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In this second paper of the series, we calculate the stress tensor of excited matter, created by debris of
high energy collisions at the boundary. The falling open strings, connected to receding charges, produce a
nonzero stress tensor which we found analytically from time-dependent linearized Einstein equations in
the bulk. It corresponds to exploding nonequilibrium matter: we discuss its behavior in some detail,
including its internal energy density in a comoving frame and the ‘‘freeze-out surfaces.’’ We then discuss
what happens for the ensemble of strings.
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I. INTRODUCTION

This is the second paper of the series, and the first one
[1] (to be referred to as [I] below) had a rather extensive
introduction. Therefore we just briefly reiterate here the
main goals of this study.

The holographic description of N � 4 SYM theory in
the strong coupling regime can be achieved via AdS/CFT
correspondence, which relates it to string theory in AdS5 �
S5 space, in classical supergravity regime. A large number
of applications use this tool to study properties of strongly
coupled quark-gluon plasma: but most of them are done in
a static setting, with fixed temperature via Witten’s AdS
black hole metric.

High energy hadronic collisions in QCD are very diffi-
cult problems. They are time dependent and include non-
equilibrium physics [only collisions of heavy ions can be
approximated by hydrodynamics and locally equilibrated
quark gluon plasma (QGP)]. On top of that, they involve
different scales and different coupling regimes. Pure phe-
nomenological approaches were developed long ago, such
as e.g. Lund model [2], which are based on a picture of
QCD strings stretched by departing partons. A more recent
approach—known as the color glass picture—was pro-
posed by McLerran and Venugopalan [3], who argued that
since fluctuations of high energy collisions lead to large
local color charges (in the transverse plane), they would
lead to production of strong color fields. Those are treated
by the classical Yang-Mills equation in a weak coupling
regime.

Arguments suggested recently put forward a view that
QCD has a certain ‘‘strong coupling window.’’ In particu-
lar, Brodsky and Teramond [4] have argued that the power
scaling observed for a large number of exclusive processes
is not due to perturbative QCD (as suggested originally in
the 1970’s) but to a strong coupling regime in which the
running is absent and the quasiconformal regime sets in.
Polchinski and Strassler [5] have shown that, in spite of
exponential string amplitudes, one does get power laws
scaling for exclusive processes, due to convolution (inte-
gration over the z variable) with the power tails of hadronic
wave functions. One of us proposed a scenario [6] for AdS/

QCD in which there are two domains, with weak and
strong coupling. The gauge coupling rapidly rises at the
‘‘domain wall’’ associated with instantons. Pion diffractive
dissociation is a process where a switch and weak coupling
domains are observed: and cross section behavior is con-
sistent with the Polchinski-Strassler expression and ex-
pected coupling change. Last but not least, such an
approach looks now natural in comparison to what happens
in heavy ion/finite T QCD, where we do know now that at
comparable parton densities the system indeed is in a
strong coupling regime.

Accepting the color glass picture as an asymptotic for
very high parton density and large saturation scale Qs !
1, one should ask what should happen in the case of
saturation scale falling to intermediate momenta Qs �
:3–1:5 GeV associated with ‘‘strongly coupled window.’’
This is the issue we address in this work, using the AdS/
CFT correspondence in its time-dependent version, as a
tool to describe the evolution of the system.

The setting has been discussed in [I], where we exten-
sively studied how exactly the ‘‘debris’’ produced in a
collision—particles or open strings—are falling under
gravity force into IR (the AdS throat). In this work we do
the next technical step and calculate the backreaction of
gravity by solving the linearized Einstein equations for
metric perturbations, deducing the space-time dependence
of the stress tensor T���x� of excited matter observed on
the boundary.

The general setting is in fact rather similar to the Lund
model: except that strings are departing from our world
(z � 0 boundary) rather than breaking. Technically our
work is a development along a line actively pursued by
many authors. (Early work in a different scenario focused
on the effective stress tensor on a brane [7]). In particular, it
can be considered a continuation of our recent work [8] in
which we calculated static (time-independent) stress tensor
associated with Maldacena’s static dipole. It is also similar
to recent AdS/CFT calculations of a hydrodynamical
‘‘conical flow’’ from quenching jet in QGP [9,10].

The process we describe resembles what happens in
heavy ion collisions, but with very important distinction.
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In the setting of this paper we treat debris as small pertur-
bation, solving linearized Einstein equations in pure AdS5

background. Therefore there is no black hole and/or tem-
perature in this work, and our ‘‘miniexplosion’’ produces
matter which is not equilibrated and the resulting stress
tensor cannot be parametrized hydrodynamically.

To get all that one needs to proceed to nonlinear gravity
and a nonlinear process of black hole formation: the prob-
lem which we hope to attack elsewhere.

II. SOLVING THE LINEARIZED EINSTEIN
EQUATION

We want to solve the linearized Einstein equation in
AdS5 background in Poincare coordinates, with standard
background metrics

 ds2 �
�dt2 � d~x2 � dz2

z2 � h��: (1)

An axial gauge is chosen for metric perturbation, so hz� �
0.

The linearized Einstein equation is well known and the
tactics used in its solution are discussed in [8]: the present
case is only different by appearance of time derivatives. We
put it into the form

 

1

2
�hmn � 2hmn �

z
2
hmn;z � smn; (2)

where � � z2��@2
t � @2

~x � @
2
z�, the indices are 0–3 and

the right-hand side is the generalized source

 smn � �Smn �
Z z

0
��Szm;n � �Szn;m�dz�

1

2
h;m;n

�
1

2
�zmnh;z (3)

containing not only the stress tensor of the source

 �S�� � ��2

�
T�� �

T
3
g��

�
(4)

but also the following combinations of perturbation metric
which can be easily found from the equations:

 h �
1

3

Z z

0
dz � z

�
�Szz � �Stt ��i�Sxixi

� 2
Z z

0
dz���Szt;t � �i�Szxi;xi�

�
:

The source term for different objects is standard, ob-
tained via variation of their action over the metric

 SNG � �
1

2��0
Z
d2�

�������������������
� detgind

p Z
d5x��5��x� X����

(5)

 T�� � �
2�SNG�������
�g
p

�g��

�
1�������

�g
p

2��0
Z
d2���5��x� X����@�X

�@�X
�g��ind :

(6)

Here g�� and gind;�� denote the AdS metric and the
induced metric on the string world sheet, respectively.

In the next section we find an expression for Green’s
function, which will provide hmn for any given source smn.
We will then extract an expression for the coefficient of the
z2 term in Taylor series of hmn at the boundary, which by
the rules of AdS/CFT correspondence gives us the bound-
ary stress tensor.

III. THE GREEN’S FUNCTION FOR THE
LINEARIZED GRAVITY IN AdS5

The Green’s function we need satisfies the following
equation:

 

z2

2
�@2
z � @

2
t � @

2
~x�G�z; z

0� � 2G�z; z0� �
z
2
@zG�z; z

0�

� ��z� z0���t� t0���3��x� x0� (7)

and the solution to (2) is then given by hmn�z� �R
G�z; z0�smn�z

0�dz0. Thus G�z; z0� should satisfy the same
boundary condition as h�z�. Fourier transforming the 4-dim
part of (7), we have the z- dependent equation

 

z2

2
�@2
z �!2 � k2�G�z; z0� � 2G�z; z0� �

z
2
@zG�z; z0�

� ��z� z0�; (8)

where Gk�z; z0� �
R
G�z; z0�e�i!t�i ~k ~xdtd3x.

Equation (8) can be solved in terms of Bessel functions:
For j!j> k, the solution is a linear combination of Bessel
functions of the first and second kind. We impose the
following boundary condition: at z � 0, G�z; z0� �
0�h�z� � 0�; at z! 1, G�z; z0��h�z�� contains outgoing
the wave only, i.e. the wave propagates from the source
to infinity [11]. The solution is composed of two homoge-
neous solutions:

 G�z; z0� �
�
AJ2�	z� z < z0

B�J2�	z� � isgn�!�Y2�	z�� z > z0
(9)

with 	 �
�����������������
!2 � k2
p

, A, B is fixed by matching the function
itself and its first derivative at z � z0:

 

(
A � �isgn�!�

z0 �J2�	z0� � isgn�!�Y2�	z0��

B � �isgn�!�
z0 J2�	z0�:

(10)

For jkj>!, the solution can be built from the modified
Bessel function. We choose the no exponential growth
boundary condition at z! 1 [8]. The solution is given by
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 G�z; z0� �
�
CI2�~	z� z < z0

DK2�~	z� z > z0
(11)

with ~	 �
�����������������
k2 �!2
p

 

8<:C �
�2K2�~	z0�

z0

D � �2I2�~	z
0�

z0 :
(12)

It turns out the solution can be organized in a compact
form using properties of Bessel function:

 G�z; z0� �

8>><>>:
� 2

z0 I2�i	z<�K2�i	z>� !> 0; ! > k
� 2

z0 I2��i	z<�K2��i	z>� !< 0; ! > k
� 2

z0 I2�~	z<�K2�~	z>� !< k;

(13)

where z< � min�z; z0�z> � max�z; z0�.
Doing the inverse Fourier transform, 1

�2��4
�R

Gk�z; z0�ei!t�i ~k ~xd!d3k, we obtain a retarded propagator
for the metric: (See Appendix A for the evaluation of the
integral, a retarded scalar propagator was found in [12].
Other scalar and graviton propagators were also found in
[13] with slightly different boundary conditions)

 PR �
12iz

�2��2

�
1

�t2 � r2 � z2 � i
�4

�
1

�t2 � r2 � z2 � i
�4

�
��t� r�: (14)

Several comments of the propagator are in order: (i) The
theta function implies the propagator acts inside the light
cone t2 � r2 � z2 > 0 and moreover is retarded t > r > 0,
which we indicate by the subscript R. It is also consistent
with the outgoing boundary condition. Note that the propa-
gator is also Lorentz invariant. (ii) The propagator relates
the z2 coefficient of metric perturbationQmn and the source
smn in the following way [assuming smn�z� does not con-
tain z0 and z2 terms]: Qmn�t0; x0� �

R
PR�t0 � t; x0 �

x; z�smn�z; t; x�dzdtd
3x. The primed and unprimed coordi-

nates correspond to boundary and bulk, respectively.
(iii) The propagator is dynamical. For static source, one
can perform the t-integral to obtain a static propagator,
which agrees with the one obtained in [8].

IV. THE STRESS TENSOR OF A FALLING OPEN
STRING

We want to study the stress tensor by a falling string. A
scaling string profile is obtained in [I] for a separating
quark-antiquark pair, provided the separating velocity is
not too large: v < 0:6. We briefly recall the scaling solu-
tion. The quark (antiquark) moves along the trajectory x �
	vt. The string profile is given by

 z �
�
f�y�

y � f0

�����������������
f2

0 � 1

2f2
0 � 1

s
F
� �����������������
f2 � f2

0

f2 � 1

s
;

f0�����������������
2f2

0 � 1
q �

�
1

f0

�

��������������������
�f2

0 � 1�3

2f2
0 � 1

s
�
� �����������������
f2 � f2

0

f2 � 1

s
;

1

f2
0

;
f0�����������������

2f2
0 � 1

q �
:

(15)

� and y are proper time and space-time rapidity. The y �
Y limit of (15) relates the parameter f0 and the quark
rapidity Y � arctanh�v�. It is also very useful to write
down the equations of motion (EOM) of f�y�:

 f0 �

�����������������������
V�V � E2�

p
E

(16)

with V � f4 � f2, f4
0 � f

2
0 � E

2 � 0.
We want the source term due to the scaling string. It is

convenient to switch to a different parametrization:

 z � z�t; x�; x? � 0; (17)

where x and x? represent longitudinal and transverse
coordinates, respectively. The above parametrization leads
directly to

 �S�� � �
1

3

�2z
2��0

��z� �z���x2���x3�
1������������������������

1� z2
t � z2

x

p

�

1� 2z2
t � z2

x 3ztzx �3zt
3ztzx z2

t � 2z2
x � 1 �3zx

�3zt �3zx 2� z2
t � z2

x

2�1� z2
t � z

2
x�

2�1� z2
t � z2

x�

0BBBBB@

1CCCCCA: (18)

(In the matrices here and below we only show the nonzero entities: the adopted order of coordinate indices is t, z, x1, x2,
x3.) With the help of string EOM, (15) of [14], h can be expressed in a very compact form: h � � 2

3
�2

2��0 ��x
2���x3��

z2
t�z

2
x�2��������������

1�z2
t�z

2
x

p 1
2 �z

2 � �z2���z� �z�. We also record the generalized source for later reference:
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smn �
1

3

��2

2��0
��x2���x3�

�
�z������������������������

1� z2
t � z2

x

p ��z� �z�

1� 2z2
t � z2

x 3ztzx
3ztzx z2

t � 2z2
x � 1

2�1� z2
t � z

2
x�

2�1� z2
t � z

2
x�

0BBBBB@

1CCCCCA

�

2@t @x @x2
@x3

@x
@x2

@x3

0BBBBB@

1CCCCCA
3�zzt������������������������

1� z2
t � z2

x

p ��z� �z� �

@t
@t 2@x @x2

@x3

@x2

@x3

0BBBBB@

1CCCCCA
3�zzx������������������������

1� z2
t � z2

x

p ��z� �z�

�

@2
t @t@x @t@x2

@t@x3

@t@x @2
x @x@x2

@x@x3

@t@x2
@x@x2

@2
x2

@x2
@x3

@t@x3
@x@x3

@x2
@x3

@2
x3

0BBBBBB@

1CCCCCCA
z2
t � z2

x � 2������������������������
1� z2

t � z2
x

p 1

2
�z2 � �z2���z� �z� �

�1

1

1

1

0BBBBB@

1CCCCCA
z2
t � z2

x � 2������������������������
1� z2

t � z2
x

p ��z� �z�
�
:

(19)

With the source now at hand, we proceed to the calculation of stress tensor. We use similar substitutions as before:
~@x � �@

 

x � @
 0

x. Performing the derivative explicitly, we find the z-integral and x?-integral can be done easily. We arrive
at the following result:

 Qmn �
1

3

��2

2��0
Z
dtdx

�
�z2������������������������

1� z2
t � z2

x

p P

1� 2z2
t � z2

x 3ztzx
3ztzx z2

t � 2z2
x � 1

2�1� z2
t � z2

x�

2�1� z2
t � z2

x�

0BBB@
1CCCA

�

2�t0 � t� ��x0 � x� �x02 �x03
��x0 � x�
�x02
�x03

0BBB@
1CCCA 3�zzt������������������������

1� z2
t � z2

x

p P�

t0 � t
t0 � t �2�x0 � x� �x02 �x03

�x02
�x03

0BBB@
1CCCA

�
3�zzx������������������������

1� z2
t � z

2
x

p P�

�t0 � t�2 ��t0 � t��x0 � x� ��t0 � t�x02 ��t0 � t�x03
��t0 � t��x0 � x� �x0 � x�2 �x0 � x�x02 �x0 � x�x03
��t0 � t�x02 �x0 � x�x02 x022 x02x

0
3

��t0 � t�x03 �x0 � x�x03 x02x
0
3 x023

0BBB@
1CCCA z2

t � z2
x � 2������������������������

1� z2
t � z

2
x

p P
�

(20)

with

 P �
12i

�2��2

�
1

��t0 � t�2 � �x0 � x�2 � x02? � �z2 � i
�4
�

1

��t0 � t�2 � �x0 � x�2 � x02? � �z2 � i
�4

�



12i

�2��2
	1

��t0 � t�2 � �x0 � x�2 � x02? � �z2 	 i
�4
��t0 � t� (21)

which is just the integrated propagator. The four matrices
in the expression above we will refer to later as I, II, III, and
IV, respectively.

Here we replaced the theta function of PR by ��t0 � t�. It
is justified since the 	i
 prescription encodes derivatives
of the delta function, and the theta function picks up only
one pole of the propagator.

In order to plug in the scaling solution for the string, we
return to �, y coordinates:

 zt �
chy
f
�
shyf0

f2 zx � �
shy
f
�
chyf0

f2Z
dtdx �

Z
�d�dy:

The source together with the integration measure has
one of the following simple �-dependence: �, �2, �3. The
propagator now is
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 P �
12i

�2��2

�
	���0 � ��

��1� 1
f2��2 � �02 � 2��0ch�y� y0� � x02? 	 i
�

4

�
12i

�2��2
	1

��1� 1
f2���� ������ ��� 	 i
�

4
���0 � ��

(22)

with

 �	 �
�0ch�y0 � y� 	

�����������������������������������������������������������������������
�02ch2�y0 � y� � ��02� x02?��1�

1
f2�

q
1� 1

f2

:

(23)

This propagator as a function of � contains two fourth
order poles, so the �-integral is calculated by the residue
theorem. Note that the theta function picks up only one
pole at � � ��. Since our �-integral extends from zero to
infinity, we must have a positive �� in order to have a
nonvanishing result, which requires �02 � x02? �
t02 � r02 > 0, precisely the condition that the observer
must stay inside the light cone. Since the quark and the
antiquark are emerging from the space-time origin, the
stress tensor is indeed expected to vanish outside the light
cone.

Completing the � integral and replacing 1
3
��2

2��0 by �
���
	
p

3� ,
we convertQmn to the boundary stress tensor Tmn (compare
[8]). We thus get our final result:

 Tmn �
�

����
	
p

3�

Z Y

�Y
dy

26664
1� 2z2

t � z
2
x 3ztzx

3ztzx z2
t � 2z2

x � 1
2�1� z2

t � z2
x�

2�1� z2
t � z

2
x�

0BBB@
1CCCA 1

f2
������������������������
1� z2

t � z
2
x

p A

�

2t0 �x0 �x02 �x03
�x0

�x02
�x03

0BBB@
1CCCA 3zt

f
������������������������
1� z2

t � z
2
x

p B�

�2chy shy 0 0
shy
0
0

0BBB@
1CCCA 3zt

f
������������������������
1� z2

t � z
2
x

p A

�

t0

t0 �2x0 �x02 �x03
�x02
�x03

0BBB@
1CCCA 3zx

f
������������������������
1� z2

t � z
2
x

p B�

�chy
�chy 2shy 0 0

0
0

0BBB@
1CCCA 3zx

f
������������������������
1� z2

t � z
2
x

p A

�

t02 �t0x0 �t0x02 �t0x03
�t0x0 x02 x0x02 x0x03
�t0x02 x0x02 x022 x02x

0
3

�t0x03 x0x03 x02x
0
3 x023

0BBB@
1CCCA z2

t � z
2
x � 2������������������������

1� z2
t � z2

x

p C�

�2t0chy t0shy� x0chy x02chy x03chy
t0shy� x0chy �2x0shy �x02shy �x03shy

x02chy �x02shy
x03chy �x03shy

0BBB@
1CCCA

�
z2
t � z

2
x � 2������������������������

1� z2
t � z2

x

p B�

chy2 �chyshy
�chyshy shy2

0BBB@
1CCCA z2

t � z
2
x � 2������������������������

1� z2
t � z2

x

p A

37775
(24)

 A �
1

�1� 1
f2�

4

�3
� � 9�2

��� � 9���
2
� � �

3
�

��� � ���7

B �
4

�1� 1
f2�

4

�2
� � 3���� � �2

�

��� � ���
7

C �
10

�1� 1
f2�

4

�� � ��
��� � ���7

:

(25)

A. A field near one charge

We first consider the stress tensor close to the quark.
Note the quark moves with velocity v, the observer should

also move in order to stay close to the quark. Thus it is
convenient to switch to the rest coordinate of the moving
quark, yet we still stay in the rest frame of the system. The
rest coordinates of the quark, indicated by a tilde, relates
the original coordinates in the following way:

 

~t � chYt0 � shYx0 ~x � chYx0 � shYt0

~x2 � x02 ~x3 � x03:
(26)

We expect to obtain the field by the quark only, provided
we are sufficient close to the quark, which corresponds to

the limit ~t� ~r, ~r 

���������������������������
~x2 � ~x2

2 � ~x2
3

q
! 0. Comparing the

string profile for the stretching dipole with that for a single
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quark, we claim the leading order field near the quark
receives contribution from the quark end of the string,
which corresponds to the integration of y near y � Y in
(24). If we instead do the integral in f with dy � df

f0 , we
may only focus on large f integration.

Note f0 � f4

E y� Y �
1
f3 . To the leading order, we can

simply replace y by Y, which leads to the following rela-
tions:
 

�� � �� �
2
��������������������������������������������
~t2 � �1� 1

f2��~t2 � ~r2�
q

1� 1
f2

�3
� � 9�2

��� � 9���
2
� � �

3
� �

8~t3

�1� 1
f2�

3
�

12�~t2 � ~r2�~t

�1� 1
f2�

2

�2
� � 3���� � �2

� �
4~t2

�1� 1
f2�

2
�

~t2 � ~r2

1� 1
f2

�� � �� �
2~t

1� 1
f2

: (27)

Performing the f integral near1, and take the limit ~t�
~r, ~r! 0, which is essentially a small ~r expansion, we find
the leading order field given by source I and IV diverges as
O� 1

~r4�, while sources II and III only yield subleading con-
tribution O� 1

~r2�. We display the LO field near the quark as

follows:
 

Tmn�
2
����
	
p

�2

2666664
1�22�2 �22�

�22� �1�22

1

1

0BBBBB@

1CCCCCA
1

24~r4

�

2�2~x2 �2�~x2 ��~x~x2 ��~x~x3

�2�~x2 2~x2 ~x~x2 ~x~x3

��~x~x2 ~x~x2 ~x2
2 ~x2~x2

��~x~x3 ~x~x3 ~x2~x3 ~x2
3

0BBBBB@

1CCCCCA
1

12~r6

3777775
(28)

with  � chY, � � shY.
This does not look very nice at first glance, actually it is

just the stress tensor of a static quark boosted to a frame
moving with velocity �v. It is clearly traceless and
divergence-free. We confirm that the LO field near the
quark contains a contribution from the quark only.

Next we would like to extend the result to next-to-
leading order (NLO) to include the effect of the antiquark.
Note there are two possible corrections relevant for NLO:
correction to the source �y � y� Y � �f

f0 �
E

3f3 , thus

chy � chY � shY�y, shy � shY � chY�y. The other is
correction to the propagator:

 

P �
12i

�2��2
	���0 � ��

��1� 1
f2��2 � �02 � 2��0ch�y� y0� � x02? 	 i
�

4

�
12i

�2��2

�
	1

��1� 1
f2��2 � �02 � 2��0ch�y0 � Y� � x02? 	 i
�

4
�

	1

��1� 1
f2��2 � �02 � 2��0ch�y0 � Y� � x02? 	 i
�

5

� ��8��0sh�y0 � Y��y� � � � �
�
���0 � ��

�
12i

�2��2

�
	1

��1� 1
f2��2 � �02 � 2��0ch�y0 � Y� � x02? 	 i
�

4
�

	1

��1� 1
f2��2 � �02 � 2��0ch�y0 � Y� � x02? 	 i
�

5

�

�
8E�~x

3f3

�
� � � �

�
���0 � ��

�
12i

�2��2
�P4 � P5 � � � ����0 � �� (29)

with

 P4 �
	1

��1� 1
f2��2 � �02 � 2��0ch�y0 � Y� � x02? 	 i
�

4

P5 �
	1

��1� 1
f2��2 � �02 � 2��0ch�y0 � Y� � x02? 	 i
�

5

�
8E�~x

3f3

�
:

After a relatively lengthy calculation and comparison, we find that the NLO correction is composed of three pieces: the
first one is source II and III convoluted with P4, the second corresponds to source IVand P4, and the third one comes from
the convolution of source I and P5. Collecting all of them, we find the following result:
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Tmn �
2
�������
	E
p

�2

266664�
5� 132�2 �132�

�132� �5� 132

8

8

0BBBBB@

1CCCCCA
~x

144~r3~t2
�

2�2~x2 �2�~x2 ��~x~x2 ��~x~x3

�2�~x2 2~x2 ~x~x2 ~x~x3
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2 ~x2~x3

��~x~x3 ~x~x3 ~x2~x3 ~x2
3

0BBBBB@

1CCCCCA
~x

48~r5~t2

�

22�2~x �22�~x ��~x2 ��~x3

�22�~x 22~x ~x2 ~x3

��~x2 ~x2

��~x3 ~x3

0BBBBB@

1CCCCCA
1

18~r3~t2

3777775: (30)

We had found with satisfaction that this result is indeed
traceless and divergence-free [to order O� 1

~r3�].
After this result is boosted to a frame moving with

velocity �v, it reproduces the NLO field near the quark
of a static dipole with the identification E

~t2
! 1

z2
m
� 1:22

L2 (L is

the quark-antiquark separation). It confirms that close to 1
charge it is not important to this accuracy what the other
charge is doing. In fact in the quasistatic limit v! 0, E~t2 �
1:22

4v2~t2 �
1:22

~L2 , where ~L is the quark-antiquark separation at
time ~t.

B. The slow-moving limit

The stretching string solution depends on only one
parameter v, the ends velocity, which is bounded from
above by the critical velocity. One interesting limit in
which calculations can be pushed a step further is v! 0,
which correspond to slow motion. In practice, it corre-
sponds to explanation of the stress tensor in inverse powers
of f0.

We start with considering the large f0 limit of (24).
Define � � f

f0
� � 1 such that the range of � is indepen-

dent from f0. The large f0 expansion of y is a little
complicated:

 

y �
1

2

�����������������
f4

0 � f
2
0

q 2642F�
f2�f2

0

f2�1
;

f2
0

2f2
0�1
������������������

2f2
0 � 1

q

�
2�f2

0 � 1���
f2�f2

0

f2�1
; 1
f2

0
;

f2
0

2f2
0�1
������������������

2f2
0 � 1

q
f2

0

375

�
�F�

���������
�2�1
p

� ;
��
2
p

2 � � 2E�
���������
�2�1
p

� ;
��
2
p

2 ����
2
p
f0

�O
�

1

f3
0

�

�
G���
f0
�O

�
1

f3
0

�
; (31)

where G��� �
�F�

�������
�2�1

p

� ;
��
2
p

2 ��2E�

�������
�2�1

p

� ;
��
2
p

2 ���
2
p .

With the asymptotic expansion of y and f0, we are ready
to proceed to the stress tensor. It seems at first glance the
leading order is of O� 1

f0
�, given by source IV. Actually the

prefactor, which is an integral of � vanishes. The order
O� 1

f2
0
� does not contribute either due to the symmetry y$

�y. Finally, we have to extend the calculation to order
O� 1

f3
0
�. Expand all the relevant quantities in f0, and keep the

orderO� 1
f3

0
� in the result of stress tensor. It is a quite lengthy

but straightforward calculation. The result is displayed as
follows (we have omitted the prime in boundary coordi-
nates):

 

Ttt �
2
����
	
p

f3
0�

2

2t

r9 ��10a� 5e1 � 5e2�r
2t2 � 45e1x

2r2 � 35e1t
2x2 � �9e2 � 2f� 6a� 24c� 7e1�r

4

Ttx �
2
����
	
p

f3
0�

2

2x

r9 ��45e1 � 15e2 � 90d� 30c�r2t2 � 15e1x2r2 � 105e1t2x2 � �3e2 � 7e1 � 2f� 6c� 18d�r4

Ttxi �
2
����
	
p

f3
0�

2

2xi
r9 ��15e2 � 15e1 � 30c�r2t2 � 105e1t2x2 � 15e1x2r2

Txx �
2
����
	
p

f3
0�

2

2t

r11 ��20a� 30b� 10e1 � 60d�r4t2 � ��12a� 18b� 6e1 � 36d�r6 � �420d� 175e1 � 35e2�r
2t2x2

� ��180d� 15e2 � 65e1 � 10f�x2r4 � 315e1x4t2 � 105e1x4r2

Txxi �
2
����
	
p

f3
0�

2

10txxi
r11 ��42d� 21e1 � 7e2�t2r2 � 21e1x2r2 � 63e1t2x2

Txixj �
2
����
	
p

f3
0�

2

8t

r7 �5at
2 � 3ar2��ij �

2
����
	
p

f3
0�

2

10txixj
r11 ��7e1 � 7e2�r2t2 � �3e2 � e1 � 2f�r4 � 21e1x2r2 � 63e1x2t2 (32)
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with

 r �
���������������������������
x2 � x2

2 � x
2
3

q
a �

Z 1
1

1

�2
���������������
�4 � 1

p d� � 0:5991 b �
Z 1

1

1

�6
���������������
�4 � 1

p d� � 0:3594

c �
Z 1

1

�
1

�
�G���

���������������
�4 � 1

q �
1

�5
���������������
�4 � 1

p d� � 0:4493 d �
Z 1

1

G���

�5
d� � 0:0899

e1 �
Z 1

1

3� �4

�4
���������������
�4 � 1

p G���2d� � �0:1797 e2 �
Z 1

1

3� �4

�6
���������������
�4 � 1

p d� � 0:4793

f �
Z 1

1

�5�4 � 6�2 � 9

2
���������������
�4 � 1

p
��2 � 1��6

d� � 0:7189:

(33)

Several comments about the result are in order: (i) the
result applies for the arbitrary point on the boundary, i.e.
general t, x, x2, x3, provided the point lies inside the light
cone. The discontinuity of the stress tensor on the light
cone is a consequence of the discontinuity in source at t �
0. ; (ii) Trace and divergence of the stress tensor vanish for
any points away from the trajectory of the dipole ends,
which is of course implicitly assumed in our calculation.
(iii) If we consider the limit t� r, which amounts to
keeping only the highest power of t. Recalling the quasi-
static limit: t

3

f3
0
� �vt0:6�

3 � � L1:2�
3, where L is the dipole size at

time t. While for the case of static dipole: z3
m � �

L
1:2�

3, we
find the stretching dipole result agrees with static dipole in
the double limits: v! 0, t� r. The numerical factors
match as well. (vi) The agreement of the quasistatic result
and NLO near field with those of static dipole by the simple
identification: L � 2vt seems to suggest that the vacuum-
quark (antiquark) interaction is instantaneous.

We plot the energy density T00 and the momentum
density (energy flow) T0i as a function of the spatial
coordinates at three different times in Figs. 1 and 2, re-
spectively. We observe that, although the shape of energy

x1
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3010−20
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−10−30 20           30
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FIG. 1 (color online). The contours of energy density T00, in units of 2
���
	
p

f3
0�

2 , in the x1 � x2 plane at different times. The three plots are
made for t � r, t � 10r, and t � 50r from top to bottom. Note the quark/antiquark is at x1 � 	vt. In the slow-moving limit, they are
nearly at the origin. The magnitude of T00 is represented by the color, with darker color corresponding to greater magnitude. As time
increases, the shape of the contours gets elongated along the x1 axis

FIG. 2 (color online). The contours of momentum density T0i, in units of 2
���
	
p

f3
0�

2 , in the x1 � x2 plane at different times. The three plots
are made for t � r, t � 10r, and t � 50r from top to bottom. Note the quark/antiquark is at x1 � 	vt. In the slow-moving limit, they
are nearly at the origin. The magnitude is represented by color, with darker color corresponding to greater magnitude. The direction of
the momentum density is indicated by normalized arrows
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distribution becomes more elongated with time, reflecting
changing shape of the string, the shape of the momentum
flows seems to stay the same, with an interesting ‘‘eight’’
shape or forward-backward depletion. Small arrows dis-
play the direction of the energy flow. Although, overall,
they show outgoing explosion away from the origin (the
collision point), one can also see some ‘‘cumulative’’ flow
with jets converging along the collision axes.

V. THE ENERGY DENSITY OF MATTER IN
COMOVING FRAME AND FREEZE-OUT

It is illuminating to ask if the stress tensor we obtained
can or cannot be described by some hydrodynamical flow.
The latter is widely used in describing heavy ion collisions
[15,16]. More precisely, the question is if our stress tensor
(32) is that of a flowing ideal liquid

 T�� � �
� p�u�u� � pg��; (34)

where u� is the 4-velocity of the liquid and 
 and p are the
energy density and the pressure. (Tracelessness would of
course demand that 
 � 3p.) It is not difficult to show that
this is not the case: the structure of our answer is richer
than this simple form.

Nevertheless, it is still possible to define a ‘‘comoving
frame’’ of matter at any point, in which the (boosted)
momentum density T00i vanishes. The (boosted) local value
T000 component is the energy density in such a comoving
frame, which we denote by 
 like for a liquid. We use the
contour of 
 to define the freeze-out surface.

However, the (boosted) local values of other spatial
components are in general unrelated and can be viewed
as ‘‘anisotropic pressure’’ of nonequilibrium matter.
Needless to say, it remains unknown what combinations
of fundamental fields of the N � 4 theory—the gauge
one, the fermion or the scalars—participate in this flow of
produced matter: to learn that one should do ‘‘holography’’
for many more operators on the boundary.

Recall that the stress tensors in different frames are
related by T0�� � S��S��T��, where S�� � @x�

@x� are Lorentz
transformation matrices. The primed quantities correspond
to the new frame. Therefore the aim is to find such boost
which kills all the �0; i� components.

In practice, it is achieved numerically by the following
recipe.

We pick up any point inside the light cone, calculate the
eigenvalue, and associate eigenvectors of the correspond-
ing stress tensor matrix. Out of the four eigenvalues, one is
selected to be the local energy density based on its eigen-
vector (see Appendix B for a short explanation). Figure 3 is
a surface plot of 
 profile in spatial coordinate. The plot is

made for t � 1. It shows a nearly spherical shape for
contour with large r and an elongated shape for contour
with small r. By virtue of conformality of the setting, this
translates to the following: At early time the local energy
density contour is nearly spherical and at late time it gets
elongated along x1 axis.

VI. THE STRESS TENSOR OF MULTIPLE
STRINGS

A simple extension of what is done above is to consider
many colliding quark-antiquark pairs uniformly distributed
in the transverse plane. Every pair with the same transverse
coordinate is connected with a string. Let us assume quark
and antiquark only interact pairwise, which in the dual
picture means the strings do not interact with each other.
As a result, the overall stress tensor induced by the multiple
strings, in the linearized approximation simply amounts to
integrating (32) over the transverse coordinates. Note in
order to preserve causality, the integral is done for 0<
x2
? � r2 � x2 < t2 � x2. We display the result as follows

(we omit a factor of transverse string density, which does
not alter space-time dependence of the stress tensor):

FIG. 3 (color online). The profile of 
, in units of 2
���
	
p

f3
0�

2 , at t � 1
with r � 0:2–1. The evolution of the shape of contour, i.e. the
freeze-out surface is contained in this plot. The contours with
large r (small 
) are nearly spherical while the contours with
small r (large 
) are elongated along the x1 axis
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3
e1

�
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: (35)

We plot the energy density profiles in Fig. 4.

VII. SUMMARY AND DISCUSSION

The main objective of this paper was to calculate a
‘‘hologram’’ of the falling open string, which has ends
attached to heavy quarks moving with constant velocities
	v. After an appropriate tool—Green function for time-

dependent linearized Einstein equation—was constructed,
and stress tensor of the string calculated, a convolution of
the two gave us the stress tensor of an ‘‘explosion’’ seen by
an observer at the AdS boundary. Apart from analytical
results in different limits, we have given pictures of the
time evolution of the energy density and the Poynting
vector in Figs. 1 and 2. In short, our main finding is that
it looks like an explosion, with matter ‘‘fireball’’ expanding
from the collision point, but a nonhydrodynamical explo-
sion, in which fluid cannot be assigned temperature or
entropy.

What can be a physical significance and applications of
these results?

Literally, they describe energy/momentum flow follow-
ing a collision of, for example, two heavy-quark mesons in
a strongly coupled N � 4 gauge theory). It would then be
instructive to compare these results with those in a weakly
coupled regime of the same theory, in which the appropri-
ate calculation would be perturbative radiation of massless
gluons and scalars. Those are well known to produce
dipole radiation at small velocities and bremmstrahlung
cones (or ‘‘jets’’) in forward and backward directions. In
QCD perturbative radiation is affected by confinement
effects as well as the presence of light fermions: thus
formation of QCD strings and their breaking by light quark
pair production. All of it is well modeled by QCD ‘‘event
generators,’’ one of which—the Lund model—we men-
tioned in the Introduction.

So, why would one be interested in a strongly coupled
version of the ‘‘event generator’’? One reason can be
methodical: to better understand the difference between
strongly coupled conformal regime and confining theories,
as far as jet physics is concerned. It has been studied in

FIG. 4 (color online). The contours of energy density, in units
of 8

���
	
p

f3
0�

, as a function of t and x1. The magnitude is represented by

color, with darker color corresponding to greater magnitude.
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literature that hypothetical ‘‘hidden valleys theories’’
which may be found at LHC [17] are strongly coupled:
so there is some nonzero (but tiny) chance that those can be
used in real experiments one day.

However, as explained in the Introduction, those were
not our motivations. We have done this calculation as a
methodical step toward understanding heavy ion colli-
sions, in the AdS/CFT setting. One obviously needs to
study one falling string before considering many. Simply
adding the effect of many strings, as we did above, is not
yet sufficient to understand heavy ion collisions.

As a discussion item, we would like at the end of the
paper to indicate where we will go from here. What we
would like to understand in general is how and under which
conditions the equilibration and entropy production hap-
pen, so that nonhydrodynamic explosion described above
becomes hydrotype. In order to derive that, one has to
abandon the ‘‘probe approximation’’ used above, and in-
clude the gravitational impact of falling matter (strings in
our setting) in the metric. Only then one may see a tran-
sition from extremal black hole (AdS metric we use) to
nonextremal black hole with matter mass added and a
nonzero horizon formed. The horizon, when present, does
provide both Hawking temperature and Bekenstein en-
tropy. We expect to use in the next paper of this series a
‘‘two-membrane paradigm,’’ in which collision debris are
represented by one (falling) membrane, and the (rising and
then falling because of stretching) horizon membrane by

the other. (These two membranes can be associated with
the so-called top-down and down-up equilibration scenar-
ios, proposed in literature in various model settings.) When
and where most of the entropy is produced is the major
issue to be addressed. How that is reflected in the hologram
observed in the gauge theory could then be calculated in
the linearized approximation, as above.
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APPENDIX A: INVERSE FOURIER TRANSFORM
OF GREEN’S FUNCTION

Let us recall the expression of Green’s function in
momentum space:

 G�z; z0� �

8>><>>:
� 2

z0 I2�i	z<�K2�i	z>� !> 0; ! > k�1

� 2
z0 I2��i	z<�K2��i	z>� !< 0; ! > k�2

� 2
z0 I2�~	z<�K2�~	z>� !< k�3:

(A1)

We will use �1;�2;�3 to refer to the three cases as indi-

cated above. In order to do the inverse Fourier transform:
1
�2��4

R
G�z; z0�ei!t�i ~k ~xd!d3k, we make the change of vari-

able for each case:

 �1: ! �
�����������������
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����������
k2�	2
p

t 2 sin�kr�
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�����������������
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p 1
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1

�2��3
Z
G�z; z0�e�i

����������
k2�	2
p

t 2 sin�kr�
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k2dk
	d	�����������������
k2 � 	2
p

�3: ! � 	
�����������������
k2 � ~	2

p 1

�2��4
Z
G�z; z0�ei!t�i ~k ~xd!d3k �

1

�2��3
Z
G�z; z0�2 cos

�����������������
k2 � ~	2

p
t
2 sin�kr�
kr

k2dk
	d	�����������������
k2 � ~	2
p :

(A2)

We use the following formulas to evaluate the k-integrals:
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0
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q
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p ��b� �� � ���b� �� (A3)

with a, b, � > 0.
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These formulas are obtained by differentiating with respect � the cosine-transform of cos�b
����������
x2�a2
p

�����������
x2�a2
p , cos�b

����������
x2�a2
p

�����������
x2�a2
p , and

sin�b
����������
x2�a2
p

�����������
x2�a2
p .

Let us focus on the case t > 0 at the moment. With the help of (A2), (A3) becomes
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(A4)

Suppose we replace z> by z> � i
, convergence of the integral enables us to rotate the contour of �3 and �1:
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: (A5)

Similarly, suppose z> ! z> � i
, we can rotate the contour of �3 and �2:
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Summing up piece �1, �2, and �3, we find various terms cancel against each other. We are left with
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:
Z
�

2

z0
I2�i	z<�K2�i	z>�

	d	

�2��3

�
�2�iJ00�	

���������������
t2 � r2

p
�
�	���������������
t2 � r2
p ��t� r� � �i

��t� r�
r

�

�
Z
�

2

z0
I2�	z<�K2�	z>�

	d	

�2��3

�
�iJ00�	

���������������
r2 � t2

p
�

	���������������
r2 � t2
p ��r� t�

�

z> ! z> � i
:
Z
�

2

z0
I2��i	z<�K2��i	z>�

	d	

�2��3

�
2�iJ00�	

���������������
t2 � r2

p
�
�	���������������
t2 � r2
p ��t� r� � �i

��t� r�
r

�

�
Z
�

2

z0
I2�	z<�K2�	z>�

	d	

�2��3

�
��iJ00�	

���������������
r2 � t2

p
�

	���������������
r2 � t2
p ��r� t�

�
:

(A7)
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If we are only interested in the coefficient of the z2
< term [18], we may make the following substitution: I2�	i	z<� !

� 1
8	

2, I2�	z<� !
1
8	

2, z> ! z0.
Further evaluation of the integral involves the two formulas:
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x����1J��ax�K��bx�dx � 2���a�b�
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0
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2
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�
�
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2

�
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(A8)

It is easy to find
R
	3d	K2�	i	z>� and

R
	4d	K2�	z>�J1�	

���������������
r2 � t2
p

���r� t� contain no singularity in z>, thus the
contributions from z> 	 i
 cancel each other. We end up with

 

Z
�

2

z0
�	2

8
K2�i	z>�

	d	

�2��3
��2�i�J1�	

���������������
t2 � r2

p
�

	���������������
t2 � r2
p ��t� r�jz>!z>�i
 �

Z
�

2

z0
�	2

8
K2��i	z>�

�
	d	

�2��3
2�iJ1�	

���������������
t2 � r2

p
�

	���������������
t2 � r2
p ��t� r�jz>!z>�i


�
12iz0
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1
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1
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�4

�
��t� r�: (A9)

For t < 0, a similar procedure leads to a vanishing result.
Therefore the z2

< term of the Green’s function in coordinate
space, which is exactly the propagator we are looking for,
can be expressed as [19]

 PR �
12iz0

�2��2

�
1

�t2 � r2 � z02 � i
�4

�
1

�t2 � r2 � z02 � i
�4

�
��t� r�: (A10)

APPENDIX B: EXTRACT ENERGY DENSITY IN
COMOVING FRAME

The aim is to kill the �0; i� components (momentum
density) by local Lorentz transformation: T0 � STST ,
where

 T0 � T0��; T � T��; S�� �
@x�

@x�
: (B1)

The local Lorentz transformation matrix is a product of
matrices, which are either rotations, e.g. �1 or boosts, e.g. �2.
This is a consequence of the fact: SgST � g, where g �
diag��1; 1; 1; 1� is the Minkowski metric

 �1

1
cos��� sin���
� sin��� cos���

1

0BBB@
1CCCA

�2

chy shy
shy chy

1
1

0BBB@
1CCCA:

(B2)

A nice property of g is g � gT � g�1; therefore gT0 and
Tg are related by similarity transformation:

 gT0 � gSTggTST � gS�Tg��gS��1: (B3)

Since gT0 does not alter the zero entries of T0, now the
problem becomes to kill the �0; i� components of Tg by
similarity transformation. The original matrix Tg can be
viewed as an operator L acting on a set of basis, while the
similarity transformation is just a change of basis:

 �Tg�mn � �en; Lem� �gT0�mn � �e0n; Le0m�

e0n � �gS�nmem:
(B4)

We want to find a basis e00 such that Le00 � 	e00 with 	 �
�gT0�00. Denote e00 � xmem, it is easy to show xm�Tg�mn �
	xn. This is exactly an eigenvalue problem for matrix
�Tg�T . The restriction in transformation matrix is trans-
lated to x2

0 � x
2
1 � x

2
2 � x

2
3 > 0. It turns out this condition

is just enough to determine a unique eigenvalue out of four
possible eigenvalues. The energy density is given by 
 �
�	.
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