-
gime b & RS�E�. This leads to a proposal for features of
the S-matrix in this regime, in the form of a black hole
ansatz, given in Sec. IV. We have, in particular, investi-
gated asymptotic properties of this ansatz in Sec. V, and
found that they appear not to respect a standard form of
locality, namely, polynomial boundedness. This serves as
additional evidence for the lack of a fundamental role for
locality in quantum gravity; such nonlocality of the non-
perturbative theory may in turn be an important aspect of
the internal description of black holes [31–33], and may
play an important role in cosmology [34,37]. Such features
of high-energy gravitational scattering may thus be supply-
ing important clues towards a fundamental formulation of a
quantum-gravitational theory.
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APPENDIX A: PARTIAL WAVES

This appendix will provide further details of the partial-
wave expansion. We begin by making contact with the
expansion for the transition matrix element given in [22]:

 T�s; t� � �Ds2�D=2
X1
l�0

1

N�
l

C�l �1�C
�
l �cos��fl�s�; (A1)

recall �D is defined in (2.11), and N�
l is the normalization

factor for the Gegenbauer polynomials,

 

Z 1

�1
d�cos���sin��D�4C�l �cos��C�l0 �cos�� � N�

l �ll0

�
21�2����l� 2��

l!��� l��2���
�ll0 : (A2)

Using

 C�l �1� �
��l� 2��

��l� 1���2��
; (A3)

(A1) can be simplified to the form given in the main text
[35], Eq. (2.7). The expression (2.10) for the partial waves
in terms of the amplitude can then be found using the
orthogonality relation (A2).

It is also useful to have an expression for the delta
function:

 

X1
l�0

1

N�
l

C�l �1�C
�
l �cos�� �

2��cos�� 1�

sinD�4�
: (A4)

Here, accounting for the finite range of cos�, we adopt the
convention

 

Z 1

0
dx��x� 1� �

1

2
: (A5)

Finally, we record here the zero-argument value of the
Gegenbauer polynomials:
 

C�l �0�����
l=2

��l2���

��l2�1�����
; l� even;

�0; l�odd: (A6)

APPENDIX B: ROTATING BLACK HOLES

In this appendix, we collect some basic formulas for
rotating D-dimensional black holes. We will consider the
case with only one nonzero rotation parameter. We will not
give the full form of the metric, which was first given in
[38]. These solutions have a characteristic
‘‘Schwarzschild’’ radius RS�E; l�, determined by solving
the equation

 RD�5
S

�
R2
S �
�D� 2�2l2

4E2

�
�

16�GDE
�D� 2��D�2

: (B1)

Subsequent formulas are simplified by defining a rotation
parameter,

 a� �
�D� 2�l

2ERS
: (B2)

The Hawking temperature of the black hole is

 TH �
D� 3� �D� 5�a2

�

4�RS�1� a2
��

(B3)

and the Bekenstein-Hawking entropy referred to in the
main text is

 SBH�E; l� �
E

�D� 2�TH

�
D� 3�

2a2
�

1� a2
�

�
: (B4)
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