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We consider the entanglement entropy for a subsystem in dþ 1 dimensional SUðNÞ lattice gauge

theory. The 1þ 1 gauge theory is treated exactly and shows trivial behavior. Gauge theories in higher

dimensions are treated within Migdal-Kadanoff approximation. We consider the gauge theory in the

confinement phase. We demonstrate the existence of a nonanalytical change from the short distance to

long distance form in the entanglement entropy in such systems (d > 2) reminiscent of phase transition.

The transition is manifested in nontrivial change in the renormalization group flow of character expansion

coefficients defining the partition function.
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I. INTRODUCTION

Interest in the study of entanglement entropy has a
relatively long history in quantum field theory. The early
motivation was due to the connection with black hole
physics. General properties of the entanglement entropy,
such as its dependence only on the surface, were demon-
strated for a system of oscillators and massless noninter-
acting scalar field theory [1]. Later the entanglement
entropy was studied in gravity duals of confining large
Nc gauge theories [2] using the AdS/CFT approach of
[3]. In this work the d dimensional space was divided
into two complementary regions A and �A by two imaginary
d� 1 dimensional hypersurfaces placed a distance l apart
along one of the space directions:

A ¼ Rd�1 � Il; �A ¼ Rd�1 � ðR� IlÞ; (1)

where Il is a line segment of length l. The authors studied
the entanglement entropy as a function of l and found that
it exhibits a nonanalytical change in behavior at l ¼ l�c
reminiscent of a phase transition [4].

In the present work we aim to prove that this is a general
scenario for SUðNÞ gauge theories (at arbitrary N) at
temperatures corresponding to the confinement phase.
We consider a dþ 1 dimensional gauge theory at finite
temperature T. The zero temperature system is recovered
as the limit T ! 0. We consider the same geometry of the
entangled region as in [2], see Eq. (1).

If we are given the density matrix for such a system, we
can integrate out all degrees of freedom associated with
region �A. The resulting density matrix can be used to
construct the entanglement entropy

�A ¼ Tr �A�; SA ¼ �TrA�A log�A; (2)

which is the entropy as seen by an observer with no access
to the degrees of freedom in �A.

We will use a method of gluing replicas of the system
under consideration into a multisheet Riemann surface,
which was used in an extensive treatment of 2D CFT in
[6,7]. We consider n replicas of a system after the trace
over region �A has been taken (for this the boundaries in
time direction of this region were identified) [8]. Each of
these replicas is glued to another along the boundary of
region A normal to the time direction. The first replica’s
upper boundary (coordinate t ¼ 1=T) is glued to the lower
boundary (coordinate t ¼ 0) of the second replica and so
on. The upper boundary of the last nth replica is glued to
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FIG. 1. Zn for 1þ 1 dimensional gauge theory.*vel@theory.uchicago.edu

PHYSICAL REVIEW D 77, 085021 (2008)

1550-7998=2008=77(8)=085021(9) 085021-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.085021


the lowest boundary of the first replica, thus closing the
system. For illustration of such gluing in 1þ 1 and 2þ 1
dimensional theories, see Figs. 1 and 2. One can observe
that in such a system

Tr�n
A ¼ ZnðAÞ

Zn ; (3)

where Zn is the partition function of the glued system and Z
is the standard partition function of the original system
(Z ¼ Z1).

This approach allows one to construct the entanglement
entropy

SA ¼ �lim
n!1

@

@n
Tr�n

A ¼ �lim
n!1

@

@n

ZnðAÞ
Zn : (4)

II. SUðNÞ GAUGE THEORY IN dþ 1 DIMENSIONS

The partition function for SUðNÞ lattice gauge theory is

Z ¼
Z Y

l

dUl

Y
p

e�Sp ; (5)

where the action is Sp � SðUpÞ ¼ ��=ð2NÞTrUp þ H:c:,

� ¼ 2N=g2 is the lattice inverse coupling, and the pla-
quette variable is the ordered product of gauge fields which
live on the links constituting the plaquette Up ¼ Q

l2@pUl.

The gauge invariant action is a class function and therefore
it can be expanded in group characters

e�Sp ¼ X
r

Frdr�rðUpÞ � F0

�
1þ X

r�0

crdr�rðUpÞ
�
; (6)

where the first sum runs over all irreducible representa-
tions, while the second sum excludes the trivial r ¼ 0
representation. For general SUðNÞ group r is a set of
indices; dr is the dimension of the representation, cr ¼
Fr=F0 < 1 and Fr are the coefficients of expansion

Fr ¼
Z

dUe�SðUÞ 1
dr

��
rðUÞ: (7)

A. d ¼ 1 gauge theory

The 2-dimensional SUðNÞ gauge theory is exactly solv-
able, see [9] for an overview and large N treatment of zero
temperature UðNÞ gauge theory. It is possible to treat the
zero temperature gauge theory in this study in an analogous
fashion; however, wewould like to consider a more general
case of a gauge theory at finite temperature T and therefore
adopt a different approach. Finite temperature gauge the-
ory in 2 dimensions normally is formulated on a R� S1

surface periodic in time direction with period 1=T. For
practical reasons we consider a finite system in space
direction. The corresponding discretized theory is formu-
lated on a Nr � Nt lattice, with space-time cutoff a and
aNt ¼ 1=T and aNr ¼ R.
At this point it is instructive to consider how integration

on the surface is performed. Consider an elementary part of
a surface bounded by a single loop [10]. Its contribution to
the resulting partition function [11] is

fðfag;@AÞ � 1þX
i�0

diai�ið@AÞ; (8)

where @A is a product of link variables along the surface
perimeter and the function is defined when all ai coeffi-
cients are specified. The expression for a junction of two
surface elements A and B with a common boundary A \ B
is

fðfcg; @ðA [ BÞÞ ¼
Z

dðA \ BÞfðfag;@AÞfðfbg; @BÞ
¼ 1þX

i�0

dici�ið@ðA [ BÞÞ;

ci ¼ aibi: (9)

The integration over the common boundary U ¼ A \ B is
performed using the character property:

Z
dU�rðVUÞ�sðUyWÞ ¼ 1

dr
�r;s�rðVWÞ: (10)

In other words the junction of the surfaces in the space of
character coefficients is represented by an ordinary
product.
For any 2-dimensional surface we can expand the parti-

tion function (5) in characters according to (6) and then

1/T

. . .
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FIG. 2. Zn for 2þ 1 dimensional theory.

ALEXANDER VELYTSKY PHYSICAL REVIEW D 77, 085021 (2008)

085021-2



integrate all the internal plaquettes using (9). The resulting
expression for the partition function is

Z ¼
Z Y

l2@A

dUl

X
r

FA
r dr�rðU@AÞ; (11)

where A ¼ NrNt is the area of the total surface in plaquette
units (number of tiling plaquettes) and @A is the contour
enclosing the surface.

The multisheet n-replica partition function Zn for 2D
model is shown in Fig. 1. Remember that the links of time
boundary of region �A for each replica (bold lines) are
identified and so are the links from region A that form
the time boundary of Zn (dotted lines). Being subjected to
the same treatment as Z, the partition function of the glued
system Zn will result in the same expression (11), but with
corresponding surface area An ¼ nA ¼ nNrNt and pe-
rimeter @An.

To perform the perimeter integration, first we choose
free boundary condition (b.c.) in the spatial direction. The
invariance of the group integration (Hurwitz/Haar mea-
sure) allows one to manipulate the link variables in the
perimeter integral, so that the final integration is performed
over a single plaquette perimeter (cf. Gross-Witten one
plaquette integral) in both @A and @An integrations.
Specifically we absorb the spacelike links that separate
different replicas in Zn (time boundary of region �A) so
that the system becomes identical to a simple plaquette
with free spatial b.c.

Because of periodicity in time direction the ordered
contour product of gauge fields generally has the form

U@A ¼ U0;1̂V1;0̂U
y
0;1̂
Vy
2;0̂
: (12)

HereUn;î denotes the gauge field at coordinate n in î ¼ 0, 1

direction, where 0̂ is chosen to be the time direction.
We use another property of character integration

Z
dU0;1̂�rðU0;1̂V1;0̂U

y
0;1̂
Vy
2;0̂
Þ ¼ 1

dr
�rðV1;0̂Þ�rðVy

2;0̂
Þ: (13)

The integral over the remaining two gauge variables
decouples and has support only for the trivial representa-
tion �0 ¼ 1. This leads to a simple result

Z ¼ FA
0 : (14)

The ratio of the partition functions is unity and the entan-
glement entropy is zero.

Next we consider a lattice periodic in the spatial direc-
tion which effectively mimics infinite spatial extent. The
perimeter integral for Z now is

Z
dV

Z
dU�rðUVUyVyÞ ¼

Z
dV

1

dr
�rðVÞ�rðVyÞ ¼ 1

dr
;

(15)

where in the last part we used the character orthonormality
property. The partition function becomes

Z ¼ X
r

FA
r : (16)

It is easy to check that the Zn perimeter integral results in

Z
dU1 . . . dUn

1

dr

�rðU1Þ . . .�rðUnÞ
dn�1
r

�rðUy
1 Þ . . .�rðUnyÞ
dn�1
r

¼ 1

d2n�1
r

: (17)

Note that this expression for n ¼ 1 correctly reproduces
the result of perimeter integration for Z, cf. (15). The
partition function ratio is

Zn

Zn
¼

P
r
FnA
r =d2n�2

r

ðP
r
FA
r Þn

¼
1þ P

r�0

cnAr =d2ðn�1Þ
r

ð1þ P
r�0

cAr Þn
: (18)

The entanglement entropy then is

SA ¼ � @

@n

Zn

Zn

��������n¼1
¼ log

�
1þ X

r�0

cAr

�
�

P
r�0

cAr logc
A
r =d

2
r

1þ P
r�0

cAr
:

(19)

Note that the series of character expansion coefficients is
vanishing (1> cr > csj if ds > dr) in such a way that the
sums in (18) are converging even for the smallest surface
A ¼ 1. One then can choose the surface area large enough
to guarantee that (19) is finite. We observe that this ex-
pression is l-independent [12] and valid for l > 0. The
entanglement entropy expression (19) is universal in the
sense that it does not depend on the initial lattice cutoff and
is dependent only on the physical dimensions of the sys-
tem. This is due to the fact that after a number of iterations
the coefficients are attracted to the renormalization group
(RG) trajectory independently of the starting point. It is
interesting that at l ¼ 0 Zn factors into n copies of Z so that
ratio Zn=Z

n ¼ 1 and SA ¼ 0. This is reminiscent of the 2-
dimensional theory end-point phase transition at tempera-
ture T ¼ 0.
If the surface area is very large, one can truncate the

series to obtain a manageable expression. This is in fact
similar to the strong coupling limit treatment. Using strong
coupling expansion in evaluation of Fr, we obtain an
approximate expression for the entanglement entropy
(19). In general, one can compute Fr term by term to any
desired order. For our purposes, however, it is enough to
keep the first two lowest order terms, which give the
coefficients for the trivial r ¼ 0 and fundamental r ¼ 1
representations

Fr �
Z

dU

�
1þ �

2N
½�1ðUÞ þ H:c:�

�
1

dr
��
rðUÞ: (20)

Thus F0 ¼ 1 and c1 ¼ F1 ¼ �=ð2N2Þ for N > 2 [note that
characters of SUð2Þ group are self-conjugate and therefore
c1 ¼ �=N2]. The entropy becomes
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SA ¼ log

�
1þ

�
�

2N2

�
A
�
� ð �

2N2ÞA logðð �
2N2ÞA=N2Þ

1þ ð �
2N2ÞA

�
�
�

2N2

�
A
�
1� log

��
�

2N2

�
A
=N2

��
: (21)

Simplifications can be also achieved in the large N limit.
The expressions for the first two representations Fr [inte-
grals (7)] are readily available [9]. In the Gross-Witten
paper notation F0 ¼ z and c1 ¼ !

F1 ¼ !z ¼ F0 �
8<
:
1=�; � � 2

1� �=4;
� � 2;

(22)

where � ¼ g2N is the ‘t Hooft coupling.
Again for very large surface area it is reasonable to

assume that the terms in this series are rapidly vanishing.
Therefore the entanglement entropy becomes

SA � !A

�
1� log

!A

N2

�
: (23)

Note that for the strong coupling ! ¼ 1=� ¼ �=ð2N2Þ,
and the expression for SA is equal to the strong coupling
expansion derived earlier (we can interchange strong cou-
pling and large N). It is no surprise that the entanglement
entropy is sensitive to the 2DGross-Witten phase transition
and is different for strong and weak coupling phases.

B. d � 2 gauge theory

Next we consider the dþ 1 dimensional theory, with
d � 2. This is a nontrivial theory which cannot be solved
exactly. We employ the Migdal-Kadanoff (MK) [13–15]
decimation procedure to solve this theory approximately.
For illustrative purposes we concentrate on 2þ 1 theory,
the generalization to higher dimensions is straightforward.

In general, for a finite temperature system one has to use
anisotropic lattice. The time and space direction bond
moving can be performed independently, cf. �- and �-
transformations for finite temperature gauge theory [16–
18]. To simplify the treatment we consider a vanishing
temperature system in a symmetric box.

The standard MK decimation procedure
(�-transformation) moves the internal plaquettes to the
hypersurfaces which constitute the elementary cells of
the resulting coarse lattice

e�SpðUÞ ¼
�X

r

FA
r dr�rðUÞ

�
�1�b

;

Fr ¼
Z

dUe��bSpðUÞ 1
dr

��
rðUÞ;

(24)

where the choice b ¼ 0 corresponds to Migdal, while b ¼
1 to Kadanoff prescription. Here � ¼ �d�2 is the factor by
which we strengthen the interaction on the resulting coarse
lattice in order to compensate for missing internal pla-
quettes, A ¼ �2 is the surface of the new elementary pla-

quette in units of fine lattice plaquettes (number of tiling
fine plaquettes), and � is the scaling factor of the RG
transformation and is equal to the number of plaquettes
(internal and from the surface) moved to the surface from
each of d� 2 directions.
It is known that the Kadanoff procedure results in the

overcompensation of the strength of the coupling thus
resulting in the upper bound for partition function, on the
other hand leaving the coupling on the surface unchanged
while dropping internal interactions � ¼ 1 results in the
lower bound on the partition function [19]

Zð� ¼ 1Þ � Z � Zð� ¼ �d�2Þ: (25)

This relation relies on translation invariance and therefore
does not hold for Zn; however, one may expect it to hold
approximately. As a result a generalization of the MK
procedure which preserves the partition function may be
possible to construct. Here, however, we use the standard
MK decimation.
After each step of decimation iteration the partition

function decomposes into the product of the coarse lattice
partition function and the integrated out bulk part, which
(after m step iteration) is

Ym
j¼0

F0ðjÞj�j=�jd
: (26)

Significant simplification can be achieved if we carry out
decimations for Zn and Z in exactly the same manner. As a
result of equal volumes, the bulk contributions in Zn and
Zn are identical and cancel out in their ratio at each step.
We start with a symmetric dþ 1 dimensional decima-

tion [�-transformation (24)] in Z and Zn, see Fig. 2. Note
that there are periodicity conditions in the t-direction for
each �A part of n-replicas (bold links) and for the links of
time boundary of the glued system (Zn) belonging to A
(dotted links). The decimation should be altered when the
lattice spacing becomes equal to l (the smallest scale in the
problem). At this point the l-like plaquettes (directed along
l) inside the slab of thickness l (extending through all n
replicas) have to be treated differently. These plaquettes
can be decimated in the remaining directions, very much
like timelike plaquettes in the finite temperature gauge
theory treatment. Such transformations are normally re-
ferred as �-transformations, for them the decimation pre-
scription (24) is modified:

e�Sp;lðUÞ ¼
�X

r

F�
r dr�rðUÞ

�
�1�b

;

Fr ¼
Z

dUe��bSp;lðUÞ 1
dr

��
rðUÞ:

(27)

We still can move plaquettes in the d� 2 direction but the
tiling is done with � plaquettes. All the other plaquettes are
unaffected by this change and are decimated according to
the standard (�-transformation) procedure.
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In Appendix Awe consider a gauge theory formulated in
a box R3. This system will be the building block for
construction of expressions for Zn and Z.

Let us assume that the imaginary surfaces that cut out
the part for which we compute the entanglement entropy
belong to x� t planes and are a distance l apart in the y
direction (note that we consider 2þ 1).

We begin with Z. The surface with normal along x
consists of 3 pieces after decimation is stopped. There is
exactly the same contribution from the surface with normal
�x. At the center there is a boundary of the slab csx and two
pieces which complement it, we refer to their joint as �csx.
The combined contribution is cx ¼ csx �c

s
x and should be

substituted into the corresponding equation from the
Appendix. We note here that technically the complement
to the slab (more precisely two complementary volumes) is
not symmetric, therefore the recursion at some point has to
be switched from � to �; however, we consider the scale
R 	 l and therefore we can always take R large enough so
that the corresponding coefficients are in the strong cou-
pling limit and no transition from the RG flow to the
infrared fixed points can occur in these bulks.

The 2 surfaces with normals 
y each contribute cy.

There is only one group of surfaces (similar to cx) with
normal �t (our convention) with contribution ct ¼ cst �c

s
t .

Therefore from (A2)

Z ¼ 1þX
i�0

ðcsx;i �csx;icy;iÞ2 þ
X
i;j�0

ðcsx;i �csx;icy;iÞ2djcst;j �cst;jDi
ij:

(28)

After many successive steps of decimation iteration, the
only remaining degrees of freedom are defined on the
surface of the system. In case of Zn we also have n� 1
l-like plaquettes inside the bulk (cst;j). At this point we can

move these l-like plaquettes in Zn to the bottom surface.
This decimation step has no counterpart in the denominator
and therefore the bulk term ( ~F0) of this last decimation
procedure does not cancel. This decimation step is
achieved only with moving the internal plaquettes along
the time direction onto a single surface plaquette; there is
no integration of the tiling plaquettes for this procedure,
therefore the new coefficients for the resulting surface
plaquette after Kadanoff-type moving are

~F s
t;j ¼

Z
dU

�
1þX

i�0

dic
s
t;i�iðUÞ

�
n 1

dj
�jðUyÞ (29)

and

~c s
t;j ¼

~Fs
t;j

~Fs
t;0

: (30)

Next we assume that the boundary between region �A,
which has spacelike links with coordinates t ¼ 0 and t ¼
1=T identified, and region A, which has no such constraint
is defined in such a way that the end links (directed along x)

of the cut in Zn belong to region A. Since there is no
periodicity requirement for these links we can integrate
them out. As a result the internal n� 1 timelike surface
terms of �A have support only at the trivial representation
and therefore do not contribute to the partition function.
There is still, however, a contribution from the first replica
timelike surface (bottom) of Zn.
After simple considerations one can convince oneself

that the surface integral in Zn is similar (in 2þ 1 dimen-

sional theory up to factor 1=d4ðn�1Þ
i ) to the surface integral

of a nNt � N2
r cube [20]. The side surface coefficients are

modified to account for gluing n replicas, while the bottom
surface coefficient involves a term computed according to
(30) and is �cst;i~c

s
t;i. The partition function becomes

Zn � ~Fs
t;0fn

¼ ~Fs
t;0

�
1þX

i�0

1

d4ðn�1Þ
i

ðcsx;i �csx;icy;iÞ2n

�
�
1þ X

j�0

dj �c
s
t;j~c

s
t;jD

i
ij

��
: (31)

The ratio of the partition functions including the bulk
term is

Zn

Zn
¼ ~Fs

t;0

1þ P
i�0

ðcsx;i �csx;icy;iÞ2n=d4ðn�1Þ
i ½1þ P

j�0

dj �c
s
t;j~c

s
t;jD

i
ij�

ð1þ P
i�0

ðcsx;i �csx;icy;iÞ2½1þ
P
j�0

djc
s
t;j �c

s
t;jD

i
ij�Þn

:

(32)

In order to obtain a higher dimensional expression for this
ratio, one needs to adjust accordingly the sides contribution
and the contribution from the surface integration.
The entanglement entropy is

SA ¼ � _~F
s
t;0 þ logZ�

_fn
Z
; (33)

where the dot stands for _X ¼ @
@n Xjn¼1. Note that

_fn ¼
X
i�0

ðcsx;i �csx;icy;iÞ2 log
ðcsx;i �csx;icy;iÞ2

d4i

�
1þ X

j�0

dj~ct;jD
i
ij

�

þX
i�0

ðcsx;i �csx;icy;iÞ2
X
j�0

dj �c
s
t;j
_~cst;jD

i
ij: (34)

In order to manipulate these expressions we will need the
following derivatives:

_~c s
t;j ¼ _~F

s
t;j � cst;j

_~F
s
t;0 (35)

_~F
s
t;j ¼

Z
dU

�
1þX

i�0

dic
s
t;i�iðUÞ

�
log

�
1þX

i�0

dic
s
t;i�iðUÞ

�

� 1

dj
�jðUyÞ: (36)
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The expression for the entanglement entropy can be
evaluated if the system flows towards the IR fixed point.
This is the strong coupling limit for cst;j therefore we can

expand logarithms and simplify the expression:

_~F
s
t;j�0 ¼ cst;j þ

X
i;i0�0

didi0

dj
cst;ic

s
t;i0D

j
ii0 ¼ cst;j þOðc2Þ

_~F
s
t;0 ¼

X
i;j�0

cst;ic
s
t;jdidj

Z
dU�iðUÞ�jðUÞ ¼ Oðc2Þ:

The leading term in the entropy is

SA � �ðcsx;1 �csx;1cy;1Þ2 logðcsx;1 �csx;1cy;1Þ2: (37)

Note that the dependence on l is encoded in the value of
csx;1.

C. Analyzing the RG flow

Now recall that our choice of temperature makes the box
symmetric and cst;i ¼ csx;i ¼ csi . The resulting expression

for the entanglement entropy (33) is a very complicated
function of csi . Note that this is a general feature valid for
higher dimensional theories as well. The dependence on l
enters through the value of these coefficients. Essentially l
regulates the moment when �-transformation is switched
to �-transformation, which in turn sets the initial value for
the csi ðm0Þ iteration under �-transformations thus defining
where the theory will flow before reaching the boundary.

Next we analyze the RG flow of SUð2Þ gauge theory for
csi ðmÞ as a function of number of iterationsm under Migdal
recursion (27) and depending on the starting point. In Fig. 3
we plot the projection of the flow (for a 3þ 1 dimensional
theory) from the infinite dimensional space of character
coefficients onto the fundamental-adjoint c1=2 � c1 plane.
We consider � ¼ 1:1 and 2 values and observe a significant
dependence on the choice of the scaling factor. In what
follows we will use the former value, since it is known to
reproduce the SOð3Þ critical coupling value [21]. This
value was also used to extract an approximately correct
phase diagram for the mixed action fundamental-adjoint
SUð2Þ gauge theory [22].

One can clearly observe that depending on the starting
value the flow will go to either of the two fixed points—the
infrared trivial fixed point or nontrivial UV fixed point.
This is a clear indication of a transition. The starting point
for the system is set by the �-transformations and depends
on the value of l. Generally at the starting point the action
is a single plaquette action but with an infinite number of
couplings for terms in all irreducible representations. In the
numerical simulation that gives Fig. 3, we simplify this
situation by considering a starting action in the Wilsonian
(only fundamental representation) form on the Nt ¼ 1
lattice, noting that this should not affect the observed
picture of existence of transition.

The lattice inverse coupling value ��
c 2 ð0:62; 0:65Þ

where the transition in the flow occurs should be compared
to Nt ¼ 1 gauge theory finite temperature phase transition
�c � 0:86 [23]. This allows one to relate the scale l�c of the
entanglement entropy transition to the finite temperature
phase transition scale lc ¼ 1=Tc. For this we use the stan-
dard 1-loop scaling relationship

að�Þ�L ¼
�

�

2Nb0

�
b1=2b2

0
exp

�
� �

4Nb0

�
; (38)

where b0 ¼ 11=24�2 and b1=2b
2
0 ¼ 51=121. Substituting

the couplings we obtain

l�c=lc 2 ð1:56; 1:66Þ: (39)

III. DISCUSSION OF THE RESULTS

In this paper we studied the entanglement entropy in dþ
1 SUðNÞ gauge theory. We use the multireplica trick to
relate the entanglement entropy to a simple ratio of parti-
tion functions. The d ¼ 1 theory is solved exactly. Free
spatial b.c. lead to trivially zero entanglement entropy.
Periodic spatial b.c. show nonzero universal value inde-
pendent of the size l of the entangled region. As the
entangled region is removed the entropy becomes zero,
showing in this manner behavior similar to the end-point
phase transition of 1þ 1 dimensional theories.
Using MK decimation, we approximately computed the

ratio of partition functions and entanglement entropy in
d � 2 dimensional theories. A note of caution should be
made regarding our choice to carry out the decimation for
Zn and Z in the same way. This allows us to significantly
simplify the computational procedure. The nonanalyticity
in the RG flow observed for Zn, however, is also induced in
Z by this choice. This should not be a problem if one is
interested only in the location of the transition.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.15  0.2  0.25  0.3  0.35

c 1

c1/2

(0.60,1.1)

(0.62,1.1)

(0.65,1.1)

(0.70,1.1)

(1.10,2)

(1.11,2)

(1.12,2)
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In the case of 3þ 1 SUð2Þ gauge theory, we demon-
strated that there is a nonanalytical change in the RG flow
for coefficients of character expansions which define the
entanglement entropy. We find that the length scale of this
transition is l�c=lc 2 ð1:56; 1:66Þ. Unfortunately the sys-
tematic error due to the use of the MK approximation is
not easily tractable. It is interesting that in the largeNc case
it was shown [2] that l�c=lc ¼ 2.

It is important to note that the MK procedure does not
find a transition in the RG flow for 2þ 1 dimensional
theories. This transition is only observed for dþ 1 theories
with d > 2. Most likely this is an artifact of the MK
procedure and d ¼ 2 theory exhibits a transition similar
to higher dimensional theories. The MK decimation is
known to miss the order of phase transition while correctly
identifying its location. It is conceivable that in d ¼ 2
theory a proper transition can be seen by the MK procedure
as a crossover. This observation is supported by the fact
that we indeed observe an interesting qualitative change in
the flow around � ¼ 3:2, see Fig. 4. For values of lattice
inverse coupling below this value, the flow is directed
immediately toward the IR critical point (monotonously
decreasing series of ci;8i), while for larger values of� the
flow is directed from the IR fixed point for a few steps of
iteration then switching to the flow toward the IR fixed
point (initial increase of c1=2 followed by monotonous

decrease). We illustrate such a scenario for weak coupling
regime � ¼ 4:0 in the inlet of Fig. 4. It is interesting that
formally the MK �-transformation in dþ 1 theory with
compact direction can be effectively viewed as
�-transformation with an effective RG scaling parameterffiffiffiffi
�

p
in 2d� 2 dimensions, see [16–18]. Thus d > 2 theo-

ries are related to the zero temperature theories above the
critical dimension 4 (have bulk phase transition), while
d ¼ 2 is related to 4-dimensional zero temperature theory.

Similar results hold for SUð3Þ and other Nc groups.
Therefore our claim is that the transition in the entangle-
ment entropy is observed for any number of colors Nc and
the critical scale l�c where the transition takes place most
likely is Nc dependent and asymptotically reaches 2 as
Nc ! 1.
We note that the finite temperature phase transition

studies of SUð2Þ and SUð3Þ gauge theory within MK
formalism [16–18] relied on the same analysis of the RG
flow. It is important to emphasize that the periodic bound-
ary conditions in the time direction do not play any role in
such studies. One has to impose the periodicity on the
Nt ¼ 1 system after �-transformations are switched to
�-transformations [16]. This will result in an effective
lower dimensional spin system which exhibits a phase
transition for d � 2.
The study of the entanglement entropy effectively is

transformed into anMK analysis of a gauge system defined
with one compact direction and no periodicity imposed.
Possibly Monte Carlo simulations of such systems can
define the location of the transition more accurately.
However, this would be still a crude approximation since
the MK treatment results in a well-defined boundary,
which is in reality rather soft. Therefore direct numerical
computation of the entanglement entropy should be
preferred.
It is also interesting to relate our results to studies of the

vortex free-energy order parameter [24], which provides a
complete characterization of the possible phases of gauge
theory. For SUð2Þ it was found [25] that when the trans-
verse size of the lattice is around 0.7 fm there is a sharp
crossover in the vortex free energy. This crossover has an
obvious physical interpretation: the lattice size has to be
large enough to accommodate sufficient spreading of the
vortex flux (‘‘fat’’ vortex) to enter the regime of exponen-
tial free-energy lowering by further spreading, i.e. the
confining or color magnetic mass-gap creation regime.
Assuming that

ffiffiffiffi
�

p ¼ 420 MeV (� is the string tension),
we get in this theory 1=Tc ¼ 0:681 fm. Therefore the
transition in the vortex free energy happens approximately
at 1=Tc scale.
Using this observation, we suggest that the transition in

the entanglement entropy happens when the size of the
entangled region is large enough to accommodate a fat
vortex. The difference in the geometry should account on
small difference of the scales when such transition occurs.
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APPENDIX: 2þ 1 DIMENSIONAL GAUGE
THEORY IN A BOX

In this Appendix we consider a 2þ 1 dimensional
SUðNÞ gauge theory formulated in a symmetric box R3

at temperature T ¼ 1=R, which corresponds to confined
phase temperatures for sufficiently large R. The theory is
formulated on a lattice with the UV cutoff a, with periodic
boundary condition in the t direction and free boundary
condition in spatial directions. The MK decimations (24)
with scale factor � are performed iteratively N times

(�N ¼ R̂ � R=a). At this point all degrees of freedom
are ‘‘pushed’’ to the boundary and the resulting lattice
spacing becomes equal to R, see Fig. 5. Here we are not
interested in the bulk contribution. There are 8 independent
gauge degrees of freedom which live on links. We use
normals to the cube faces, which are directed outside to
identify plaquettes. The partition function has contribu-
tions from 4 plaquettes with normals along spatial direc-
tions and one plaquette (due to periodicity) from
t-direction

fðfczg; @AÞ � 1þX
i�0

dicz;i�ið@AzÞ; (A1)

where z ¼ 
x;
y; t marks the plaquettes. The character
coefficients cz;i can be obtained numerically and are the

result of the RG flow in infinite dimensional coupling
space. The symmetry of the box implies cx;i ¼ cy;i ¼ ct;i.

For a general nonsymmetric box, one has to consider a
series of �-transformations, resulting in an anisotropic
lattice with all coefficients cz;i different.

Because of the free spatial boundary condition, we can
further integrate out three timelike links (thin lines in
Fig. 5). By doing this we join the surfaces according to
(9), with the resulting surface term fðfcxy;ig;UyVUVyÞ and
cxy;i ¼ c2x;ic

2
y;i. The partition function is

Z ¼
Z

dUdVfðfcxy;ig;UyVUVyÞfðfct;ig;VÞ

¼ 1þX
i�0

cxy;i þ
X
i;j�0

cxy;idjct;jD
i
ij; (A2)

where

Dk
ij ¼

Z
dV�kðVyÞ�iðVÞ�jðVÞ (A3)

we recognize as the coefficients of the Clebsch-Gordan

series DðiÞ �DðjÞ ¼ P
kD

k
ijD

ðkÞ for the Kronecker prod-

uct of irreducible representations. Using Gaunt’s formula

jGj�1
Z
G
Dðj1ÞðR�1Þn1m1

Dðj2ÞðRÞn2m2
Dðj3ÞðRÞn3m3

dR

¼ j1
n1	

� �
j1

m1

� �� j1 j2 j3
	 n2 n3

� �� j1 j2 j3

 m2 m3

� �
;

(A4)

where jGj is the volume of the group space, we can express
Dk

ij through the Wigner coefficients (1-j and 3-j symbols)

for general group [26,27]

Dk
ij ¼ k

n1	

� �
k


n1

� �� k i j
	 n2 n3

� �� k i j

 n2 n3

� �
:

(A5)

Coefficients Dr
rs can be easily evaluated for the SUð2Þ

group, using the Clebsch-Gordan equation

�i�j ¼
Xiþj

k¼ji�jj
�k: (A6)

Thus the integral becomes

Di
ij ¼

Z
dV

X2i
k¼0

�kðVÞ�jðVÞ ¼ H1ð2i� jÞ; (A7)

where H1ðxÞ is the Heaviside step function [H1ð0Þ ¼ 1].
Therefore

ZSUð2Þ ¼ 1þX
i�0

cxy;i þ
X

i;j�0;j�2i

cxy;idjct;j: (A8)

V

U

FIG. 5. 2þ 1 dimensional symmetric box.
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