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The standard model SU(2); X U(1l)y gauging of the Wess-Zumino-Witten term requires a modified
counterterm when background fields, needed to generate the full set of currents, are introduced. The
modified counterterm plays an essential role in properly defining covariant global currents and their
anomalies. For example, it is required in order to correctly derive the gauge-invariant baryon number
current and its anomalous divergence. The background fields can also be promoted to a description of the
physical spin-1 vector and axial-vector mesons in QCD and the counterterm leads to novel interactions.
These are (pseudo)Chern-Simons terms, such as e*"?w ,Z,d,A, and e‘“’”"p;i W d,A, that mediate
new interactions between neutrinos and photons at finite baryon density.
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I. INTRODUCTION

The low-energy spectrum of QCD contains pseudoscalar
mesons interpreted as the Nambu-Goldstone bosons
(NGB’s) of spontaneously broken chiral symmetry.
U(Ny), X U(Ny)g breaks to the diagonal, vector subgroup
U(Ny)y, with N, = 2, 3 depending on whether just the
(u, d) quark symmetries or the (u, d, s) symmetries are
included in the analysis. A complete low-energy chiral
Lagrangian describing the interactions of these meson
states contains terms in the following three classes.

The first class consists of terms related to the familiar
kinetic term:

2
£K=T’TTr(DMUTD”U)+---, (1)

where f. =93 MeV, and U = exp[(2i/f,)mT"] is a
chiral matrix field transforming as U — e’ Ue ™ '¢r under
U(Ng), X U(Ny)g, with e’“ex € U(Ny)p . The kinetic
term can be made locally invariant under U(N), X
U(Ny)g transformations by including a complete set of
gauge fields in the covariant derivative, DU =
oU — iA U + iUAg, with corresponding local gauge
transformations for A; . The ellipsis refers to an expan-
sion in the number of derivatives, containing in the next
order the Gasser-Leutwyler operators.

A second class of terms consists of those associated with
symmetry breaking. This includes the operator Tr(M,U) +
H.c., where M, is the quark mass matrix, and also the
operator detUe'® + H.c. which reflects the breaking of the
axial U(1) by instantons. We will largely ignore the effects
of these first two classes of operators in what follows.

A third class of operators comprise the Wess-Zumino-
Witten (WZW) term, I'yzw(U) [1,2]. This is a topological
object and it arises ‘‘holographically’”” when the D = 4
manifold of spacetime is viewed as the boundary of a D =
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5 manifold [2]. The WZW term is intimately connected to
the anomaly structure of QCD. When coupled to classical
background gauge fields A;, Ax € U(N),  the variation
of I'wzw(U, Ay, Ag) under local U(Ny), X U(Ny) is non-
zero, and reproduces the anomalies of the underlying
theory of quarks [1-9].

Moreover, I'yw lifts a spurious parity symmetry in the
chiral Lagrangian, locking the pion parity to that of space
(it performs a similar task in Little Higgs theories by
breaking spurious T-parity [10]). It mediates processes
such as KK — 37 which are allowed by QCD but would
be forbidden in the low-energy chiral Lagrangian theory if
we kept only the first two classes of terms and ignored the
WZW term. The WZW term can also be coupled to physi-
cal gauge fields, like the photon. This leads to a correct
description of the process 7’ — 27, that is otherwise
forbidden by the extension of the spurious parity to gauge
fields. Thus, the WZW term generates an essential part of
the physics, and should be placed on the same footing as
the other terms in the chiral Lagrangian.

In this paper we are interested in the gauged WZW term
with physical gauge fields coupled to the flavor symmetries
of the quarks. In general, to achieve an anomaly free gauge
theory, we can either gauge an anomaly free subgroup of
U(Ny), X U(Ny)g, or cancel anomalies between the chiral
Lagrangian and a ‘““lepton sector.”” The former case arises
when gauging only electromagnetism in the QCD chiral
Lagrangian, and is perhaps the most familiar application of
a gauged WZW term. However, it is the latter situation that
arises for the SU(2); X U(1)y electroweak gauge group of
the standard model. This leads to additional issues that
need to be addressed, due to the fact that SU(2);, X U(1)y
resides in a nondiagonal subgroup of the chiral symmetry
group. We are forced to revisit the counterterm structure of
the Wess-Zumino-Witten term. Ultimately we are led to a
new counterterm, and in turn, to new physics. This is the
focus of the present paper.
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In addition to the fundamental gauge fields of the stan-
dard model, i.e., the W, Z, and 7y, the theory must be
consistent if we include background fields that couple to
the currents of the chiral Lagrangian. These background
fields are theoretically essential because they allow us to
determine the correct form of the global currents and their
anomalies.

In what follows we will denote generic fundamental
gauge fields by A and background vector and axial-vector
fields by B. The B fields will be assumed to transform
covariantly under the fundamental local gauge group of the
standard model. Varying the effective action with respect
to B? generates the associated current J¢. Varying the
background fields locally, 6B = de + ---, as if they
were fundamental gauge fields, generates the anomalous
divergence of the associated global current via the WZW
term. For example, a background field can be introduced
with the quantum numbers of the @ meson, coupling to the
quark baryon current. This automatically implies its cou-
pling to the Goldstone-Wilczek Skyrmionic baryon num-
ber current [2,11] via the WZW term.

Introducing the B fields leads, however, to the following
subtle issue. When we have a set of fundamental gauge
fields A, such as the standard model W, Z, and v, and we
then turn on the background (B) fields, we find that new
anomalies appear in the gauged (A) currents that were
previously absent. We can maintain the fundamental (A)
gauge invariance, however, if we can find a local counter-
term, a functional of A and B, which cancels these new
anomalies.

The logic of this situation is identical to that of QED,
underlying the original covariant anomaly first computed
by Adler [5]. If we compute triangle diagrams for QED
with a vector photon A, coupled to a massless electron as
Aty w ¥, then we do obtain a conserved vector current,
and the divergence of the axial current is the consistent
axial current anomaly [12]:

015 = 15 Cuvpo PPV E. )

However, if we introduce a classical background field B,
with the coupling B* jfL, then we find that the vector
current is no longer conserved, but develops a mixed
anomaly  €,,,,Fi"F3’. It is essential that gauge invari-
ance, i.e., vector current conservation, be maintained for
any background field B, and we thus require a counterterm.
The counterterm takes the form (1/6772)6MVP,TB“A”8F’A”.
When added to the action, it modifies the definitions of the
currents. For example, the gauged vector current is
85/6A,, and the global axial current is 6S/6B,, where
S is the action. The currents acquire corrections from the
counterterm. This leads to a conserved modified vector
current for any background field B and the familiar cova-
riant anomaly for the modified axial current [13]:
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a,u,]z = We,uva'F'uVFpU: (3)
where the B contribution to the anomaly has been set to
Zero.

The problem of maintaining gauge invariance of the
WZW term for arbitrary background fields when the fun-
damental gauge fields are vectorlike, i.e., A; = A = A,
has a well-known solution: the ‘“Bardeen counterterm,”
given by —T'w,w(1, A + B, A + Bp). This is essentially a
generalization of the aforementioned counterterm of QED.
Adding this counterterm to the WZW term, Iy, w(U, A +
B;, A + By), ensures that vector currents are conserved for
any By p background fields. We note that this procedure
kills off an entire class of nonpionic interactions in the bare
WZW term, such as €,,,,A*Bj gd?A? + - -+, which we
call “pseudo-Chern-Simons™ (pCS) terms [14]. The spe-
cial case of vectorlike gauging may thus lead to the intu-
ition that pCS terms are somehow unphysical and do not
appear in the full theory. However, this would be a false
impression.

When gauging nondiagonal (nonvectorlike) subgroups
such as SU(2); X U(1)y, the Bardeen counterterm does
not render the theory gauge (A) anomaly free. We will
show, however, that there always exists a new local coun-
terterm that does maintain gauge invariance for the gaug-
ing of any subgroup in the general background of spin-1
classical (B) fields. We give the explicit solution for the
new counterterm in the general case and apply it in specific
cases.

Once the new counterterm is incorporated into the WZW
term, two important things happen. First, the global cur-
rents, as generated by local variations of the appropriate
background fields, become proper covariant objects. The
divergences of these currents are the covariant anomalies
of the theory. The global baryon current and its anomaly
provides an important example of this phenomenon. The
current is modified from the Goldstone-Wilczek form, in
the presence of gauge fields, and becomes a gauge-
invariant operator. Its divergence, arising from a local
gauge transformation of the WZW term in the background
o field, dw, = 9,¢€, yields the correct covariant baryon
current anomaly. We note that there are also corrections
involving the background fields themselves, e.g., including
aterm e*"PFy, D, pg, where py is the background field
with quantum numbers of the p-meson and F7y;, the
SU(2), field strength.

Second, there are now uncanceled pCS term interactions
involving the fundamental gauge fields and the spin-1
background fields that do not involve the pions. These
pCS terms contain observable new physics.

Indeed, the classical background (B) fields can be pro-
moted to describe the physical vector meson fields of QCD,
i.e., the p, w, ay, f|, and so on. It is important to realize the
distinction between classical background fields and physi-
cal spin-1 mesons: the former would describe “pointlike
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particles,” present on all scales of the theory, while the
physical spin-1 mesons have form factors and decouple
from the high energy quark loops. They are only part of an
effective low-energy theory. However, at low energies the
physical spin-1 mesons can be viewed as coupling to the
global currents and they thus behave like the B fields.
Anomalous physical processes involving them can be de-
scribed by the WZW term. The pCS terms are a new part of
the physics in the WZW term, involving exclusively the
spin-1 mesons and gauge fields.

There are many formal issues that must be faced in the
description of the vector mesons as propagating physical
particles, and treating them as gauge fields [7,15] incurs
subtleties. However, phenomenologically successful treat-
ments of processes that involve the spin-1 mesons and
probe the anomalies encoded into the WZW term, such
as w, p — wy, w — 37, etc., do flourish in the literature.
We will postpone the detailed discussion of these issues to
a subsequent paper [16].

Notably, from the new counterterm we obtain an inter-
action of the form e*"*’w ,Z,F ,,, where w is the omega
meson background field, Z the Z-boson in unitary gauge,
and F,, the photon field strength [17]. This interaction
survives as an essential consequence of the nondiagonal
standard model gauge structure and the new counterterm.

The outline of this paper is as follows. In Sec. II we
construct a schematic version of the standard model, i.e., a
“toy”” model, in which the WZW term is nontrivial, but
much simpler than in the standard model. This model
consists of a single color and flavor of quark, and a single
lepton. We gauge the U(1); X U(1)z quark and lepton
flavor symmetries by introducing a “Z” associated with
U(1); and a photon “A” associated with U(1)y. The gauge
anomalies cancel between the quark and the lepton sectors,
as in the standard model. We then integrate out the quark
with a large chirally invariant ‘“‘constituent” mass term,
m,G.qre'®/’, containing a “pion” ¢. This generates the
WZW term involving ¢, Z, and A, which is easy to derive.

We then introduce the “w” vector meson as a back-
ground field coupled to the baryon current. We show that
new anomalies arise in the gauged currents and then con-
struct the counterterm that cancels these anomalies. We
discover that pCS terms such as €,,,,©*Z" F*? remain in
the physical WZW term [17]. Variation of the w field
generates the global baryon current and associated cova-
riant anomaly.

In Sec. III we consider the general problem of a chiral
Lagrangian for a theory in which the chiral flavor symme-
try G is spontaneously broken to a subgroup A while at the
same time we gauge a subgroup G’ C G. We show how to
construct the counterterm that maintains the G’ gauge
anomaly structure in the presence of background spin-1
fields. For a diagonal gauge group G’ C H, this reduces to
the Bardeen counterterm (modulo gauge-invariant
operators).
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In Sec. IV we show that this counterterm plays a crucial
role in the derivation of global symmetry currents and their
anomalies. The anomalous baryon current provides an
important application of this formalism. At the chiral
Lagrangian level we obtain a gauge-invariant baryon cur-
rent from the WZW term with the new counterterm. We
examine the global symmetries that are neutral under the
gauged symmetries (i.e., for which there is no explicit
symmetry breaking by gauging), and find the general
form of the global anomalies for arbitrary background
fields.

In Sec. V we apply these ideas to derive the WZW term
(including counterterms) for the SU(2); X U(1)y gauging
of the U(2); X U(2)g chiral symmetry of QCD in a back-
ground of the spin-1 vector mesons p, w, a;, and f.
Physical applications of these ideas are mentioned, but
the details are postponed to a subsequent paper [16]. For
example, anomaly mediated neutrino-photon interactions
arise from the €,,,,0*Z"F*? pCS interaction, and pro-
vide a possible explanation for excess events seen in the
MiniBooNE experiment [16-18]. In Sec. VI we conclude
and outline some further implications of these ideas.

The SU(2); X U(1)y gauging of the QCD WZW term in
general backgrounds has not, to our knowledge, been
previously developed. Pseudo-Chern-Simons terms with
arbitrary coefficients have previously been appended to
the effective Lagrangian in an ad hoc manner [19-21],
with various phenomenological constraints on the coeffi-
cients. The advantage of our approach is that we predict the
coefficients of such interactions in terms of the strong
coupling constants of the QCD vector and axial-vector
mesons. Our observations about pCS terms and global
anomalies apply to general chiral Lagrangian models,
and are new.

II. SCHEMATIC STANDARD MODEL WITH PCS
INTERACTIONS

A. The WZW term

We now construct a schematic model that exhibits in a
simple way the necessity of adding new counterterms to the
WZW term, and the existence of pCS terms. This model
involves only Abelian gauge groups, but is constructed in
close analogy to QCD and the SU(2); X U(1)y electro-
weak sector of the standard model. It will form the basis for
the general discussion of the SU(2); X U(1)y gauging of
the U(2); X U(2)g chiral Lagrangian of pions.

We consider a theory with a single (N, = 1) “quark™ ¢
and a single “lepton” €. We introduce U(1); and U(1)g
fundamental gauge fields A; and Ay into the quark action:

s, — f d'xq i + A)ar + Grlid + Adar. @)

S, has gauge currents,
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88 88
B), _ 9 _ = Br _ q9 _ =
Jut = Al drYudr 't = SAE drYuqr
&)
that are anomalous:
oI = — 543 Cunpr AL P AT,
( (6)
B) J— 14 (o8
RIS = gy €uvpo M ARIPAT.

Here we use the consistent anomalies that arise from Weyl
spinor triangle diagrams.
To cancel these anomalies we gauge the lepton sector:

S¢ = [d4X€L(iﬂ — A0 + Cr(if — Ap)lr. (D)

Note that the relative signs of the quark and lepton cou-
plings imply that A; couples to B — L for the left-handed
fields, which we denote by (B — L), , while Ay couples to
(B — L)g. Taken together the gauge anomalies cancel be-
tween the quark and lepton sectors in the B — L currents:

9,@y"qL — Ty#ty) = orJ2 =0, ©
0, @y*ar = Cyrer) = 47,0 " =0,

Anomalies remain in the ungauged B + L currents, imi-
tating the structure of the standard model.

We are interested in an analogy to hadronic physics and
the chiral Lagrangian of QCD. Thus, we want to sponta-
neously break the U(1); X U(1)g of the quark sector to
U(1)y. We can do so by introducing a constituent quark
mass term containing an NGB denoted by ¢:

mye' /1 g, qr + H. )

Here ¢/ f is the analog of 7/ f, in QCD.

Technically, in this model the NGB, ¢, would be eaten
by the linear combination Z = A; — Ag, which then be-
comes massive. This is the analog of symmetry breaking in
technicolor theories. Alternatively, we can imagine an
additional Higgs scalar field that gives the Z its mass by
developing a vacuum expectation value v. Z then acquires
a longitudinal component, y, from the phase of the Higgs,
7Z — Z — dx/v. In this case a dynamical NGB remains in
the low-energy spectrum which is a linear combination of
x and ¢ (mainly the ¢ field in the v > f limit). We will
assume the Higgs mechanism is present, allowing the Z to
acquire mass, but we need not explicitly write the y
Lagrangian.

In what follows we will use the abbreviated notation
of differential forms, so that for example

[ d*x€ 1,y ARB9PC” = [ ABAC.
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Under U(1), X U(1)g gauge transformations we have
6A; = de;,
8Ap = degp, (10)

qr — e'“tqq, €, — ety

€R_>e_iER€R,
¢ = fleL — €p).

The gauge transformations acting purely on the quark
sector are anomalous and induce a shift in the quark
effective action, S = [(9,€)J* = — [€d, JH:

i€
qr — € fqp,

1
BS{I = Tﬂ-z feLdALdAL - ERdARdAR. (11)
This is, of course, canceled by the anomalous shift in the
lepton effective action:

1
5S€ = ——2 jGLdALdAL - GRdARdAR. (12)
247

Hence, overall we have a nonanomalous gauge symmetry
and conserved gauged currents as stated in Eq. (8).

We now consider a large m,, limit and integrate out the
quarks (which imitates the effect of confinement; related
examples have been discussed in [22,23]). We are left with
an effective action:

Fwzw(U, AL, Ag) + -+ -, (13)

where T'y,w is the Wess-Zumino-Witten term and the
ellipsis refers to nontopological terms, such as renormal-
ized ¢ kinetic terms. 'y, is a functional of U = ¢/¢//
and the gauge fields, A; and Ay. I'wzw generates the same
anomalies as the quark action in Eq. (11) under the gauge
transformations of Eq. (10).

It is easy to construct the WZW term, by arranging a set
of operators that generate the independent L and R con-
sistent anomalies. We readily obtain
lwzw = ;2 f[ALARdAL + A ApdAg

241

i
f
It can easily be checked that, under the gauge transforma-
tions (10), we have

+ L (dA,dA, + dAxdAg + dALdAR)} (14)

BFWZW = 5Sq, (15)

with 8§, from Eq. (11).

Note that Eq. (14) can be obtained from the expression
for the U(N) X U(N)/U(N) WZW term discussed in
Ref. [7], by taking N = 1. It can also be straightforwardly
derived holographically from the Chern-Simons term and
Dirac determinant of a compactified D = 5 U(1) gauge
theory in which ¢ ~ As, as in Ref. [24,25].

B. Introduction of the w

We now introduce a classical background field coupled
to the ““baryon number”’ in the quark sector. We denote this
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field by @ in analogy to the @ meson of QCD which
couples to the baryon current. The WZW action becomes

rwzw(U, AL + w, AR + (1)) (16)

Note that w is invariant under U(1); X U(1)g gauge trans-
formations. In analogy to QCD we view w as part of the
strong interactions, and do not couple it to the lepton
sector. With w appearing only in the quark sector, we
then find that the theory now contains anomalies under
local U(1);, X U(1)g gauge transformations.

From Eq. (11) we see that

S(FWZW + S@) = % fEL[szde + (d(l))z]
2417
— €g[2dAgdw + (dw)?]. a7n

The gauge symmetry, and the internal consistency of the
theory, is apparently spoiled by the inclusion of w. If,
however, we can find a local counterterm, a functional of
A; Apg, and w, to add to the Lagrangian that restores
U(1); X U(1)g gauge invariance in the presence of a back-
ground w, then the theory can be made consistent, as in the
case of QED, summarized in the Introduction.
The desired counterterm is readily constructed:
1

FC = ——2 ][_ZWARdAR - a)ARda) + ZCUALdAL
241

+ wA;dw] (18)

This counterterm is a necessary part of the low-energy
theory when  is introduced into I'yzw. Adding T',. to
I'wzw, we see that the new w dependent terms in Eq. (17)
are now canceled under a gauge transformation. If w is an
arbitrary classical background field that couples also to
quarks at high energies, then this counterterm is required
in the high energy action, S, as well.

The full WZW term is now given by the sum of I'yzw
and the counterterm:

T = Dwaw(d, AL + 0, Ag + ©) + T (AL, Ag, ®)
= DLwow(d, AL Ag) + T (h, AL, Ag, @), (19)

where we have isolated the interactions involving @ into
r,:

1
. f ? (dAyde + dAgde + dodo)
8 f

- (UALdAL + wARdAR + a)ARdAL
— wA;dAg + wARdw — wALda)i|. (20)

We thus see that pCS terms, such as wA; dA;, now appear
in the complete effective action. I'yzw(d, A;, Ag) gener-
ates the original anomalies « —dA;dA; + dArdAy that
are canceled by the leptons. I', governs interactions of ¢,
A;, and Ap with w (these are analogous to anomalous
interactions in QCD such as w — 7%7y).
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Since I, generates no new gauge anomalies, it must be
itself a gauge-invariant operator. Moreover, under local
shifts in w, i.e., dw = de, this term generates the global
baryon current anomaly:

F&!/%W = oI,
= # €ldA;dA; — dArdAg + dA;dw
— dAgdw], 21
or
9,Jk = — WGWW[G’LAZG”AZ — IFARIPAR
+ 0*A} P w7 — I*ARIP w7 ]. (22)

Here J# is the baryon number current, given by

)

5.3 Cunpol ALOPAT — ARIPAT + A70P AT

— ALOPAY + AVOP @7 — ALOP 0
— 07(¢/f)(9PAYT + 9P AT + 20° w?)
+ 0" (AP w” — AP 07)], (23)

where the last two lines contribute zero to the anomaly.

We thus see that the anomalous divergences of currents
associated with global symmetries are now defined in the
presence of arbitrary background fields through the varia-
tion of a consistent, gauge-invariant action. Note that the
baryon number anomaly is modified in the presence of the
background w field by the dAdw terms. Normally, we
think of the global charges and their anomalies as defined
in the limit w — 0, but we are free to consider the back-
ground field corrections once the gauged currents are
defined to be conserved. In summary: The WZW term
requires the prescribed counterterm to recover the correct
form of the baryon current anomaly. The pCS terms are a
consequence of this structure and generate new physical
interactions.

From Eq. (20) we can anticipate an interesting new
physical application of anomaly physics in the real world
as described in Ref. [17]. WeletA; = Z + Aand Ay = A,
where Z is the analog of the Z-boson and A the photon.
Then we obtain from Eq. (20) the following pCS interac-
tion term:

g 1
IWw = Twzw(e, A, Ag) — 372 f[w(2dA + dZ)

d

+ wda)](Z - —d’) (24)
f

Gauge invariance of the photon is manifest, as it must be,

since 2dA = F is the electromagnetic field strength. The Z

boson is associated with spontaneous symmetry breaking.
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We see that the gauge shift in Z, §Z = de, is compensated
by 6¢ = fe which confirms gauge invariance (again, if a
Higgs mechanism is not present to give Z its mass, then it
will eat the ¢ field as in technicolor theories).

The interaction in Eq. (24) is a term in the low-energy
effective theory describing physics at energy scales below
the quark mass. It contains the massive gauge field Z, and if
My > m,, we integrate out the Z to derive a set of cou-
plings involving only light fields as in Ref. [17]. The wZdA
term leads to a novel neutrino-photon interaction in nucle-
ons or at finite baryon density, which may be relevant to
various experiments and astrophysical processes [17].

III. THE COUNTERTERM FOR GENERAL
GAUGING

The schematic model illustrates a problem that can be
posed more generally as follows. Consider a “quark sec-
tor” with a global (chiral) flavor symmetry G and a sub-
group G' C G which is gauged. In general, G’ contains
anomalies coming from the quark sector, so we further
assume a lepton sector coupled to the gauge fields of G/,
which cancels the quark sector anomalies. The quarks are
confined, or decoupled, and the flavor symmetry G is
broken spontaneously to a subgroup H, giving rise to
NGB’s that are elements of the coset space G/H. Some
of the NGB’s may be eaten by gauge fields, or the gauge
fields may acquire mass from a Higgs sector.

As a concrete realization of this we can consider the
(u,d) quarks with flavor symmetry G = SU(2); X
SUQ2)g X U(1), X U(1)g, and spontaneous breaking to
H=SU®2), X U(l)y. We gauge the SU?2), X U(1l)y
standard model subgroup, and the W and Z then acquire
mass from the usual Higgs boson. The leptons (v, e) will
cancel gauge anomalies of the quark sector.

The low-energy physics of the quark sector is repre-
sented by an effective Lagrangian describing the NGB’s
and gauge fields, denoted by A. It will also contain the spin-
1 vector and axial-vector fields, denoted by B, which will
be assumed to transform covariantly under G’. The NGB’s
are contained in a chiral matrix field U.

Under a general infinitesimal transformation, €, of G we
have

SU =ie; (e)U — iUeg(e), SA = de + i[¢g, A,

8B = i[e, B]. (25)
Equation (25) allows for the possibility of a nonlinear
realization, e.g., SU = ieU — iU€'(¢, U), with € € H
[26]. If we specialize to G = U(Ny), X U(Ny)g, with the

associated gauge bosons A; and A, and background fields
B; and By we have

oU = iGLU - iUGR, (26)

and
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BAL = dEL + i[GL,AL],
5BL = i[EL, BL]’

6AR = dER + i[ER, AR]’
5BR = i[ER, BR] (27)

The full effective action contains the kinetic terms of the
NGB’s and gauge fields, and any mass terms associated
with explicit breaking (which may involve the Higgs sec-
tor). The effective action also includes the WZW term,
I'wzw(U, A + B), which represents the anomaly structure
of the quark sector. We also have the contribution, Iy, to
the effective action from the lepton sector.

The key point is that the covariant classical background
B fields are present in the quark sector, but not in the lepton
sector. Mixed terms containing A and B will thus arise in
the gauge anomalies of the quark sector, that are not
canceled by the lepton sector.

A. The counterterm

In deriving the counterterm, we will not need the explicit
form of the WZW term, but only the consistent anomaly
that it generates. Consider first the case B = 0. Then under
a general gauge transformation in G’ we have

8Ty = —2C f Tr[e(dAdA - %dA3>} (28)

The quantity C is fixed by properties of the underlying
fermion theory. For example, for quarks transforming in
the fundamental representation of SU(N,),
N,
C=—-——5. 29
481 (29)
Equation (28) is the “consistent” form of the anomaly,
before any counterterms are added, and it is canceled by
the contribution from the lepton sector:

5T, = 2C f Tr[e(dAdA - %dA3>} (30)

It is convenient to write, modulo a total divergence,
STwpw = 2C f Tr[de(AdA - %A3>} 31)

Now we introduce the B fields by making the replace-
ment A — A + B in the quark sector only. This changes the
variation of the WZW term so that under the general gauge
transformation of Eq. (25) we have

STypy + Tp) = 2C f Tr{de[BdA + dAB + BdB
- %(BAZ + ABA + A2B)
- %(BQA + BAB + AB?) — ;33}]’.

(32)

Our problem is to find a counterterm that cancels this
variation.
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The explicit construction of the counterterm is straight-
forward, and we obtain the result:

1
r,=-2C f Tr[(AdA + dAA)B + 5 A(BAB + dBB)

3 3 i
—~ 2 A3B—ABAB — —AB |, 33
2 4 2 } (33)

The fact that 8", = —8('yw,w + I'¢) can be verified ex-
plicitly. Therefore, the full action,

F = FWZW + FC + Fe, (34)

is now gauge anomaly free in the presence of the NGB’s,
gauge fields and spin-1 mesons.

Note that if we specialize to G = U(Ny), X U(N)g,
with the transformation law (23), the counterterm takes the
form:

FC = _ZC/TI[(ALdAL + dALAL)BL

1 3i
+ EAL(BLdBL + dBLBL) - EIA:ZBL

3i .

B. Relation to Bardeen counterterm

Suppose that we gauge only vector symmetries, for
example U(1)gy, in the standard model. We then have

A, —A+B, =A, Ar — A+ Bgr = Ax, (36)
where B p are again background fields, transforming co-
variantly under the gauged symmetry. The Bardeen coun-

terterm takes the form —Iyw,w(U =1, A, Ag) from
Eq. (69) (e.g., see Ref. [7]):

I'argeen = —C f Tr|: (dARAg + ARdAR)A,
- (dALAL + ALdAL)AR

1

It can be easily verified that, after including the counter-
term (37), the full result I'yyzw + I'pardeen 1S gauge invari-
ant in the vector subgroup. How does I'g,rgeen COMpare to
our result in Eq. (35)?

The Bardeen counterterm mixes the B; and By, fields. At
first sight, this seems to contradict Eq. (35). However, upon
closer inspection we see that all such mixed terms arrange
themselves into operators that are gauge invariant in A. For
example, the terms mixing B; and By with one A field and
two B fields are

PHYSICAL REVIEW D 77, 085017 (2008)
TH{(dBRA + dABg + BrdA + AdBy)B, ]
— Tr{(dB,A + dAB; + B,dA + AdB;)Bg]
= 3T dA(BxB, — B.Bg)) (38)

where a total divergence has been dropped. Terms with two
A’s and two B’s are

- 31T1‘[A2(BRBL - BLBR)] (39)

Equations (38) and (39) combine into the gauge-invariant
expression,

3Tr(dA — iA?)(BxB, — B, By)]. (40)

Continuing in a similar manner, the terms mixing L and
R are all seen to form gauge-invariant operators in the
fundamental gauge fields A.

Splitting the Bardeen counterterm into a gauge-invariant
and anomalous piece,

— TGL
FBardeen =T Bardeen

+ l"anom. (4 1)

Bardeen’

we find

rL ——c f TH3(dA — iA2)(BxB, — By Bg)
+ (DBRBR + BRDBR)BL
— (DBLBL + BLDBL)BR]. 42)

Here the covariant derivatives acting on B g, taking ac-
count of the anticommuting forms, are

DBL == dBL - lABL - iBLA,
DBR = dBR - lABR - lBRA

(43)

The remaining, anomalous part can be simplified to

[ranom.  — l“c

Bardeen
= f Tr[Z(dAA + AdA)B,
+ A(dB,B, + B,dB,)
3
— i<3A3BL + SABLAB, + AB%)} — (L = R).
(44)

When A; = AR = A, i.e,, when only vector symmetries
are gauged, our general expression (35) reduces to pre-
cisely this form. Our new counterterm is the generalization
of the Bardeen counterterm when the gauge subgroup G’ is
not contained in the unbroken subgroup H of the chiral
theory G/H.

The Bardeen counterterm has been well studied in the
past. For example, in Ref. [27], the Bardeen counterterm is
employed for the purpose of constructing the gauged
WZW term by an integration formula that requires vanish-
ing anomaly in the unbroken (H) subgroup of a general
G/H. Inclusion of the Bardeen counterterm can be phrased
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as the boundary condition I'(U = 1) = 0 when integrating
the anomaly [1]. Our results show, however, that this
boundary condition is incompatible with gauge invariance
in the general case involving nonvectorlike gauging.

The Bardeen counterterm has also appeared in phe-
nomenological analyses [7]. However, such analyses ne-
glect the important effects of neutral and charged weak
currents, and have added the counterterm in an ad hoc
manner: only photon gauge invariance is preserved, and
global chiral symmetries are broken even in the absence of
gauge fields. The Bardeen counterterm maintains gauge
invariance in the presence of background fields only when
vector symmetries are gauged. It is not the appropriate
construct when the full standard model SU(2); X U(1)y
gauging is relevant.

IV. GLOBAL CURRENT ANOMALIES AND
GAUGE-INVARIANT OPERATORS

The new counterterm is necessary for a proper derivation
of global current anomalies, such as the baryon current
anomaly in the standard model. Our counterterm ensures
that the action is anomaly free under the gauged G’ sym-
metry, in the presence of arbitrary background fields. This
action still has a number of global symmetries that are not
broken explicitly by gauging, namely, the special trans-
formations for which [€, A] = 0. The associated symmetry
currents are generated by varying the background fields,
and are conserved modulo anomalies. Since our theory is
locally gauge invariant under G’ transformations, the
global anomalies generated from the full action will auto-
matically be gauge covariant expressions in the A. In this
sense, they are “‘covariant’”” anomalies. The formalism also
implies that these currents and anomalies necessarily con-
tain the background spin-1 meson fields, B. Note that, since
the global anomalies are derived from a well-defined ac-
tion, they necessarily satisfy the appropriate extension of
Wess-Zumino consistency conditions that describes varia-
tions with respect to both A and B fields.

A. The general case

Let us then consider the variation,

0U = ie; (e)U — iUeg(e), 8A = i[e, A] =0

" (45)
6B = de + i[¢, B].

Since B enters only the quark sector, and we impose
[e, A] = 0, the lepton effective action, I';, is invariant.
We therefore need consider only the variation of
I'wzw(U, A + B) + T'.(A, B).

We thus obtain the general expression for the global
anomaly:

PHYSICAL REVIEW D 77, 085017 (2008)
5Ty +T,) = —2C f TrHs(dA a2y

4 3(dA — iA2)DB + (DB)* — 50(33)

+ iB(dA — iA%)B — i(dA — iAZ)BZLL

(46)

where DB = dB — iAB — iBA. Note the appearance of the
covariant field strength, (dA — iA?). We emphasize that the
form of this result depends on the condition [€, A] = 0. In
the explicit chiral representation for U(N), X U(Ny)g the
anomaly takes the form:

8Typy +T,) = —2C f Tr{eL[s(dAL — A2y

+3(dA, — iA2)(DB,) + DB.DB,

- éD(B%) + iB,(dA;, — iA?)B,

— i(dA, — iA%)B%“ —(L~R), @)
with DB, = dB, — iA, B, — iB,A,.

B. Application to the standard model

Let us illustrate the computation of covariant anomalies
by considering the baryon current of the first generation
quarks in the standard model. We will first give a descrip-
tion at the quark level, emphasizing that the counterterm is
required for a correct derivation of the anomaly. We then
give an equivalent description at the chiral Lagrangian
level. This leads to a generalization of the Goldstone-
Wilczek current in the presence of gauge fields.

Let O = (u, d) and consider the action:

So= fd4xQL(iJ+AL +B.)0, + Or(iff + Ax + Br) Ok,
(43)

where ALM =g2WﬁTa/2+g1W2YL/2, ARM =
§iWoYr/2, B, = By = w,diag(1/3,1/3). Under varia-
tion in w,, we obtain the baryon current:

8Sp _ =1
ow, 3

oy+Q. (49)

By considering the local variation 0w = de, we obtain
from the Weyl quark loops the consistent anomaly of the
quark effective action:

88plw—0 = —ZCfeTr%[(dAL)z — %d(A?_)}}
— (L < R). (50)

We must also include the counterterm (35), which takes the
form, to leading order in w,
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1 .

— (L < R). (51)

Under the local variation dw = de we find

ST, = -2C f Tr% e[szLdAL - %d(Ai H
_ (L — R), (52)

and upon combining the quark loop contribution with the
counterterm we find

58Sy + 8T,y = —2C f Trle(dA, — iA2)*] — (L < R)
1
= fd4xe—6477_2 e’“’”"(g%Fﬁ,,Fgo
1
+ 3 Trng%Fl{VFg(,), (53)

where F4, = 0, We — 9,W% + g,e* W, W5 is the cova-
riant SU(2),, field strength, and F}, = 9,W) — 9,W, is
the weak hypercharge field strength. The factor Tr(Y?) =
2 X (1/3)? — (4/3)> — (—=2/3)> = —2 is traced over the
(u, d) quarks. Note that we could also have read this result
directly from Eq. (47).

Hence, with F,, = (1/2)€,,,,F?7,

1

a —
3272

= (83FfL, POk — giFy, FY1Y). (54)
While this result can be obtained by naively rescaling
Feynman diagrams, using Adler’s axial-vector anomaly
from QED as a starting point, the result would then be
only fortuitously correct; the modified counterterm struc-
ture is required to generate the formally correct baryon
current anomaly in the standard model. For B = L we need
a similar counterterm construction in the lepton sector with
an auxiliary background field, etc. Of course, the B — L
anomaly cancels between leptons and quarks, insofar as we
take the limit of zero background fields after calculating
the current divergence. The B + L anomaly is 2 times the
above result, Eq. (54).

Note that if we had inadvertently used the Bardeen
counterterm of Eq. (37) in defining the baryon number

current and divergence, we would have
1 .
1_‘Bardecn = _2C]Tr|:§ w(ALdAL - %Ai + 3dARAL
— ApdAp + %A% - 3dALAR>}

and a short calculation shows that the resulting baryon
number current would have zero divergence in place of
1/327? in Eq. (54).
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C. Generalization of the Goldstone-Wilczek current

We can give an equivalent description of the anomalies
at the level of the chiral theory of mesons, instead of at the
quark level. The WZW term, with the new counterterm,
can be expanded in the external fields B:

T4, B, U) = T4, U) + [ dxTe(B, ) + O(B2). (55)

The leading term in the expansion, I'(4, U), is the original
WZW term. It generates the consistent gauge anomaly,
which is canceled by the leptons. Therefore the subsequent
terms, such as Tr(B,J*), must be gauge invariant. In
particular, J,, is the covariant global current associated
with B.

Let us again focus on the baryon number current in the
UQ2);, X U(2)g chiral theory, so that B; = By =
w diag(1/3, 1/3). First note that, in the limit A, = Az =
0 we see, from the WZW term reproduced below in
Eq. (69), that (o = dUU"):

o 2

FWZW = _CGMVPO' Tr(a”apa”)

J =
3

o Sw

o

= Nfze/-wwTr(UaVU*UaPUTUaUU*). (56)
T2
This is the Goldstone-Wilczek topological current that
describes baryon number in the chiral Lagrangian [11].
The current arises automatically upon introducing the
background o field into the WZW term. With N, = 3 it
yields a baryon number of 1 for a Skyrmion hedgehog
configuration.

Armed with our new counterterm and using Egs. (55)
and (69), we can compute the form of the baryon current in
the presence of the gauge fields. For simplicity we keep
just the SU(2); part. The result is a gauge-invariant cur-
rent, as it must be, and for N, = 3:

3i

enrPo Tr(d,,dpd(, + —FLVP&(,) (57)

J =
2

E 242

Here
a,=(D,0)U", D, =9, iAL,

| (58)
FL,uV = l[D/_u DV]

This current reduces to the Goldstone-Wilczek result (56)
when A; — 0.

A similar current using electromagnetic gauging was
given by Goldstone and Wilczek [11], and used by
Callan and Witten to study monopole catalysis of baryon
number viewed at the Skyrmion level [28]. The non-
Abelian form was constructed using dimensional decon-
struction, matching to a Yang-Mills topological current in
D = 5 in Ref. [29]. The present derivation by variation of
an action is more general, and it is now straightforward to
construct any of the chiral topological currents by variation
of the WZW term plus counterterm. This non-Abelian
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SU(2), current can arise only when we use the WZW term
with our improved counterterm I’...
Note that we can compute explicitly, for N. = 3,

1 S
GMJ'”“ = _WTI.(FLMVFZ’ ), (59)
where a useful identity (the Bianchi identity for a decon-
structed D = 5 theory [24]) is

[D/u dv] - [Dw &p,] = [d/u dv] - iFL,uV' (60)

Equation (59) reproduces the result for SU(2); obtained in
Eq. (54). Note that for a self-dual instanton in which
F,,= F uv» and we have the Euclidean action (1 /2g3) X
[TrFF = 87*/g3, the baryon charge is changed by one
unit, and B + L changes by 2 units, confirming the usual
intuition.

It is interesting to contemplate the full background field
(B) structure of Eq. (47). Note that the B-field containing
terms are a total divergence, and can be absorbed by a
redefinition of the baryon current. However, they probably
do have a physical role to play at high baryon density. Note
that there is no F¥dw term in the baryon current anomaly,
owing to Tr(Y, — Yg) = 0. However, if we keep the p
meson then there are surviving mixed isospin and weak-
isospin terms Tr(Fydp) (Fy is weak isospin). Whether
there is more to this story, e.g., an enhancement of baryon
number violation at large finite baryon density through this
form of the mixed anomaly, or a description of certain
superfluid phases of baryons, remains to be investigated.

D. Gauge-invariant operators

Throughout this discussion, we have implicitly assumed
that the counterterm (33) is unique. In fact, we can con-
struct additional gauge-invariant operators beginning at
quadratic order in the B fields. While in the limit B — 0
the gauge field part of the global anomaly is uniquely
determined, these terms can potentially lead to an ambi-
guity in the structure of the global anomaly at finite B. For
simple group models, we can add a general counterterm of
the form

rwl=]}nﬂmuA—mm, 61)

with ¢; a free parameter. In fact, it is easy to show that the
general anomaly (47) is not affected by this term.

For product group models, the situation is slightly more
complicated. A short calculation, after dropping total de-
rivatives, yields the general expression for terms contain-
ing at least one A field:

Tooy =N [te, THB? (dA, — iA?)]
<Gl = 543 cyp Hbplan, — 1Ay
+ Cor, Tr(BL) Tr[BR(dAR - IA%)]

+ ¢3; Tr(B,) Tt[BgDBR]} + (L = R).  (62)
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To recover a parity-symmetric theory when only vector
symmetries are gauged, we should have ¢; = —cp. The
effects of these operators on the anomalies at finite By g
can be worked out in the general case. For example, when
the field w coupling to baryon number is the only back-
ground field present, then I'.g; =0, since
7w, @, =0,

V. PSEUDO-CHERN-SIMONS TERMS FOR THE
STANDARD MODEL

We can apply the results from the previous section to
compute the explicit form of the pCS terms for the standard
model. For simplicity, we focus on a single standard model
generation, i.e., the (u, d) quarks and the (v,, ) leptons.
The low-energy physics of the quark sector is represented
by a U(2); X U(2)g chiral Lagrangian describing interac-
tions of the three pions and the 7, gauge fields, and vector
mesons. The lepton sector is also present in the effective
theory. We introduce the full SU(2); X U(1)y gauging and
gauge anomalies cancel between the quark and lepton
sectors. We also include the spin-1 vector mesons, treated
as classical background fields, corresponding to the p%*,
o? and al‘i, 1Y vector and axial-vector mesons. At ener-
gies < GeV, where the chiral Lagrangian description is
appropriate, the W and Z bosons may be subsequently
integrated out of the theory, and their effects represented
by the corresponding charged and neutral weak currents.

The complete effective Lagrangian thus contains the
kinetic terms of the NGB’s, leptons, gauge and vector
meson fields, and any mass terms associated with symme-
try breaking [which may involve the Higgs sector for the
SU(2); X U(1)y breaking]. The effective action also in-
cludes the WZW term and the counterterm:

iy =Twzw(U, A+ B) + T.(A B), (63)

which represent the full anomaly structure of the quark
sector.
For the fundamental gauge fields we write

1
AL:g2Wa70/2+g]W0(6 l);

).

[we use WY to denote the U(1), gauge field, so as not to
confuse with our previous usage of B as a generic classical
background field]. In terms of the charge and mass eigen-
states after electroweak symmetry breaking, we have

! wW* + ! w-
V2 V2

W3 == CWZ + SwA,

(64)

W=

2
Ap = 81W0<3

WO = _SWz + CwA VV1 =
. . (65)
1 1
W2 =Wt — W~
V2 V2

where ¢y = g2/4/81 + &3, sw = &1/4/87 + &3
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Let us now put the standard model in the classical
background of vector and axial-vector mesons:

0 Dot W
BV = BL + BR = g( .\/—gpi \/——ZO ) + gl< a))’

0 +
BAEBL_BR:g(\/ga— \/_izo )"’g/(f f)’
(66)

where p and a are isotriplets and @ and f are isosinglets.
Note the slightly unconventional definitions V, A = (4, =
Apg) instead of V, A = (A, * Ag)/2; the resulting normal-
ization of g, g’ can be more readily compared to the
literature. Note also that this normalization implies that

8w =138, (67)
|
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where g, multiplies the field that is coupled to baryon
number [16]. In the following, we suppress coupling con-
stants for the vector fields. We can recover the complete
result  with couplings by taking (A, W,Z)—
(g2A’ gZW’ gZZ)’ (p’ a) - (gpr ga)’ (w’ f) - (g/a)’ g/f)

A. Fundamental gauge fields and anomaly cancellation
The WZW term for U(N), X U(Ny)g — U(Ny)y is

given in a convenient form by Kaymakcalan, Rajeev, and
Schechter [7,30]. In terms of

Apr=ALr T BLg

we have

Pl Ay, A) = To(0) + € [T Ay + Anp) ~ SUALF — (AehP]+ (AU AR a2

+ (AR AR+ Ard AR+ (Ada + AB) — (dA, A, + AL dA)UARUT
+ (dﬂRﬂR + ﬂRdﬂR)UTﬂLU + (ﬂLUﬂRUTﬂLa + ﬂRUTﬂLUﬂRB)

+ i[ﬂiUﬂRUT - AJUTA, U - %(UJZ\RUUZLL)Z}}. (69)

Here o = dUUT and 8 = UTdU. The function I'y is given
by

Lo(U) = ~E [ 1)
5 M5
iNC 5, cABCDE
= 24077_2 d’xe Tr(aAaBaCaDozE), (70)

where M? is a five-dimensional manifold with spacetime as
its boundary. The quantization condition ensures that e’
is independent of the choice of bounding surface. In four
dimensions,

2N,
1572f3

Ty(U) = f Tadm) ]+ ()
M

Also, we have the new counterterm I, which is given by
Eq. (35). We now take I'lMl . = I'yzw + I'. and examine
the terms containing mixed factors of fundamental gauge
fields, A’s, and classical background fields, B’s.
Notationally, in the following a term denoted I'y4p con-
tains two factors of A and two factors of B, etc.

The terms in ['¥. involving just the fundamental gauge
fields A; g do not involve the counterterm. Explicitly, we
see that the terms with three and four fundamental fields
read

2 1 2 §2
Taan = C | dZAZ(= sy — = 2} + dAaz(= W
3V T2 3 cy

1 2 1
+ (@WrW™ +dw~ W+)<f W sWA>,

6 Cw 6
(72)
T — 1 sy
FAAAA ZCle 4 ZA(Z C_> (73)
w

The terms I"444 and I'y444 combine with the lepton-sector
loop contributions to produce gauge-invariant operators
that do not involve the vector meson fields. In a formal
limit where we assume the leptons are heavy, we can
integrate out (», e) to obtain the lepton-sector WZW term
as a function of W, Z, vy, and the NGB’s of the Higgs
boson. In this case, the pure gauge terms [Egs. (72) and
(73)] cancel exactly against corresponding lepton-sector
loop contributions [23,31].

B. Interactions involving vector meson fields

Since the B fields transform linearly under the gauge
transformations, the sum of the remaining terms must be
separately gauge invariant. For the various remaining terms
in Tl the result is
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FAAB C]dZZ|:SW pO + < 3 3)(1)
Cw 2cy

— swdA[Wp* + W¥p~]+ (DWW~ + DW~ W+)[

3 2 3
FABB=Cdep0 __(I)_S—Wa0+ _—+3CWf
2CW Cwy ZCW

1
w
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2

3
S—Wpo —ﬂw} +dZ[W p* + W+p_]s—w

Cw Cw Cw
3 1
Yo-11]
2
+dw —ipo—i- —i+3cw a® W
2CW 2CW Cw

53 3 1 3 2 1
+ da [ W50+ <—— 3cW>a) —2—f} + df[(z—— 3CW>p +W,_ - 4 “ + sydA(p°a® + 3p°f
c c c

Cw 2CW w

w 2ey

2 3
+3wad’ + wf + pta” +pat) - S—WdZ(era_ +pat)+ §[W+Dp_ + W Dpt](—w + f)
Cw

2

F LW (=3p7 = a) + W (3" — a S,

+ é[WJr(—p_ +a )+ W (—p" +a")]do + %[W+Da_ + W Dat (3w — f)

Tppp = 0/2[(p‘f + wa”)Dp* + (wa™ + p* f)Dp” + (wa’ + p°f)dp® + (pTa” + p~a* + of + p’a®)dw],

1
FAAAB = Cle+WZ|:3CW(() + (CW + m)f},

FAABB—Cf {W* [ (0" + ) ~ 3 (p° —a°)f}+w+2[(3cTW——)pf——pw

13V |+ we g (<2 L) p g 3w
2 2 Cw

2

1

Woptw+ Watf—

3CW +
2 3 v “

Cupss = C/i{W+[p_p0(w —2f) — p wa® + pPwa” + wa a®]+ W [pTp(—w + 2f) + pTwa® — p’wa™

0 1
- wa a]-i—Z—p p w+|—
W

These results use the abbreviated notation of differential

forms, so that for example fd“xewp(,A“B”apC" =

f ABdC. Here we have defined covariant derivatives of

the charged fields as

DW= = dW= T isy AW=,
Da™ = da™ F isyAa™. (75)

Dp* =dp™ F isyAp~,

Note that the photon always appears as a field strength, or
as a covariant derivative acting on charged vector bosons or
mesons, as required by gauge invariance. Gauge invariance
in W and Z is not explicit, since we have not included terms
involving the pion fields.
Some notable interactions in the above include the term
from I'y4p:
3s w

——gzg’waZdA (76)

This interaction was studied in Ref. [17] and mediates
neutrino-photon interactions in nuclear matter. It should
be noted that, without including w in the WZW term, the
wZdA interaction can still be obtained from the assump-
tion that the physical w couples to the baryon current, J,,,

1
2cy + —>(2p+p_f + ptwa”
c

—p wat) +Ciwa+a_ﬂ. (74)
w

[

through a phenomenological interaction of the form
gow"J,. At low energies we must then use for J, the
modified form of the Goldstone-Wilczek current in the
presence of Z and A as dictated by gauge invariance and
the new counterterm. This contains the wZdA interaction
precisely as in Eq. (76).

Note that in I' 455 we find a term:

3s18,88'C [ dAp°f. (77)

This term mediates the decay f; — p°y and is in reason-
able accord with experiment. We will study such interac-
tions in more detail elsewhere [16].

InT BBB W€ find

2g%g'C f(a)aodpo + p’ad’dw). (78)

Operators of this form have been studied in Ref. [32].
However, such terms can be modified by the gauge-
invariant operators of Eq. (62) whose coefficients are not
fixed solely by anomaly matching arguments.
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VI. CONCLUSIONS

In this paper we constructed the gauged WZW term for
the standard model SU(2); X U(1)y gauge subgroup of the
U(2); X U(2)g chiral symmetry of the strong interactions.
An essential ingredient in this construction was the de-
mand that we maintain gauge invariance in the presence of
background fields coupled to the U(2); X U(2)y currents.

These background fields play two distinct but equally
important roles. First, they allow us to define the currents
of global symmetries through variation of the background
fields. When applied to the (anomalous) baryon current this
allowed us to derive a generalization of the Goldstone-
Wilczek current in the presence of both fundamental gauge
fields and background vector fields. Second, in environ-
ments where physical background fields are nonzero, such
as at finite baryon density, we are led to a rich set of new
interactions. For example, we find interactions that mediate
neutrino-photon interactions in nuclear matter as discussed
previously in Ref. [17].

A third role for these fields naturally suggests itself,
namely, to promote them to the dynamical vector meson
fields of QCD in the spirit of vector meson dominance. We
then have an interesting set of pCS terms which couple the
vector mesons of QCD to fundamental gauge fields. A
detailed analysis of the phenomenology of these terms
will be presented elsewhere [16]. We mention here that
the couplings we find lead to results for both the rate and
polarization structure of the decay f; — p°y which are in
agreement with experiment. We emphasize that the pro-
cesses resulting from the identification of the background
fields with vector mesons are not to be thought of as
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interactions in the fundamental, underlying theory of
quarks and leptons. Rather, they emerge in a low-energy
effective description of QCD coupled to electroweak gauge
fields.

Since in the real world the W and Z bosons are much
heavier than the scale of QCD, the W and Z should be
integrated out and replaced by the charged and neutral
currents to which they couple. In the formal limit g, , —
0, the W and Z are explicit degrees of freedom in the low-
energy theory, and the constraints of SU(2); X U(1)y
gauge symmetry are explicit. Since we remain in a pertur-
bative regime, the constraints survive at the physical values
of these couplings. Restricting the weak currents to their
components involving light fields then gives a low-energy
effective Lagrangian which is valid for energies and mo-
mentum transfers up to the scale at which chiral perturba-
tion theory breaks down, 47 f, ~ 1 GeV.

The centerpiece of our analysis is the derivation of a new
counterterm which must be added to the WZW term in
order to maintain gauge invariance in the presence of
background fields. Once the counterterm is fixed, the full
action provides a complete description of the global cur-
rent anomalies of the theory, and also leads to a rich set of
new interactions with many potentially important physical
applications.
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