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We consider a (1� 1) dimensional scalar field theory that supports oscillons, which are localized,
oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding
background and show that oscillons now lose energy, but at a rate that is exponentially small when the
expansion rate is slow. We also show numerically that a universe that starts with (almost) thermal initial
conditions will cool to a final state where a significant fraction of the energy of the universe—on the order
of 50%—is stored in oscillons. If this phenomenon persists in realistic models, oscillons may have
cosmological consequences.
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I. INTRODUCTION

A wide range of nonlinear field theories have been found
to contain long-lived, localized, oscillatory solutions to
their equations of motion, known as oscillons or breathers.
In the best-known examples [1,2], conserved charges guar-
antee the existence of exact periodic solutions. However, in
many cases where such arguments are not available, ob-
jects with similar properties have also been observed [3–
18].

In this work we consider analytically the evolution of an
oscillon in an inflating background. We find that the oscil-
lon is no longer localized and contains a ‘‘tail’’ that slowly
leaks energy away. However this decay rate is exponen-
tially suppressed, so we still expect there to exist long-lived
objects. This result is in qualitative agreement with nu-
merical work in [19], which studied the long-term evolu-
tion of a single oscillon in an expanding universe
background and found that oscillons remain stable for an
exponentially long time provided that the horizon is far
larger than the width of an oscillon.

Once a model has been shown to contain oscillons, it is
natural to ask how easy it is for these coherent objects to
form from generic initial conditions. Reference [17]
showed that oscillons can emerge from a rapid ‘‘quench’’
in which the background potential is suddenly changed,
throwing the system far out of equilibrium. Here we con-
sider the opposite situation: We begin with an (almost)
thermal distribution at high temperature and gradually cool
the system by coupling it to an expanding background.

This setup is suggestive of a situation that could arise in the
early universe, for example, as the universe cools after
reheating or a phase transition. If stable oscillons formed
in these situations, they might have cosmological conse-
quences: e.g., see [18]. Although it did not consider oscil-
lons, [20] found significant nonthermal effects in
electroweak baryon number violating processes.
Reference [21] studied a case similar to ours, but involving
a different type of oscillon that is stable only if its ampli-
tude exceeds a certain critical value. This situation is quite
different from our model, in which there is no such thresh-
old amplitude.

For numerical convenience, we work with a single scalar
field in one dimension, though we have seen qualitatively
similar results in simulations of the two-dimensional scalar
model of [6] in an expanding background. We start at a
temperature for which the universe is dominated by radia-
tion and allow the universe to expand until it contains only
a cold, pressureless dust of both oscillons and fundamental
excitations of the field. A late-time snapshot of the energy
density of such a configuration as a function of position is
shown in Fig. 1, where the sharp spikes are oscillons. We
find that a sizeable fraction of the energy of this final
state—of order 50% or more—is stored in oscillons.
This result persists even for very small coupling constants,
where quantum effects are small and do not affect our
classical field theory analysis.

II. MODEL

We consider a toy model consisting of a massive scalar
field ��x; t� in a one-dimensional expanding background.
In terms of the comoving coordinate x, the model is
described by the Lagrangian
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where an overdot denotes a derivative with respect to t and
a prime denotes a derivative with respect to x. Note that this
potential has a unique minimum at � � 0, with no other
extrema or inflection points. It does not support static
solitons, but does support oscillons. This Lagrangian leads
to the equation of motion

 

���
_a�t�
a�t�

_� �
�00

a�t�2
�m2��� g�3 � g2�5�: (2)

For simplicity we take the expansion rate H � _a�t�=a�t� to
be constant. Although we hope that our model can shed
light on the reheating phase of inflation, during which H
would be rapidly decreasing, for our purposes it is only
important that the expansion rate be slow compared to the
typical time scales of the oscillon.

All known oscillon solutions have been found for mas-
sive fields, with frequency of oscillation below the thresh-
old for fundamental excitations, so we have chosen a
massive field. The sign of the �4 term, the leading non-
linearity, is crucial: it has been chosen so that to leading
order this term decreases the frequency of small oscilla-
tions. With the other sign we do not see any oscillons form.
Finally, the �6 term exists to eliminate instabilities at large
field values introduced by the choice of sign of the�4 term.
Because the oscillons involve only moderate excitations of
the field, this term does not play an important role in their
dynamics.

We have scaled the self-interaction terms by a small
parameter g. The exact meaning of this parameter is some-
what subtle, since by defining a new field variable �� ����
g
p
� we can shift g completely outside the Lagrangian (1),

which means that it no longer appears in the classical
equations of motion. The full quantum theory is still sen-
sitive to the value of g, but only in the combination @g;
therefore a classical approximation involving small @ is
equivalent to one involving small g, and the results of our
classical analysis are valid provided that @g is small.1

III. SMALL-AMPLITUDE ANALYSIS OF
OSCILLONS

To describe the oscillons we expect to emerge from the
thermal background in our simulation, we use a small-
amplitude analysis, following [22]. In particular (e.g. see
[19]) in a static background the equation of motion (2)
supports solutions that are localized in space and periodic
in time. These oscillons can be expanded in a small pa-
rameter 0< �� 1. The amplitude of the oscillations
scales with �, the spatial width of the oscillon is propor-
tional to ��1, and the oscillation frequency is given by! �
m

��������������
1� �2
p

. Numerical calculations indicate that there is an
upper bound on how large � can be for a stable solution:
0< �< �c < 1, where �c 	 0:25.

Here we extend these results to an inflationary back-
ground. A sufficiently fast expansion will result in a hori-
zon that is comparable to the minimum oscillon width
(proportional to ��1

c ), preventing oscillons from ever form-
ing. If the expansion rate is slow, long-lived oscillons can
occur in the range

�����������
H=m

p
� �� 1, as shown below. In

this regime the oscillon radiates energy away (in the form
of scalar field waves) at a rate that is exponentially small in
the dimensionless ratio m�2=H. If this ratio becomes suf-
ficiently large, numerical calculations show that the oscil-
lon is not affected by the expansion in any way that we can
detect.

A. Separation of scales

We work in static patch coordinates on de Sitter space
(e.g., see [23]) where the metric takes the form

 ds2 � ��1� X2H2�dT2 � �1� X2H2��1dX2: (3)

These coordinates are valid for jXHj< 1. In these coor-
dinates the equation of motion (2) becomes
 

1

�1� X2H2�
��� 2XH2�0 � �1� X2H2��00

� �m2��� g�3 � g2�5�: (4)

Here an overdot indicates a derivative with respect to T and
a prime indicates a derivative with respect to X. Now we
follow [19] and change to variables � � mX� and � �
mT

��������������
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p

, where 0< �� 1 is the small parameter
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FIG. 1. (a) Energy density as a function of position for a typical final state: m � 1, @ � 0:5. (b) Snapshots of field profile ��x; t� for a
typical oscillon, taken at intervals of �t � 0:1.

1Also, throughout this paper the quantity we call m has
dimensions of 
length��1, not energy, and is thus really the
mass of a single elementary quantum divided by @.
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mentioned above. Note that since the horizon distance is
1=H and the oscillon width is 1=m�, to obtain a stable
oscillon solution we expect H� m�. We therefore let
H � m �H�2, where �H is taken to be a small dimensionless
number. The power of � in this expression is important: If
instead we take H to be O��� then no oscillon solution is
possible, while if we take H to be O��3� then (to the order
we are working) the oscillon does not feel the expansion.

In terms of � and � the equation of motion is
 

�1� �2�

1� �2 �H�2����� � 2� �H2�4���� � �1� �2 �H�2��2�����

� ���� g�3 � g2�5�: (5)

We expand � in powers2 of � as
 

���; �� �
1���
g
p 
��1��; �� � �3�3��; ��

� �5�5��; �� � . . .�; (6)

and seek oscillons, solutions that are periodic (with period
2�) in � and localized in space. In fact, as we will show
below, these solutions are neither strictly periodic nor
localized, but these departures are exponentially small
and occur over time scales much longer than the one given
by �.

We now substitute (6) into the governing Eq. (5) and
solve it order by order in �. At O���,

 ��1��� ��1 � 0: (7)

Thus �1 � f���e�i� � f����ei�, where the profile f���
remains to be determined. We can find this profile by
considering the O��3� equation

 ��3��� ��3 � �1� �2 �H2���1��� � ��1��� ��3
1: (8)

The key point here is that the only way that �3 can be
periodic in � is if the forcing terms on the right-hand side of
the equation are orthogonal to e
i�, since otherwise �3

would have a component that grows linearly in �.
Therefore we set the Fourier coefficients of e
i� to 0, and
obtain a self-contained ordinary differential equation for
the oscillon profile:

 

d2f

d�2
� ��2 �H2 � 1�f��� � 3f���2f���� � 0: (9)

For a ‘‘perfect’’ oscillon, a localized (exponentially decay-
ing as �! 
1) spatial profile is needed. This, however, is
not quite possible. The behavior of the above equation
changes at � 	 
1= �H: for small j�j the equation is es-
sentially the same as the equation for a flat-space oscillon,
while for large j�j the �2 �H2 term dominates, giving oscil-
latory behavior that causes the oscillon to radiate (a small

amount of) energy away. Note that this change in behavior
occurs well before the horizon, which is at � � 
1=�� �H�.

B. Asymptotic behavior

First we examine the regime where j�j � 1= �H. Here
the term arising from the expansion of the universe is
negligible and the equation reduces to the case of a static
background. Therefore, we can take

 f��� 	
1

2

���
8

3

s
sech��� for j�j �

1
�H
: (10)

Note that since 0< �H� 1, the oscillon behaves like��
8
3

q
e�� in the region 1� �� 1= �H. In particular, while

its amplitude does not quite vanish (since we cannot take
j�j ! 1 in the equation above), it fails to be fully local-
ized only because of an exponentially small tail, as is
shown below.

We now relax the upper bound and consider the region
where �� 1 (an entirely similar calculation can be done
where ���1). From the reasoning above, we see that on
the left-hand side of this region, the field is exponentially
small. Thus, provided that the field does not grow too much
as � increases in this region, we are justified in neglecting
the nonlinear term in the equation, though we must now
take into account the effects of the expansion. Thus we
obtain

 

d2f

d�2
�f��2 �H2�1��0: (11)

This equation can be put into a more familiar form by
defining a new coordinate y � � �H. Then we obtain

 � �H2 d
2f

dy2 � y
2f � �f: (12)

This is exactly the Schrödinger equation for the wave
function of a particle in an upside-down harmonic oscil-
lator with energy E � �1, with the dimensionless Hubble
constant �H playing the same role as Planck’s constant @ in
the analogous quantum mechanics problem. At small y the
particle is in the ‘‘classically forbidden’’ region of the
potential and the wave function is exponentially sup-
pressed, corresponding to the exponential tail of the oscil-
lon. For any nonzero value of �H, we eventually enter a
‘‘classically allowed’’ region and the wave function be-
comes oscillatory, which for our classical field profile
indicates an outgoing wave that carries energy away.
Therefore this situation looks exactly like a quantum me-
chanics tunneling problem, and since we are interested in
small �H we can use a semiclassical approximation to solve
it.3

2Note that the expansion (6) involves only odd powers of �.
This is consistent with (5) because this equation is odd in �, and
depends on � via �2 only.

3Of course, exact formal solutions for the wave function of an
upside-down oscillator exist in terms of Hermite functions.
However, extracting the asymptotic behavior from these special
functions is somewhat messy; for our purposes we can obtain
equivalent results simply using WKB.
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Choosing an outgoing wave boundary condition as y!
1, the standard WKB connection formulae [24] give us the
following relation between the wave functions on either
end of the turning point at y � 1:

 

A
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q
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�
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where the left-hand side is valid for y� 1, the right-hand
side is valid for y� 1, and A is an overall constant.

Performing the integrals, keeping only the leading de-
pendence, and replacing y with � �H, we obtain

 f��� 	 A exp
�
�

2 �H
� �

�
for 1� �� 1= �H; (13)

and

 f��� 	
A��������
� �H

p exp
�
i
2
�2 �H

�
for �� 1= �H: (14)

As expected, the small � behavior of (13) is of exactly the
correct form to fit the large � asymptotic behavior of (10).

Matching to this result sets A to
��
8
3

q
exp�� �

2 �H� and hence

fixes the coefficient of the outgoing wave (14).
Returning to our original variables and putting together

the pieces, we find the following expressions for the oscil-
lon

 ��X; T� 	 �

������
8

3g

s
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��������������
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p
�sech�mX��
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(15)

and
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��������������
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mX2H

�
for �=H� jXj< 1=H: (16)

From here it is easy to compute the relevant components of
the stress tensor T �� and find the rate of energy flux. If we
take the energy stored in a region R to be E �
�
R
R dXT

T
T , then using the conservation of the stress

tensor and (16) we obtain

 

d
dT

E � T X
T j@R

	 ��1� X2H2�
32

3g
m2�3 exp

�
�
�m�2

H

�
; (17)

where the region R is taken to be a symmetric interval R �

�X;X� and X is far enough from the origin that (16)
holds. Note that to leading order all X dependence comes

from the curvature of the metric; if we restrict attention to
�=H� X� 1=H (i.e. we consider only a small neighbor-
hood of the oscillon) then space looks almost flat and we
obtain

 

d
dT

Eosc 	 �
32

3g
m2�3 exp

�
�
�m�2

H

�
: (18)

This is our main result. While an oscillon can live forever
on a flat background (at least as a formal perturbation
series), this is no longer the case in a de Sitter universe;
instead it is forced to radiate energy away, albeit through a
mode that is exponentially suppressed.

IV. THERMAL INITIAL CONDITIONS

We would like to start our simulations using initial
conditions mimicking those of the interacting field theory
defined by the Lagrangian (1) at nonzero temperature T.
However, constructing this equilibrium is quite difficult;
although we are essentially interested in classical physics,
a classical treatment of this field theory at nonzero tem-
perature suffers from the Jeans paradox. In a quantum
treatment we avoid this problem, but we are still unable
to systematically take into account the nonlinear terms in
the Lagrangian: as is shown below, we will be interested in
temperatures T * m=g, which is precisely the regime
where finite temperature perturbation theory fails.

We shall thus take a different approach and generate our
initial conditions to simulate thermal states of the free
massive scalar field. We note that for the reasons stated
above these quasithermal initial conditions are probably
quite far from the true thermal equilibrium of the full
interacting theory; hence the parameters T and @ should
be thought of more as measures of the amplitude and width
of our distribution in momentum space than as directly
physically relevant quantities. We show, however, that
provided T is sufficiently high, all other numerically fea-
sible variations of these parameters produce oscillons in
copious numbers, leading us to believe that our results are
independent of any particular details of the initial
conditions.

To construct these conditions, we return to comoving
coordinates. Since our real interest is in a numerical simu-
lation we impose both infrared and ultraviolet cutoffs,
placing the system in a box of comoving size L and on a
regular lattice with spacing �x. We replace the spatial
derivatives by finite differences (see the Numerical
Simulation section) and label the free field’s normal modes
by kn � 2�n=L, where n � �N=2� 1 . . .N=2 and N �
L=�x is the number of lattice points. Finally we take the
scale factor at this time to be a0.

On this lattice each free mode is described by a har-
monic oscillator with frequency
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The initial conditions for � are then given by
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where �n is a random complex variable with phase dis-
tributed uniformly on 
0; 2�� and magnitude drawn from a
Gaussian distribution such that

 hj�nj2i �
1

2

�
coth

@!n

2T
� 1

�
: (21)

This is the usual amplitude distribution for a quantum
harmonic oscillator [25] with the zero-point motion sub-
tracted. On average, these initial conditions assign energy
T to modes with @!n & T, in agreement with equiparti-
tion. The energy per mode goes rapidly to zero for @!n *

T, giving a total energy density that scales like T2=@ for
T � m@, as usual for blackbody radiation in one dimen-
sion. Oscillons will form from the energy density in modes
with wavelengths of order 1=m, which scales like mT. For
oscillons to form, this energy density must be at least of
order m2=g, so that the fields will have amplitude 1=

���
g
p

and the nonlinear interaction terms can balance the dis-
persive gradient terms. Therefore we will need an initial
temperature of T * m=g to form oscillons.

We have simply subtracted off the zero-point quantum
fluctuations in the field. Although it is well-known that
these fluctuations have significant consequences for the
evolution of a classical field in an expanding background
[26], these effects are most important at very long length
scales, of order 1=H. For small g, the oscillon solution
comprises many fundamental excitations of the field at the
length scales of order 1=m that are relevant to oscillon
formation and stability. Thus the quantum effects we are
neglecting should not change our results significantly.
Alternatively, this quantum prescription can simply be
thought of as describing a classical equilibrium with
short-distance cutoff T=@. (A method to eliminate such
cutoff dependence of classical simulations is discussed in
[27]).

As the universe expands, it cools and loses energy
according to

 

dE
dt
� �

Z
p�x; t� _a�t�dx; (22)

where the pressure density is

 

p�x; t� �
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�
_�2�

1

a�t�2
��0�2�m2

�
�2 �

g
2
�4�

g2

3
�6

��
:

(23)

In equilibrium at temperatures much greater than @m, if we
neglect the interaction terms, the system looks like mass-
less radiation, with pressure density approximately equal
to its energy density. In equilibrium at low temperatures,
the field is slowly varying in space, with only small values
of k excited, and of small amplitude. In that case the
gradient and nonlinear terms are negligible and _�2 	
m2�, so the pressure goes to zero and the system behaves
like pressureless dust.

V. NUMERICAL SIMULATION

We discretize x at the level of the Lagrangian in Eq. (1),
working in natural units where m � 1. For the space
derivatives we use ordinary first-order differences,

 �0n�t� �
�n�1�t� ��n�t�

�x
; (24)

where �n refers to the value of � at lattice point n. We
work on a regular lattice with spacing �x and impose
periodic boundary conditions. Varying this Lagrangian
yields lattice equations of motion with second-order space
derivatives,
 

��n�t� �
_a�t�
a�t�

_�n�t� �
�n�1�t� ��n�1�t� � 2�n�t�

a�t�2�x2

��n�t� � g�n�t�3� g2�n�t�5: (25)

We then express this second-order equation as a set of
coupled first-order differential equations and step forward
in time using a standard fourth-order Runge-Kutta integra-
tor (e.g., see [28]). The Courant condition requires that we
maintain �t < a�t��x for numeric stability. Of course this
allows us the possibility of rescaling �t as the simulation
runs; this rescaling stops when we reach a maximum value
of �t � 0:01.

As the universe expands, the oscillons maintain a fixed
size in physical units. On the other hand, our lattice ex-
pands with the universe. Thus we add new lattice points
whenever the lattice spacing exceeds some fixed size
�xmax in physical units. This is accomplished by refining
the lattice, doubling the total number of lattice points, and
bringing the lattice spacing back to �xmax=2 in physical
units. We assign values to the field for the new intermediate
lattice points by linear interpolation.

We performed several checks on our numerics. We
would like to take �t sufficiently small that given a set
of initial data any further reduction of �t does not signifi-
cantly change the final configuration after a run. In the
strongly nonlinear regime in which we work, this turns out
to be a technically very difficult goal to achieve, with
different timesteps often resulting in significantly different
final configurations. In fact, despite our best efforts the
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upper end of Fig. 3, where T > 6, suffers from this prob-
lem, so we cannot guarantee the validity of this region of
the plot, although the remainder of the plots we present
satisfy all of our tests. We also verify that all of our
simulations maintain energy conservation (as given by
Eq. (22)) to better than one part in 103, and that �xmax is
small enough that further reduction does not significantly
alter the final configuration obtained after a run.

For Fig. 2 we use an initial lattice spacing �x0 � 0:0016
and an initial timestep of �t0 � 0:0002. For Fig. 3 we use

�x0 � 0:05=T and �t0 � 0:0001, where T is the tempera-
ture of the run. For both we use �xmax � 1.

VI. RESULTS

We simulate the scalar field in an expanding universe
varying the initial temperature T and the value of @ (which
determines the effective coupling g@). We are interested in
determining what fraction of energy in the universe ends up
in oscillons; we estimate this as the integral of the energy
density over regions of space at which the energy density is
more than 5 times the average energy density, divided by
the total energy. As shown in Fig. 1, oscillons stand so
much higher than the background fluctuations that this is a
good measure. For each run we expand until this quantity
reaches a constant value, indicating that the system has
stabilized. We then plot this quantity as a function of the
parameters in the initial conditions in Figs. 2 and 3.

Figure 1 shows a snapshot of the energy density as a
function of position for a typical run. We see that the
oscillons are very clearly defined, with energy densities
far above the background from ordinary field fluctuations.
At these late times, the ordinary fluctuations are of small
amplitude, and have been redshifted to large spatial wave-
lengths; they have k 	 0 and ! 	 m. From Eq. (23), we
see that the pressure of such fluctuations vanishes: the _�2

and m2�2 terms cancel, and the gradient and nonlinear
terms can be neglected because the ordinary fluctuations
are slowly varying in space and have small amplitude. So
the total energy in ordinary fluctuations remains constant,
corresponding to a pressureless dust of ordinary particles
of mass @m at rest. As the universe continues to expand, the
energy density in these fluctuations decreases, since it
scales inversely with the volume of the universe to keep
the total constant. The oscillons, meanwhile, maintain
fixed physical size, energy density, and total energy—
and therefore zero pressure—but are brought to rest rela-
tive to the expanding background. As a result, they also
appear as a pressureless dust at late times.

In Fig. 2 we vary @ in the initial conditions and examine
the variation of the fraction of energy in the universe in
oscillons. Each point on the graph is an average over many
runs, with error bars indicating the standard deviation.
(Because our initial conditions are random individual rep-
resentatives drawn from the initial thermal distribution, our
results can vary from one run to the next.) As we move to
the right on the logarithmic scale on the horizontal axis, @
becomes smaller and the quantum effects we have ne-
glected are less important. We see that the fraction of
energy in oscillons remains substantial, decreasing only
gradually as @ decreases to small values.

Figure 3 shows the fraction of energy in oscillons for a
range of initial temperatures. For T large enough, we see
that the result saturates, so that higher initial temperatures
no longer affect the final result. In the saturated regime, the
system is just undergoing ordinary cooling, remaining at
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FIG. 3. Fraction of energy in oscillons, as a function of initial
temperature. Simulation parameters are @ � 0:5, g � 1, initial
universe size L0 � 40=T, expansion factor � 40 000=L0,
Hubble constant H � 0:02.
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Simulation parameters are T � 2, g � 1, initial universe size
L0 � 20, expansion factor � 2000, Hubble constant H � 0:02.
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equilibrium as the temperature begins to decrease. It is
only once the system cools below T 	 m=g that the oscil-
lons begin to emerge. So while we are always imagining
our system starts out at very high temperatures compared
to the energy scales relevant to oscillon formation, in
practice we only need to start our simulations at tempera-
tures just above the saturation point.

VII. DISCUSSION AND CONCLUSIONS

We have considered a scalar field theory that supports
stable oscillons. We place this theory in an expanding
background and show that the oscillons are no longer
completely stable but instead lose energy at a rate that is
exponentially small in the size of the horizon. We also find
numerically that quasithermal initial conditions result in
the eventual formation of oscillons in large numbers.
Though the oscillons are large, coherent objects, they
nevertheless form easily from a random superposition of
momentum modes, suggesting that in some sense they are
attractors in the solution space of the equations of motion.

In our model they capture a significant portion of the
energy of the universe, on the order of 50%. Though this
paper deals with a one-dimensional case, we have seen
qualitatively similar results in two dimensions. If this
phenomenon persists in realistic models (and in a realistic
number of dimensions), oscillons may have cosmological
consequences, as discussed in Ref. [18].
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