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Yang-Mills vacuum in Coulomb gauge in D = 2 + 1 dimensions
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The variational approach to the Hamilton formulation of Yang-Mills theory in Coulomb gauge
developed by the present authors previously is applied to Yang-Mills theory in 2 + 1 dimensions and
is confronted with the existing lattice data. We show that the resulting Dyson-Schwinger equations (DSE)
yield consistent solutions in 2 + 1 dimensions only for infrared divergent ghost form factor and gluon
energy. The obtained numerical solutions of the DSE reproduce the analytic infrared results and are in
satisfactory agreement with the existing lattice date in the whole momentum range.
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L. INTRODUCTION

Recently, there has been renewed interest in the formu-
lation of Yang-Mills theory in Coulomb gauge, both in the
continuum theory [1-4] and on the lattice [5-9]. In the
continuum formulation the Hamilton approach turns out to
be very appealing, in particular, for the description of the
confining properties of the theory [3]. The reason is that in
Coulomb gauge Gauss’ law can be explicitly resolved
resulting in a static potential between color charges [10].
Recently, several papers have been devoted to a variational
solution of the Yang-Mills Schrodinger equation in
Coulomb gauge [2—4]. In particular, in Refs. [3,4] the
present authors have developed a variational approach to
Yang-Mills theory in Coulomb gauge which properly in-
cludes the curvature of the space of (transversal) gauge
orbits. Using a Gaussian type of ansatz for the Yang-Mills
vacuum wave functional minimization of the energy den-
sity results in a set of coupled Dyson-Schwinger equations
which can be solved analytically in the infrared [1,11] and
has been solved numerically in the full momentum range
[3,12] in D =3 + 1 dimensions. An infrared divergent
gluon energy and a linearly rising static quark potential
was found [3,12], both signaling confinement.
Furthermore, within this approach the spatial 't Hooft
loop [13,14] was calculated in the vacuum state and a
perimeter law was found [15], which is the behavior ex-
pected for this disorder parameter in a confinement phase.
In the present paper we apply this approach to 2 + 1
dimensions and confront the results with the existing lat-
tice data [9].

The 2 + 1 dimensional Yang-Mills theory is interesting
in several aspects: When a Higgs field is included, it
represents the high temperature limit of the 3 + 1 dimen-
sional Yang-Mills theory, thereby the temporal component
of the gauge field A, becomes the Higgs field in the
dimensional reduced theory. In many respects, the 2 + 1
dimensional theory is easier to treat than its 3 + 1 dimen-
sional counterpart; in particular, much larger lattices can be
afforded in 2 + 1 dimensions. This will be crucial for a
comparison of the continuum results with the lattice data,
since the lattices affordable in 3 + 1 dimensions are by far
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too small to allow for a reliable extraction of the infrared
properties of the Greens functions [16,17]. In addition, 2 +
1 dimensional Yang-Mills theory is super-renormalizable.

The balance of the paper is as follows: In Sec. IT we
briefly summarize the essential ingredients of the Hamilton
approach to Yang-Mills theory in Coulomb gauge [10] and
of the variational solution of the corresponding Yang-Mills
Schrédinger equation [3]. In Sec. III the Dyson-Schwinger
equations resulting from minimizing the energy density are
studied in the ultraviolet and their renormalization is car-
ried out. Some exact statements on their solutions are given
in Sec. I'V, where we also solve these equations analytically
in the infrared. In Sec. V we present our numerical results
and compare them with the existing lattice data. A short
summary and some concluding remarks are given in
Sec. VL.

II. THE HAMILTON APPROACH TO YANG-MILLS
THEORY IN COULOMB GAUGE

Canonical quantization of Yang-Mills theory is usually
performed in Weyl gauge Ay = 0 to avoid the problem
arising from the vanishing of the canonical momentum
conjugate to A,.' The prize one pays by choosing Weyl
gauge is that one loses Gauss’ law as equation of motion.
To ensure gauge invariance, one has to impose Gauss’ law
as a constraint on the wave functional. Instead of using
gauge invariant wave functionals [18—-20], it is simpler to
explicitly resolve Gauss’ law by fixing the residual (time-
independent) gauge invariance, and Coulomb gauge
9;A; = 0 is a particularly convenient gauge for this pur-
pose. After resolving Gauss’ law in Coulomb gauge, the
Yang-Mills Hamiltonian reads [10]

=) [T R T + B

2
+% fdzxfdzx’J_l[Ai]p“(x)

X Feb(x, x') J[A]p" (X)), (D

' An alternative to the Weyl gauge is the light-cone gauge A, *+
Al = 0.
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where
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iSAL(x)  i6AF(x)

IT4(x) = 1;(x) (2)
is the canonical momentum operator conjugate to the
transverse gauge field AL. Furthermore

J[AL] = det(—9,D;(A1)) 3)

is the Faddeev-Popov determinant with D(A) = 9 + gA,
A = A°T,, (T,)*" = f< being the covariant derivative in
the adjoint representation. Furthermore
= éi[D,D;}, D=0 +ighA, (4
28
is the magnetic field, which is a scalar in 2 + 1 dimensions
(Eij = _eji’ €1 = 1) Finally,

Feb(x, x') = (xal(=D;3;) " (=9*)(=D;a,)"'Ix'b) (5)

is the non-Abelian Coulomb propagator which mediates a
static interaction between the color charge density of the
gluons

pt(x) = —AF () (x). (6)

In the presence of external color charges, for example in
the presence of quarks, their charge density has to be added
to the gluon charge density. The kinetic term in the
Hamilton has the form of a (variational extension of the)
Laplace-Beltrami operator in curved space with the
Faddeev-Popov determinant (3) corresponding to the de-
terminant of the metric of the space of transversal gauge
orbits. The Jacobian (3) also enters the scalar product in the
Hilbert space of the Yang-Mills wave functionals in
Coulomb gauge

(W, 01W,) = [ DAL JIAL WAL IO[AL, TTH]W,[A L]

(N
We will solve the Yang-Mills Schrodinger equation by
the variational principle

E = (V|H|¥) — min (8)

using the following ansatz for the vacuum wave functional
[3.4]:
W[AL] = (¥|At)
1
= NJ[AL] @ exp[— 3

X / £x ] Pr AR (%) w(x, x')A,-la(x'>} ©

where w(x, x') is the variational kernel, which by transla-
tional and rotational invariance of the vacuum depends
only on |x — x/|, and, by the isotropy of color space, is

independent of color. The ansatz (9) with o = % is moti-
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vated by the wave functional of a particle moving in an s-
state in a spherically symmetric potential. In principle, «
could be used as a variational parameter to minimize the
energy density. However, it turns out that, up to two loops
in the energy, stationarity of the energy density with re-
spect to w, i.e. SE/Sw = 0, implies also stationarity with
respect to a, i.e. dE/da = 0 [4]. Thus, we are free to
choose « for convenience, and as in Ref. [3] we will choose
a= % which removes the Faddeev-Popov determinant
from the integration measure in Eq. (7). Furthermore
with the choice @ = % the gluon propagator is given by

(PIAL (AT WIW) = 41,00 (x,y),  (10)

so that the Fourier transform w(k) has the meaning of the
gluon energy.

The calculation of the vacuum expectation value of the
Coulomb Hamiltonian in the state (9) proceeds in the same
way as in 3 + 1-dimensions and we just quote the result.
We find for the kinetic energy

N, [w(k) — x()]

21
_ Ve~ 50 2 L) ~ XUOT
E == 5(O)fdk o

the potential energy

2 _ 2 2 _
E :NC4 15(2)(0)[612]( k +NC(NC 1)g25(2)(0)

b w(k) 16

d*kd*k! 1 (kk')
(2’7T)2 w(k)w(k/)< o k2k/2> (12)
and for the Coulomb energy
_ NeWE =1 o0y [ELREK (KK')?
E, 16 s (O)f o K"
dk — k') f(k — k')
(k — k')
(Lo~ W]~ [ol) — x>
wk)o (k') ’

where 6%(0) = V/(27)? with V = [d?x being the 2-
dimensional spatial volume. Furthermore the quantity

1 82Ing
,x) = — 14
X X) = = 1<5A,.ia(x)5Aila(x/)>q, (1

is referred to as “‘curvature” of the space of gauge orbits.
Introducing the ghost propagator by

d(—d?)

G = (W|(=9;D) ') = (=9?)! (15)

with d(k) being the ghost form factor, the curvature (14)
can be expressed as

_Nc [ d*q (,  (kq)*\d(k — q)d(q)
o= (277)2(1 k2q2> k—q?

Finally, f(k) denotes the Coulomb form factor, which is

(16)
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defined by
(Pl(=0,0,)" (=0%)(=9,;D,)"'|¥) = G(=9*)fG. (17)

A few comments are here in order: Within our variational
ansatz (9) for the vacuum wave functional , the Faddeev-
Popov determinant drops out from the integration measure
in the matrix elements of operators not containing the
momentum operator. This is an advantage of our ansatz.
Furthermore for expectation values within the Gaussian
wave functional Wick’s theorem holds exactly. As a con-
sequence expectation values of polynomials of the gauge
field can be exactly evaluated by Wick’s theorem while
further approximations are necessary for the expectation
values of nonpolynomial functions like the Faddeev-Popov
determinant or its derivative occurring in the kinetic energy
and in the Coulomb term. As a consequence, further ap-
proximations have to be introduced in the evaluation of the
expectation values of these operators. In deriving the above
expressions for the expectation value of the Yang-Mills
Hamiltonian we have confined ourselves to two loop order.
This implies that even within our ansatz for the vacuum
wave functional Eqgs. (11) and (13) are approximate while
Eq. (12) is exact. Minimization of the energy density (E; +
E,+E) /V results in the so-called gap equation, which
can be cast into the form of a dispersion relation of a
relativistic particle (gluon)

wk)> =k + y(k)>+1,(k) + 19, (18)

Here 19 is an irrelevant uv-divergent constant which arises
from the gluon tadpole. The latter vanishes in dimensional
regularization. Furthermore, the quantity 7,(k), which
arises from the expectation value of the Coulomb term
(13), can be expressed as

1) = e [ Pa_(ka) dk — q2fk —q)

’ 2 J @) k¢ (k — q)?

[w(@) — x(@) + x(K)] — o(k)?
w(q) :

19)

Both integrals 1,,(k) and 19 are uv-divergent. By adding
appropriate counterterms to the Hamiltonian, one can re-
move the divergent parts of these integrals [21].
Furthermore for dimensional reasons the linearly uv-
diverging constant 19 ~ A (A-cutoff) does not have a finite
part and is thus completely removed after renormalization.
In principle G or d, y, and f are defined uniquely once the
trial wave functional W(A) is fixed. However, the exact
evaluation of these expectation values (even with the above
chosen trial wave function) is not feasible and one has to
resort to further approximations. We shall adopt here the
same approximation as in Ref. [3] used in 3 + 1 dimen-
sions, approximating the full ghost-gluon vertex by its bare
one. This approximation has been justified in Landau
gauge [22] and, in fact, has received recently strong sup-
port by lattice calculations [23]. In this approximation the
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ghost and Coulomb form factors satisfy the following
Dyson-Schwinger equations:

ak) =1 —I,(k), (20)

_Nc [ d’q [, (kq)?*\ dk—q)
10 =5 [ (1 v = ot @
f&) =1+ I4(k), (22)

NC d2q
I,(k)=—
i 2 (2w>2<

3 (kq)2> dk — q)*f(k — q)
k’q*) (k- q)w(q)
(23)

As described in Ref. [3] to the considered order (bare
ghost-gluon vertex and 2-loop order in energy), the
Coulomb form factor can be put f(k) = 1.

In D = 2 + 1 the coupling constant g has the dimension
of the square root the momentum and it is convenient to use
the coupling constant to rescale all quantities by suitable
powers of g to render them dimensionless. The coupling
constant then disappears from the Dyson-Schwinger equa-
tions. Denoting the dimensionless quantities by a bar, we
have

_ k _

k=—, w(k) = ,

g ® g g

b = £(g0.

(24)

i) = 48R

In the following we will skip the bar and, unless stated
otherwise, all quantities will be understood as the dimen-
sionless ones.

In Sec. IV A we prove that for any solution of the coupled
Dyson-Schwinger equations (18) and (20) in D =2 + 1
the ghost form factor and the gluon energy are infrared
divergent

d'k=0)=0 (25)

o '(k—0)=0. (26)

The first relation is the so-called horizon condition which
had to be imposed ad hoc in D =3 + 1 but is a strict
consequence of the Dyson-Schwinger equations in D =
2 + 1. The second condition (26) signals gluon confine-
ment. This is again different from D = 3 + 1 where the
Dyson-Schwinger equations (DSE) allow for solutions
with infrared finite w(k) when the curvature y(k) is
ignored.

III. ULTRAVIOLET BEHAVIOR AND
RENORMALIZATION

In the following we will investigate the ultraviolet be-
havior of the solutions of the Dyson-Schwinger equations
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and perform their renormalization, thereby following the
procedure presented in Refs. [3,15] for the D =
3 + 1-dimensional case. Since most of the considerations
will parallel the 3 + 1-dimensional case, we will be very
brief.

For the uv-analysis it is sufficient to use the angular
approximation

h(lk — ql) = h(k)®(k — q) + h(q)®(g — k). (27)

The angular integral in the ghost Dyson-Schwinger equa-
tion and also in the curvature then becomes trivial

2™ dpsin’¢ = 7 and we obtain for the corresponding
momentum integrals:

w0 =2 Lot [ auta] @

_NC d(k) [k A d(Q)z
X(k)—g[ﬁ ﬁ dqqd(q) + [k qu} (29)

The asymptotic analysis of the Dyson-Schwinger equa-
tions is simplified by taking the derivative with respect to

the external momentum:

Nc 1 d(k)7 (¥ q
I(k)y=——|d (k) —2—= dg—— 30
0= ge | aw 257 [fag s 6o

Nc 1 d(k)

(k) = — —| d'(k) — dqqd 31
v =gl 297 [ dagda). G
As we will see below, the remaining momentum integrals

are ultraviolet convergent.” The derivative of the ghost
Dyson-Schwinger equation (20) yields

, N¢ R(k) N d(k) R(k)
o= R v o
where
R(k 33
W= [ e =
and the derivative of the curvature (16) yields
, NC Ir, d(k)
X =2 [d (0 -25 }S(k) (34)
where
S(k) = ﬁ) " dgqd(q). (35)

We now discuss the ultraviolet behavior of the relevant
quantities.

A. Ultraviolet behavior

For large momenta the k* term on the right-hand side of
the gap equation (18) dominates [3] and the gluon energy
(k) behaves like

The ghost integral 1,(k) is uv-finite as will be shown later.
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w(k) — Vi,

in accordance with asymptotic freedom. This behavior will
in fact be confirmed by the numerical solutions presented
in Sec. VI. Assuming (36), we will investigate the uv-
behavior of the remaining quantities: the ghost form factor
d(k), the curvature y(k), and the Coulomb form factor f(k).

For large k — oo the k-dependence of the integral (33) is
independent of the infrared behavior of w(k) and with
Eq. (36) we find

k— o (36)

R(k) = k, k— oo (37

and the derivative of the ghost DSE (32) reduces to

d'(k)T, N dk)?
ﬂw[lé? k}

_ Nc d(k)
T e (38)

To solve this equation, let us assume for the moment
%/‘)2 < 1 for k — oo. Then the differential equation (38)
reduces to

d'(k) _ _Nc d(k)
= , 39
O 5%

whose solution is given by
1

d(k) = ———, (40)

1 _Nel

2 8 k

where c is an integration constant. Indeed, for large k — oo
this solution satisfies %")2 <« 1. To determine the integra-
tion constant ¢, we consider the asymptotic behavior of the
integral 1;(k) (28) for k — co, where w(k) =~ k and d(k) =
c. This yields

47k

=il fiaasia e L )
@)

Since I;(k — o) — 0, we obtain from the DSE of the
ghost form factor d(k — c0) — 1, which fixes the integra-
tion constant in Eq. (40) to ¢ = 1, so that the asymptotic
form of the ghost form factor becomes

1
dk) = ——,
-

N(jC

k — oo. (42)

=

Accordingly we find for the unscaled form factor® d(k) =
gd(gi;) the asymptotic form

d(k) = ——,

87 &

From the Swift relation [3,24]

k — oo. (43)

*Below we denote the dimensionful (unscaled) quantities by a
tilde.”
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o 1 0 1
fo ===, (44)
g ag d(k)
we find for the Coulomb form factor
1
flk) = ———==d(k), k — oo, (45)
%

which obviously has the same asymptotic form as the ghost
form factor.

With the asymptotic behavior of the ghost (42), we find
for the derivative of the curvature (34)

Ne 1
)= —2€ " sk), k- 46
W) = =€ 550 ® o)
and for the integral S(k) (35)
k2
S(k—>00)—>?, 47)
so that
Ne 1
) — 'C = - 4
X' (k) . k — oo, (48)
i.e.
k
(k) ~ ln<—>, k— oo, (49)
o
Accordingly, the ratio
/\/(k) 1 k k—o00
A8 (2 =0 50
iR ) e

vanishes in the ultraviolet implying that the space of gauge
orbits becomes asymptotically flat in accordance with
asymptotic freedom.

B. Renormalization

With the above obtained uv-behavior [see Eqs. (36),
(42), and (45)], the integrals 1,(k) (21) and I(k) (23) are
uv-convergent. Thus, contrary to the D = 3 + 1 dimen-
sional case in D =2 + 1, the DSE for the ghost and
Coulomb form factors do not need renormalization. What
needs, however, renormalization is the curvature y(k) and
the gap equation. The renormalization of these two equa-
tions is carried out in exactly the same way as described in
Refs. [3,15], i.e. basically by subtracting these equations at
a renormalization point w, which leads to the renormalized
equations [15]

x(k) = x(u) + x(k), x(k) =1,(k) = I,(n) (51)

w2(k) = (k) = k> + & + AIS (k) + 2x(k)(€
+ A1V (), (52)
where we have introduced the abbreviation

fo= () —p®  E=x(w+10w  (53)

PHYSICAL REVIEW D 77, 085023 (2008)

AID (k) = 13 (k) — 13 () (54)
with
(n) _Ne (A dPq oo dk— @ f(k —q)
e n =3 [ Gpker TG
Lo@ -~ x@l —[o®k) —x®0F o
w(q)

Here y(u), w(w), and & have to be considered as finite
renormalization constant. Furthermore in D =2+ 1
where the coupling constant is dimensionful, there is thus
no arbitrary scale and u has to be considered as renormal-
ization parameter as well. Note, since the ghost equation
needs no renormalization, there are only four renormaliza-
tion constants w, &, x(u), and & and furthermore, the
solutions of the coupled ghost and gluon DSEs, Egs. (20)
and (52), do not depend on y(u).* [Note the integrals (55)
depend only on the finite quantity y(k) but not on the
renormalization constant y(w) [15].] Therefore the
coupled DSEs contain only three independent renormal-
ization parameters w, &,, and €. One of the three indepen-
dent renormalization constants, &, is used to implement
the horizon condition d~!(k — 0) = 0. As will be shown
in the next section any consistent solution of the coupled
DSEs does satisfy this condition. The remaining two re-
normalization constants u and £ can be chosen at will and
determines the infrared limit of the wave functional as will
be shown at the end of the next section [see Eq. (88)].

IV. ANALYTIC RESULTS

The Dyson-Schwinger equations arising from the varia-
tional solution of the Schrodinger equation have in princi-
ple the same form in D=2+1 as in D=3+1
dimensions. However, due to the fact that the 2 + 1 di-
mensional theory is super-renormalizable some rigorous
properties of the solution of the Schwinger-Dyson equa-
tions can be derived which are not accessible in 3 + 1
dimensions. Below we shall derive some rigorous proper-
ties of the solutions of the DSE and discuss their physical
implications.

A. General results

Consider the ghost DSE (20). Since the integral I,(k)
(21)is convergentin D = 2 + 1 (unlike in D = 3 + 1), the
ghost DSE needs no renormalization and thus no renor-
malization constant is introduced by this equation. It is
then not difficult to prove the following statement.

If d(k) is a continuous function in k € [0, 00), it satisfies

dk) = 1. (56)

“Some observables like the 't Hooft loop (in D = 3 + 1) do,
however, depend on y(w) [15].
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We prove the statement by reductio ad absurdum:
Assume d(k) < 0 for all k € [0, ). Then, since w(k) >
0 by normalizability of the wave functional it follows from
(21) 1,(k) = 0 and thus from the ghost DSE (20)

1
) d(k) >0 57
in contradiction to the assumption. Hence, d(k) cannot be
negative everywhere. Assume now there exists some mo-
mentum k' for which d(k’) < 0. Since d(k) as a solution of
the DSE can be assumed to be continuous and as shown
above is not everywhere negative, it must have at least one
zero, say kg, i.e. d(kg) = 0, where d(k) changes sign. By
the ghost DSE, Eq. (20) 7,(k) has to be singular at k — k
and change sign at k = k;, too. However, changing inte-
gration variable in the (convergent) integral I;(k) (21) we
find

Ne [ &
M%i%@:§/@£4l

d(ky — q)
(ko — q9)*w(q — €kg)

(ko (g = Eko))2>
ké(q + Ek0)2

(58)

and by the positivity of w(k), I,(ky + €ky), and 1,;(ky —
€ky) have the same sign in contradiction to the above
assumption. Thus, d(k) = 0 holds for all k. Then from
Eq. (21) follows I,(k) = 0 and by the ghost DSE (20)
d(k) = (1 — I,(k))"! = 1. Note, that (56) is also in agree-
ment with the asymptotic uv-behavior found in the pre-
vious section.

Assume now that the ghost form factor is bounded from
above, i.e. there exist some upperbound M > 1 such that
d(k) = M for V k € [0, 00). According to (56) d(k) is then
restricted to the interval 1 < d(k) = M and the integrand
in y(k) (16) is positive definite. Therefore, replacing d(k)
in the curvature (16) by its upper and lower bound, we
obtain an upper and lower bound to y(k):

M?*I = x(k) =1,

Ne (A d?
[=-¢ 4 (4
2 (2m)?
where we have introduced a momentum cutoff A since the

integral is uv-divergent. The angular integral can be done
analytically’

_ (kq)? 1 (59
V&)&—qV

>

q
, k

=7~

=k
—, ©

w sin?¢ T
f dp 55— =5
0 k*+ q= — 2kqgcosep 2

yielding

|

q

>Note that this exact relation is also reproduced by the angular
approximation.
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N¢ k T A ™ NcT1 A
1= ["dgg—=+ | dgg—|==C|Z+In=|
SWZU) e ]k ‘”qz} 877[2 “k}
(61)

Inserting this result into Eq. (59), we find for y(k) =
x(k) — x(u) the bounds

— &Mz lnﬁ = yk) = — Ne lnﬁ. (62)
87 M 87 W

Note that this relation holds for all k. In particular, this
relation shows that y(k) is infrared divergent

k
x(k) ~ —In—, k— 0. (63)
M

For an infrared divergent y(k), the gap equation (51)
reduces in the infrared to (see also Ref. [15])

limo (k) = x(k) = &, (64)

where ¢ is the renormalization constant introduced in
Eq. (53). Equation (64) shows that w(k) has the same
infrared behavior as y(k). Thus, if the ghost form factor
is bounded 1 = d(k) = M, the gluon energy is logarithmi-
cally infrared divergent w(k) ~ — lnf. It is now not diffi-
cult to show that with such an infrared behavior of w(k) the
ghost Dyson-Schwinger equation does not possess a solu-
tion. To show this let us assume that there exist an € >0
such that

mmsa(«%) V k€, e) 65)

with some positive constant a, which includes the case
(63). Consider the integral in the ghost Dyson-Schwinger
equation (21):

_Ne (o=, a (7, g0, Ak
La(k) Mlﬁ‘”mmj;d“m¢ (k —q)?*
(66)

Since d(k) = 1, see Eq. (56), we obtain the following
estimate:

NC 00 q f277' . 1
1,(k) = — dg—— desin“g + ——
WD =gm ), g Jy T g
NC € q j‘ZTr . 5 1
== dg—— desin“g - —. (67
87 Jo “atg) Jo 1O m g @

The angular integral can be done exactly using Eq. (60)
resulting in

Nc¢ k q €
L =2 [Tag—L- 7+ [“4
=g [aaglsm |,
_ Nc (e 1

“ 87 )i gl

4 T
To(g) qz}
(68)

Inserting here Eq. (65) we obtain
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k
N¢ (e 1 N¢ In; 1o
Lk==C [ 4 = In|—% | S .
a(k) Swﬂ Tqa-mD) " 8wa " |me| "
(69)
Thus we find
1L (k) = oo, (70)

and from the ghost Dyson-Schwinger equation (20) fol-
lows d(k — 0) = 0, which is in contradiction to the rigor-
ous result (56). Thus, we have shown that the coupled ghost
and gluon Dyson-Schwinger equations do not allow for a
ghost form factor which is bounded from above. We now
show that ghost form factor d(k) is a monotonously de-
creasing function of £, i.e.

d'(k)<0 (71)

for all finite k.

As shown above in the ultraviolet analysis &’ (k) < 0 for
k — oo. Assume now, as we lower k, at some finite k = k),
d'(k = ko) = 0. Then from the Eq. (30) follows I/;(ky) < 0,
which is in contradiction to the ghost DSE from which
follows

dk
20 I (k). (72)
Thus (71) holds in the whole momentum range. Since (56)
d(k) = 1 and d(k) is monotonously decreasing in the whole
momentum range k = 0 and furthermore d(k) must not be
bounded from above, it follows that d(k) is infrared diver-
gent, i.e.

d ' (k=0)=0, (73)

which is the horizon condition.

This is different from the 3 + 1 dimensional case where
solutions to the Dyson-Schwinger equation exist with an
infrared finite ghost form factor.

B. Infrared analysis

The DSE can be solved analytically in the infrared
completely analogous to the D =3 + 1 dimensional
case. For this purpose we make the following power ansa-
tze in the infrared:

A B C
0l =z dB=5  xO=1. T4
We will first resort to the angular approximation used
already in the uv-analysis. Later on we will present the
results obtained without resorting to the angular
approximation.
With the infrared ansitze (74), we find for the integrals

defined by Egs. (33) and (35)
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1 1 B
R(k— 0) = — ——k*>*¢, Stk— 0) = ——k*B.
( ) Al+ a ( ) 1—-8
(75)
From the derivative of the ghost DSE (72) we obtain
A Ne B+2 _
=t & = ja2B 76
B2 87 Bla+2) (76)
which implies
a=2p a7
and
N, +2
A c B (78)

B 8m28(B+1)
In an analogous fashion we obtain from the derivative of
the curvature x/(k) = I’ (k)
N +2
€ _Ne B—kV*ZE (79)
B> 8w y(2—p)

resulting in
Yy =28 (80)
and
C _Ne B+2
B 8mw2BR2-p)
From Eqgs. (77) and (80) follows
a=1vy =20, (82)

showing that w(k) and y(k) have the same infrared expo-
nents just like in the D =3+ 1 dimensional case
(Ref. [3]). In fact, « = 7y follows already from the infrared
limit of the gap equation (64). From this equation in
addition follows that not only the infrared exponents but
also the prefactors of both quantities have to coincide, i.e.

81)

A=_C. (83)
Dividing Eq. (78) by (81) and using (82), we obtain
A_Q2-p
— = 84
c (1+p) (9
andA =C
B =3 a=y=1 (85)

As we will see in Sec. VI, this infrared behavior yields a
linearly rising static color Coulomb potential provided we
approximate the Coulomb form factor f(k) by its leading
term f(k — 0) = 1 which is correct to the order considered
in the present paper.

The infrared analysis of the Dyson-Schwinger equations
can be also carried out without resorting to the angular
approximation. In fact, in Ref. [11] the infrared analysis
was carried out for arbitrary dimensions. In that case one
finds from the ghost DSE the following sum rule for the
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infrared exponents:
a=2B+d—-2 (86)

due to the nonrenormalization of the ghost-gluon vertex.
As shown in Ref. [11], this sum rule guarantees that y(x)
and w(k) have the same infrared exponent @ = y as al-
ready found above in the angular approximation, and in
agreement with the infrared limit of the gap equation (64).
Equation (64) together with the ghost DSE in the infrared
limit can be solved analytically for the infrared exponents
yielding [11]

B=04 ie, a=1y=08, (87)

which is somewhat smaller than the infrared exponent
found above in the angular approximation (85).

The above given infrared analysis is independent of the
so far unfixed renormalization constants & and y(w).
[Recall that the coupled set of DSEs (20), (51), and (52)
do not depend on y(u).] From Eq. (64) we obtain (y(k) =

X (k) + x ()

lim(w(k) = x(k)) = ¢, c=§&—x(pw)  (83)
If one uses the infrared expressions for w(k), d(k), x(k)
[and f(k) = 1] defined by Eq. (74), one finds that the
energy density is minimized for ¢ = 0 (see Ref. [15]).
Using the representation [4]

detJ(a) = exp<— /A,\/A), (89)

which is correct to the order considered in the present
paper, ¢ = 0 implies an infrared limit of the wave func-
tional

Y(A) = constl—[\lf(k), Y(k—0)=1. (90)
k

This wave functional describes a stochastic vacuum, where
the infrared modes of the gauge field are completely
unconstrained.

V. NUMERICAL RESULTS

The coupled DSEs (16), (20), (22), and (52) were solved
numerically in the whole momentum range as described in
Refs. [3,12]. The renormalization constant &, was fixed by
implementing the horizon condition d~'(k =0) = 0.
Furthermore, like in the D = 3 + 1 dimensional case in
order to stay consistently in 1-loop approximation we have
solved the equation for the Coulomb form factor f(k) by
assuming a bare ghost form factor d(k) = 1 in the DSE for
f(k).

The numerical results obtained are presented in Figs. 1
and 2. Figure 1 shows the gluon energy w(k) and the
curvature y(k). Both quantities are infrared divergent and
approach each other for k — 0 in agreement with our
infrared analysis given in the previous section. Figure 2

PHYSICAL REVIEW D 77, 085023 (2008)

1000
100 ¢ E
10 ¢ E
1 L .
) — ok/g’
o1 L g’ | ]
0.001 0.01 0.1 1 10 100 1000
k/g2
FIG. 1. The gluon energy w(k) and the curvature y(k) obtained

from the numerical solution of the DSEs for ¢ = 1.0g% and u =
0.322g2.

shows the ghost and the Coulomb form factor. The ghost
form factor is of course infrared divergent, since as shown
in Sec. 1V, the self-consistent solution of the Dyson-
Schwinger equations exists only for infrared divergent
ghost form factors. The Coulomb form factor is infrared
finite and approaches asymptotically for k — oo the ghost
form factor.

In the following we investigate the dependence of the
self-consistent solutions of the Dyson-Schwinger equa-
tions on the remaining renormalization constants ¢ and
. In Figs. 3 and 4 we show the dependence of w(k) and
d(k) on the choice of the renormalization point w. Finally
in Figs. 5 and 6 we show the changes of w (k) and d(k) with
respect to variation of the renormalization constant £ in the
interval [0.5, 1.5]g? for the choice u = 0.322g>. As can be
seen from all these figures, variation of the renormalization

— kg
0 ¢

10 | 7

1 .

0.001 0.01 0.1 1 10 100 1000

k/g2

FIG. 2. The ghost form factor d(k) and the Coulomb form
factor f(k) for & = 1.0g2 and u = 0.322g2.
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1000

100 | 1

2L 10F .
=) S

3
3 . w=0.101 ¢
— w=032¢
0.1} - u=1056g"| |
0.001 0.1 0.1 1 10 100 1000

k/g2

FIG. 3. The gluon energy w(k) for £ = 1.0g>%.

parameters in the considered interval changes the behavior
of the solutions only in the intermediate momentum range
while the solutions do not change in the infrared and the
ultraviolet momentum regime.

Figure 7 shows the static color Coulomb potential de-

fined by [3]
d*k . &’k dk*fk) .
V() = f Gy VM = [ 5 7)1; k) i

d(k)zf (k)
o f ak T G,

oD

where J;,(k) is the (ordinary) zeroth order Bessel function.
For the infrared behavior obtained in the angular approxi-
mation 8 = 1/2, see Eq. (74), V(k) ~ 1/k3, which leads to
a strictly linearly rising quark potential at large distances,
while for k — oo, where d(k — o0) = f(k— o) =1 the
potential behaves as V(k) ~ 1/k?> and we obtain the famil-
iar Coulomb potential V(r) ~ Inr/ryin D = 2 + 1 dimen-

- u=0.101¢g"
— n=032¢
- ;1:],056g2
£
=
=1
0.001 0.01 0.1 1 10 100 1000

k/g2

FIG. 4. The ghost form factor d(k) for £ = 1.0g>.
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FIG. 5. The gluon energy w(k) for u = 0.322g2.

sions. The infrared analysis carried out without resorting to
the angular approximation yields V(k) ~ 1/k*%, k— 0. A
careful analysis of our numerical solutions (obtained with-
out the angular approximation) yields V(k) ~ 1/k*°, k —
0, which is in between the analytical results obtained with
and without the angular approximation. In Figs. 8—10, we
compare our numerical results for the ghost form factor
d(k), the gluon energy w(k), and the form factor of the
Coulomb potential d?(k)f(k) with the lattice data. It has
been shown by solving the Dyson-Schwinger equation in
Landau gauge on the torus [16,17], that very large lattices
are required to capture the correct infrared behavior of the
Green’s functions of the continuum theory. While these
lattice sizes can be reached in 3 dimensions, they are out of
reach in D = 4. The lattice calculations performed in
Ref. [9] in 2 + 1 dimensions used lattices of the size 64°,
which should be sufficient to extract the correct infrared
limit of the Greens functions. Our numerical results ob-
tained by solving the DSE in Coulomb gauge are in quite
satisfactory agreement with the lattice data. In particular,

- £=05¢]

- E=075¢
— &=10¢’
—-- E=125g 1
-- E=15g

0.001 0.01 0.1 1 10 100 1000

FIG. 6. The ghost form factor d(k) for u = 0.322g2.
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4

V-V / g

2 ! ! !
0 5 10 15 20

I‘gz

FIG. 7. The static non-Abelian Coulomb potential for ¢ =
1.0g% and p = 0.322g2.

the asymptotic ultraviolet and infrared behaviors are quite
well reproduced.

VI. SUMMARY AND CONCLUSIONS

We have performed a variational solution of the Yang-
Mills Schrodinger equation in Coulomb gauge in D = 2 +
1. The Dyson-Schwinger equations resulting from the
minimization of the vacuum energy density have been
solved analytically in the ultraviolet and in the infrared
and in addition some rigorous results of their properties
have been derived. In particular, we have shown that the

5 T T T T T T

B=3.5 .
o B=4.0
p=4.5 .
B=5.0
B=6.0
B=7.0

variational solution

d(k)/g

k/g2

FIG. 8 (color online). Comparison of the ghost form factor
d(k) obtained from the numerical solution of the DSEs for & =
1.0g% and u = 0.322g? with the lattice data obtained in [9].
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40 T T T T T T T T T T T

o PB=3.5 ]

[ e A
B=4.5

30 Er a PB=5.0 —

| < B=6.0 |
B=7.0

'% — variational solution R

d*f(k)

FIG. 10 (color online). The Fourier transform of the static
potential obtained from the numerical solution of the DSEs for
£ =1.0g% and u = 0.322g2 and the corresponding lattice data
obtained in [9].

ghost form factor as well as the gluon energy have to be
infrared divergent, which is different from the 3 + 1 di-
mensional case where solutions of the DSEs exist with
these quantities being infrared finite [21]. The static non-

6 T T T T T T

L | o B=3.5,68 :

sL| ° B=40.68 i
B=4.5, 68"
s B=5.0,68

41 < B=6.0,68 ]

B B=7.0, 68 i

2 5L B=8.0, 483 N
3 + B=9.0, 48

variational solution & ]

k/g2

FIG. 9 (color online). The gluon energy w(k) obtained from
the numerical solutions of the DSEs for ¢ = 1.0g? and u =
0.322g? and the corresponding lattice data obtained in [9].
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Abelian Coulomb potential resulting from our numerical
solution of the DSE is almost linearly rising. Our numeri-
cal results are in satisfactory agreement with the existing
lattice data. The lattice calculations performed in D = 3 +
1 so far use too small lattices to give reliable results for the
continuum limit, in particular, on the infrared properties of
the various Green’s functions [16,17].
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