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Toward the AdS/CFT gravity dual for high energy collisions. I. Falling into the AdS space
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In the context of the AdS/CFT correspondence we discuss the gravity dual of a high energy collision in
a strongly coupled N = 4 SYM gauge theory. We suggest a setting in which two colliding objects are
made of nondynamical heavy quarks and antiquarks, which allows one to treat the process in classical
string approximation. Collision “debris’ consist of closed as well as open strings. If the latter have ends
on two outgoing charges, they are being “stretched” along the collision axes. We discuss motion in AdS
of some simple objects first—massless and massive particles—and then focus on open strings. We study
the latter in considerable detail, concluding that they rapidly become ‘“‘rectangular’ in proper time-spatial
rapidity 7 — y coordinates with well separated fragmentation part and a near-free-falling rapidity-
independent central part. Assuming that in the collisions of “walls” of charges multiple stretching
strings are created, we also consider the motion of a 3D stretching membrane. We then argue that a
complete solution can be approximated by two different vacuum solutions of Einstein equations, with
matter membrane separating them. We identify one of these solutions with a Janik-Peschanski stretching
black hole solution, and show that all objects approach its (retreating) horizon in a universal manner.
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I. INTRODUCTION

The AdS/CFT correspondence [1] is a duality of the
conformal (CFT) N = 4 supersymmetric Yang-Mills the-
ory and string theory in 5D anti-de-Sitter space (AdSs).
Multiple papers use this fascinating theoretical tool, in a
regime in which the gauge theory is in a strong coupling
regime while string part is in weak coupling—the classical
SUGRA regime. The equilibrium finite temperature ver-
sion of this correspondence, using a black hole back-
ground, was suggested by Witten [2]. Applications of this
version of correspondence to properties of strongly
coupled high-T phase of QCD are very actively pursued:
we will briefly review those in the next subsection.

The aims of this series of works are however quite
different: instead of focusing on equilibrium thermal mat-
ter, we hope to develop a gravity dual framework to time-
dependent process of high energy collisions. We will not
assume equilibration or use macroscopic variables like
temperature or hydrodynamic flows: we hope to be able
to understand how they naturally appear for collisions of
large systems. Instead we focus on motion of strings in
AdSs in this work, and, in the second one, on “holograms™
which an observer will see in our world—the AdS5 bound-
ary—as a function of time.

Since this is the first paper of the series, we decided to
start with a rather extensive introduction, which describes
similar works and summarizes our current understanding
of the subject.

A. Strongly coupled quark-gluon plasma

It is well known that nonperturbative properties of the
QCD vacuum phase—confinement and chiral symmetry
breaking—are absent above some critical temperature,
where matter is in the so-called quark-gluon plasma
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(QGP) phase. Although at high T one naturally expects
the QGP to be in a weakly coupled regime, it has been
conjectured recently [3] that at least at T = (1 — 2)T.—
known as the RHIC domain—it is closer to a “‘strongly
coupled” regime (sQGP).

This was a significant “paradigm shift”’ in the field, and
various directions toward the understanding of sQGP con-
stitute a mainstream of the field. Basically there are two
competing options: one, based on electric-magnetic duality
[4], relates small viscosity and diffusion of sQGP to the
presence of magnetic monopoles and predicts that it will
disappear at T away from critical region. Another—based
on AdS/CFT—relates it to ““quasiconformal behavior” of
QGP at T>2T.. A comparison between experimental
results from RHIC [T = (1 — 2)T,] with those at LHC
(higher T) will hopefully shed light on it in the near future.

Let us only mention some important developments re-
lated to the latter approach, AdS/CFT. In a static finite-T
setting with AdS-black hole metric [2], the study started
with classic results on bulk thermodynamics [5] and trans-
port coefficients [6]: those works provided intriguing re-
sults. It was shown that, while the equation of state can be
quite close to that of weakly coupled plasma, the transport
properties can differ from them by orders of magnitude. It
is enough to mention that, while viscosity to entropy ratio
is believed to be limited by the AdS/CFT value from below
(7]
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recent hydrodynamical studies by three groups [8] have
concluded that the experimental data on the so-called
elliptic flow are better reproduced if this ratio is even
smaller than that. (For a possible way out of this puzzle,
also based on AdS/CFT, see e.g. [9].)
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Then attention focused on high energy jet quenching,
with the result that a heavy quark pulls a string, with
specific and calculable shape. The AdS/CFT result for
the drag force [10] and heavy quark diffusion [11] turned
out to be correctly related by the Einstein relation. For a
recent brief summary see e.g. [12]: it is sufficient to
mention here that all these results seem to be in much
better agreement with what is seen phenomenologically in
heavy-ion collisions at RHIC than their weak-coupling
counterparts.

Further development of the jet quenching problem was
related to the question where does the lost energy go?. In a
hydrodynamical context it was suggested that the so-called
“conical flow” [13] of matter should develop, induced by a
heavy charge moving in a strongly coupled plasma. The
“hologram” of the dragging string has been calculated by
Princeton and Seattle groups [14,15]: it described the
conical flow picture in stunning detail.

B. Gravity dual for heavy-ion collisions

The results mentioned above are all equilibrium ones,
obtained using static AdS-black hole metric. Although they
should be applicable for a macroscopically large and
slowly expanding fireball, one may proceed to more de-
manding issues related with AdS/CFT in a time-dependent
out-of-equilibrium setting. Those will provide new insights
into equilibration issues, explaining when and with what
accuracy thermodynamics and hydrodynamics become
applicable.

In AdS/CFT language going from cold vacuum to hot
plasma means going from pure AdS (extremal black hole)
to black hole AdS via creation of trapped surface.
Therefore the problem to be considered is a kind of gravi-
tational collapse, occurring in gravity dual as a result of
high energy collision.

The quest for black hole formation in collisions has a
long history we would not attempt to review here. Let us
just mention that it was discussed for “‘real” gravity at
colliders, which may get possible provided it gets strong
due to extra dimensions. Black hole production in AdS
spaces were discussed both in cosmological brane world
models, as well as in AdS/CFT framework from the late
1990’s: we only mention a few papers most related to our
work. Black holes emerging from collisions were dis-
cussed in AdSs background by Horowitz and Itzhaki
[16], who considered the departing black hole. Giddings
and Katz [17] have discussed holograms of the falling
objects in AdSs background, in a cosmological setting
(which has some differences with AdS/CFT one in bound-
ary conditions). In [18] a solution for black hole creation
from collision of particles was obtained for a simpler case
of AdS; background. It was recently further studied by
Kajantie et al. [19].

In the context of gravity dual to heavy-ion collisions, the
problem of black hole formation was discussed by Sin,
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Shuryak, and Zahed [20] (SSZ below). One specific solu-
tion they discussed in the paper was a hologram of a
departing black hole, corresponding to a spherically sym-
metric (big-bang-like) solution with a decreasing 7. SSZ
also proposed two other idealized settings, with
d-dimensional stretching, corresponding for d =1 to a
collision of two infinite thin walls and subsequent
“Bjorken” rapidity-independent expansion [21], with 2D
and 3D corresponding to cylindrical and spherical relativ-
istic collapsing walls.

Janik and Peschanski [22] (below referred to as JP) have
addressed the simplest wall-on-wall collision. In this case
the time and longitudinal coordinate x; are naturally sub-
stituted by the proper time and spatial rapidity

1 t—x
— 2 _ .2 _ 1 1
T t X1, v 5 10g<t n x1> )

since the rapidity-independent solution depends on only 7.
Instead of solving Einstein equations with certain source,
describing gravitationally collapsing debris of the colli-
sion, JP applied an “inverse logic,” extrapolating into the
bulk the metric which yields an expected hydrodynamical
solution at the boundary. JP found an asymptotic (large-
time) solution for a “stretching AdS-BH.” As expected, it
indeed possesses a horizon moving away from the Ads
boundary, as zporion ~ 7'/3. A very important feature of the
leading-order JP solution is entropy conservation: while
their presumed horizon is stretching in one direction and
contracting in others, to the leading order two effects
compensate each other and keep the total horizon area
constant. We will discuss this solution a bit more and use it
in Sec. IVA.

Further discussion of the subleading (next power of
inverse time) terms has been made by Sin and Nakamura
[23] who identified corrections to the JP solution with the
viscosity effects. Terms of still higher order have been
subsequently studied [24], but eventually Janik et al. [25]
concluded that the expansion series are inconsistent be-
yond the first few orders. Our view is that this is how it
should be, and the arising near-horizon singularity indi-
cates that presence of matter term (absent in JP) is
inevitable.

Unlike JP et al., we will not use any ““inverse logic’ and
will not be looking for the solutions corresponding to
predetermined hydrodynamics on the boundary. Instead
we will focus on the formation stage, whether the black
hole is or is not formed, and will calculate the (time-
dependent) stress tensor on the boundary, whether it is a
hydrotype on not.

C. Hadron collisions in QCD, the Lund model and the
“color glass”

Rather early in development of QCD, when the notion of
confinement and electric flux tubes—known also as the
QCD strings—were invented in the 1970’s, Andersen and
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collaborators [26] developed what gets to be known as the
Lund model of hadronic collisions. Its main idea is that,
during the short time of passage of one hadron through
another, the strings can get reconnected, and therefore with
certain probability some strings become connected to color
charges in two different hadrons. Those strings get
stretched longitudinally and then break up into parts, mak-
ing secondary mesons and (with smaller probability) bary-
ons. Many variants of string-based models were developed,
and some descendants—e.g. PYTHIA—remain widely
“event generators’ until today.

If there are several strings stretched, it is usually as-
sumed that both their interaction and influence on breaking
is negligible.

However, if one either considers very high energy colli-
sions, when a single hadron should be viewed as being
made of many color charges (partons), or heavy-ion colli-
sion, a different asymptotic picture has been proposed.
McLerran and Venugopalan [27] argued that instead of
multiple string the fields produced should be considered
as classical gauge fields—known as color glass model —
and their subsequent evolution be derived from the solution
of the classical Yang-Mills equation [28]. They suggested
this regime is true at very high parton density, when the
effective coupling is weak. Accepting the color glass pic-
ture as a correct asymptotic for very high parton density
and large saturation scale Q, — o0, one still wanders what
should happen in the case of intermediate scale Q ~
.3-1.5 GeV.

Recent developments of the so-called AdS/QCD pro-
posed a view that this interval of scales in QCD constitute a
“strong coupling window.” In particular, Brodsky and
Teramond [29] have argued that the power scaling ob-
served for a large number of exclusive processes is not
due to perturbative QCD (as suggested originally in the
1970’s) but to a strong coupling regime with near-constant
coupling (quasiconformal regime). Polchinski and
Strassler [30] have shown that in spite of exponential string
amplitudes one does get power laws scaling for exclusive
processes, due to convolution (integration over the z vari-
able) with the power tails of hadronic wave functions. One
of us proposed a scenario [31] for AdS/QCD in which there
are two domains, with weak and strong coupling. The
gauge coupling rapidly rises at the ‘““domain wall” asso-
ciated with instantons. Such an approach looks now natural
in comparison to what happens in heavy ion/finite 7 QCD,
where we do know that at comparable parton densities the
system indeed is in a strong coupling regime.

D. The goals of this series of papers

In short, it is to study self-consistently the collision
process in AdS/CFT. For hadronic collisions we basically
follow the QCD-string-inspired (Lund) picture of the col-
lision. While QCD phenomenology focused on ‘‘string
breaking,” in the AdS/CFT setting we will have instead
their “falling” (departure from the boundary) into the IR.
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In this paper we will study in detail motion of “de-
bris” —massless and massive particles and open strings,
and membranes—in AdSs. In the second paper we will
calculate the corresponding holograms of these objects—
the stress tensor of matter created on the boundary.
Although debris fly away into the 5th direction, the usual
energy and momenta are conserved in our world, and those
holograms describe a flow of matter outward from the
collision point. As we mentioned already, this can be
viewed as a strongly coupled version of color glass, put
in the realm of JN' = 4 SYM theory.

We hope in subsequent works to go beyond the linear-
ized gravity and follow nonlinear effects leading to a
gravitational collapse of debris and formation of trapped
surfaces. This would be dual to information loss (entropy
production) and appearance of equilibration.

II. THE SETTING

One important suggestion made by SSZ is that heavy-
ion collisions possess ‘“‘some internal high momentum
scale,” usually called Qg,uuration, related to high density of
color charges in boosted heavy ions. In order to model it
more simply, we now propose substitute energetic light
quarks by heavy ones, with the mass M, of heavy funda-
mental quarks Q introduced into AdS/CFT via D; brane
[32]. As soon as M, is at the scale of Qgration, 1t makes
little dynamical difference: but in the AdS/CFT language
treatment of heavy quarks is simpler, as they are sources of
classical strings. (This simplifying feature has been put to
heavy use in the treatment of the heavy quark jet quenching
[10].)

We will further assume that heavy quarks have no dy-
namics of their own, as they are moving along straight lines

X+ =x; vt (3)

with constant velocity v, both before and after the colli-
sions, see Fig. 1. If so, there is no conventional gluonic
radiation on the brane or gravitational radiation from them
in the bulk, as there is no acceleration.

The dynamical objects we will focus on are classical
strings, ending at these heavy quarks and propagating in
the bulk (for metrics changing from AdS to JP-like one).
We will study which solutions exist as a function of colli-
sion rapidity and whether they are stable or not: we will
conclude that at sufficiently large v > v, these strings
basically go into free fall toward the AdS center.

The next step is to consider not a single pair of charges (a
single stretching string), but many. One limit is a pair of
colliding ‘“‘walls of matter,” containing multiple heavy
quarks. For simplicity, think of these two walls as CP
mirror images of each other, made of colorless “dipoles.”
“Snapping” of their string at the collision leads to multiple
strings, all of which being stretched longitudinally.

We then argue that many such strings combined could be
considered as a thin singular sheet of matter, referred to
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FIG. 1. Schematic view of the collision setting. The classical
heavy charges move along directions x. and collide at the
origin. String snapping leads to longitudinally stretched strings
(wide black line) which are also extended into the 5th coordinate
r toward the AdS center at r = 0. The heavy charges move on
the plane r = oo.

below as ‘“membrane.” (Note an important distinction
between a membrane and a ““‘true brane’’: since the former
has only energy momentum but lacks the Ramond-
Ramond charges and consequent Coulomb repulsion, it
cannot ‘‘levitate” like branes, and simply falls under
gravity.)

It has been shown by Israel [33] how a gravitational
collapse of a thin layer of matter can be described via two
different discontinuous vacuum solutions of the Einstein
equation without matter (T, = 0). Self-consistency of the
solution is then reached by fulfilling covariant junction
conditions, resulting in membrane equations of motion
(EOM).

The issue of self-consistency will not be addressed in
this work: we will discuss below falling of various ob-
jects—uparticles and open strings, as well as 3 + 1 mem-
branes—ignoring for now the effect of their own weight on
the metric. The proposed evolution of the system is ex-
plained schematically in Fig. 2. Part (a) shows some snap-
shots of this surface, at some early time and then at a later
stage. The horizontal direction is the collision direction x;
while the one along the circles represents any of the two
other transverse directions x,, x3 (on which no dependence
is expected). The radial direction r in part (b) is the 5th
AdS radial direction, a distance from the AdS center. Since
the membrane is being stretched in x; (linearly in time), it
has to retreat in r and become a thinner cylinder, just as a
stretching soap film will do in a similar setting.

At this point we would like to emphasize a close anal-
ogy, as well as differences, with the jet quenching problem.
One studied first a single falling string governed by simple
Nambu-Goto action and the overall metric. The compli-
cated picture of matter flow is then recovered using weak
(linearized) gravity. One difference is that in a jet quench-
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FIG. 2. (a = upper) Two snapshots of the membrane shapes, at
different time moments. See text for explanation of the coor-
dinates. (b = lower) Schematic view of the four periods in
gravity dual solution in which falling objects are (1) accelerated
into the 5th dimension r until they reach a relativistic velocity
v = 1, then (2) continue their relativistic fall until (3) breaking
near the retreating horizon.

ing problem the string is stationary (in the charge frame)
while in our case it is not. Furthermore, we will discuss also
multiple strings, which may form another singular ob-
ject—the membrane. Also the metric in our problem is
first considered to be just AdS, but eventually it will be
nontrivially affected by the membrane’s own weight. If so,
one should no longer use the linearized gravity but solve
Einstein equations in its full nonlinear form.

Needless to say, this is a very difficult task, amenable to
analytic treatment only if some drastic simplifications are
made. A scenario outlined in Fig. 2(a) would have metric
dependent on 3 variables: time, longitudinal direction, and
the AdS radial one, t, x;, . We thus propose a further
simplification of the problem: changing variables to proper
time and spatial rapidity (2), we would look for
y-independent solutions, corresponding to the purely cy-
lindrical part of the membrane in the middle of Fig. 2(a),
ignoring the curved ‘‘fragmentation’ regions. With only
two variables, 7, r, one has a problem of a similar level of
complexity as the one addressed by Israel [34], for a
spherical gravitational collapse.

Further clarification of the proposed scenario is shown in
Fig. 2(b), displaying a trajectory of the membrane r(7).
During the first stage of the process, the debris of a colli-
sion in a bulk—the particles and open strings—are accel-
erated by the AdS gravity and fall into the 5th dimension
until they reach the relativistic velocity v = 1 (stage 2). If
there is only one object falling, its gravity being negligible
compared to overall gravity of the N branes at the AdS
center, they would simply continue their relativistic fall.
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However, a large number of them have enough mass to
create a horizon which suddenly slows down the mem-
brane (as a distance observer sees it [35]): at stage 3 the
membrane is trailing the receding horizon (the dashed
line).

If we would discuss pure AdS/CFT theory this would be
the end of the story: but in another more QCD-like setting,
one can have an additional potential which will stop the
membrane because of the existence of a stationary ‘‘de-
confinement”’ horizon. If so, the system reaches a “mixed
phase” era with stationary horizon and fixed 7, similar to
the static fireball discussed by Aharoni et al. [36] except
that in our setting the longitudinal stretching continues.

The trajectory of the collapsing matter sheet should be
such as to provide a consistent solution to Einstein equa-
tions, combining the JP-like vacuum solution outside the
falling sheet, with the ““stretching AdS” inside it.

The paper is structured as follows. In the next section we
solve the equation of motion for different objects falling in
AdS. We start with massless and massive particles in
Sec. IITA.

The main part of this work is to study of the open strings,
being stretched between two departing charges. We ana-
lytically derive the so-called scaling (factorizable) solution
in Sec. III B. Similar solutions have been used previously
in connection to anomalous dimensions of “‘kinks.” A new
part is discussion of the limits for its existence and stability.

We then find more general nonfactorizable solutions in
Sec. III C which can only be obtained numerically. We find
that in proper time-spatial rapidity coordinates 7, y we use
those basically become “‘rectangular,” with a nearly free-
falling rapidity-independent part. We conclude this section
with results for falling membranes. The next section starts
with an introduction to the issue of “stretching black
holes” in Sec. IVA, and concludes with Sec. IV B in which
we show that all objects considered above are approaching
the (retreating) horizon in a very universal fashion. We
conclude with some discussion and outlook in Sec. V.

In the second paper of the series, we will calculate
backreaction of gravity, by solving linearized Einstein
equations and obtaining the stress tensor on the boundary
(holograms) for some of these falling objects.

III. OBJECTS FALLING IN AdS;s

The collisions create a lot of debris in the form of
various excitations. Since we would like to follow the
collision in the bulk, we naturally have to think of them
in terms of string theory. Thus, there are the following
types of objects: (i) massless and massive particles;
(i) open strings, with ends at the receding walls;
(iii)) membrane. The ‘“‘open string” category is naturally
split into “mesons’ with both ends on the same wall, and
“stretched strings,” with both ends attached to different
walls and moving in the opposite direction. We will con-
sider a set of multiple strings copied many times in trans-
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verse dimensions x,, x3 as a 3D membrane. The validity of
this approximation will be explained later.

A. Falling particles

As is usually done in this kind of problem, the AdS
radius is inverted, so that a coordinate z = 1/r is used
instead of r. The AdS boundary is thus at z = 0 and falling
objects move away from it toward infinity. The AdSs X §°
metric in such coordinates is

R2
ds? = (A = di +d2) + R0, (&)

where the last term, related to angles of S5, is of no
importance in this work. We choose to work in 7, y
coordinates mentioned above (2). The metric is translated
into the following form:

R2
ds* = Z—z(—dT2 + 72dy* + d7?), (5)

where we ignore the transverse coordinates and the S5 part.

One feature of the AdSs metric is its boost invariance,
the importance of which will be seen later. Let us assume
particles move with constant spatial rapidity y, so the
trajectory can be described by z(7). Massless particles
move along the geodesics with zero interval ds* = 0 which
in the metric (5) simply means z = 7.

Massive falling objects were already discussed in [37],
but here we present it in a different form, more closely
resembling much more nontrivial ones in the next sections.
Using the coordinate time 7, one simply writes down the
interval as an action for a particle moving in the 5th
direction of

g~ [dT\/l — z(7)? 6)

(1)

where the nontrivial trace of the AdS metric is z in the
denominator. This leads to well-known EOM

)

Nonrelativistically, one can neglect z(7) and think thus
about a motion in a logarithmic potential well [38].
Ultrarelativistically, one finds instead that as z(7) — 1
the acceleration goes to zero, as needed. Thus, in the
standard coordinates, very little seems to happen after the
particle reaches the ultrarelativistic regime: it runs forever
toward z — oo with the speed of light. But this is a (well-
known) illusion due to relativistic time slowing: in its own
proper time, the particle continues to accelerate and
reaches the AdS center in finite proper time.
This EOM is easily integrated yielding

2(1) = \7* + vozoT + z(z). 8)
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B. Falling open strings: the scaling solution

After this little warm-up, let us consider motion of the
open strings. Its action is given by Nambu-Goto, and if one
ignores two transverse coordinates x,, x3 and uses as two
internal coordinates the ¢, x (time and longitudinal coor-
dinate), the string is described by one function of two
variables z(x, ). The corresponding string action is then

TC o

dx

Note that only one term, the time derivative, is different
from the long-used static action used in [39] for static
calculation of the intercharge potential. The boundary
conditions would be z = 0 at two rays x = *vt, the world
lines of the heavy quarks. (The boost invariance of the
AdS5 metric allows us to work in a frame where the open
string endpoints move with opposite velocities.)

Translating into the 7, y language, the boundary con-
ditions are now determined at fixed y = =Y, where v =
tanhY and Y is the rapidity of the heavy quarks (colliding
walls). By doing so, we transfer time dependence from the
boundary conditions into the equations themselves. The
corresponding action is now

R* [r7drd 972 ("Z2
S=-5 [Tl (5) + 2 (0
27 Z ar
Before solving the corresponding equation in full, we
will first discuss “‘scaling’ solutions in the separable form

11

A= f( )
suggested by conformal properties of the theory. Such
solutions were known in literature [40], in Euclidean con-
text, they were used for AdS/CFT calculation of the
anomalous dimensions of kinks on the Wilson lines (of
which our produced pair of charges is one).

The scaling ansatz leads to a simple action

S = dey f/2 + f4 f2 (12)

27701

Using the fact that y does not appear in the action, there is a
conserved ‘“‘energy”

_v
fP+v

with the “potential” V = f* — f2, and thus the derivative
of the function f can be readily obtained

_ VIV - B
——

Note that the function f decreases from infinity on the
boundaries to its lowest value at the middle of the string
which we will call fy, so f > f,. At f = f, the derivative

—E (13)

f! (14)
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vanishes, so (14) provides also a simple equation f§ —
f3 — E*> = O relating E to f,.
Integration of (14) gives the following solution:

y=fo\/f32__11F< fz_fg, fo >

2fo f2 -1 /2f(2) -1
GI-1y 2 g
11 —, , 15
fo 22— 1 ( > (1>

P=1f hf2—1

where F and II are elliptic integral of the first and the third
kind. f} depends on collision rapidity ¥ = arctani(v) via
the boundary condition at f(¥) = oo, as shown in Fig. 3.

The existence of a maximum means that there are no
scaling solutions when the rapidity Y is larger than some
critical value, while if the quarks move on the boundary
slower that the critical rapidity, there are two solutions.

In order to characterize the solutions, it is useful to
introduce ‘‘effective potential’’ for two separating quarks
for each scaling solution, defined as instantaneous energy
U = AS/At, where AS is action given by the area of the
string world sheet, Az is the time interval. U needs to be
regulated, which is obtained by subtracting the Wilson loop
corresponding to two noninteracting moving quarks. In
other words, we calculate the subtracted area:

o
)
I

0.45

0.4

y 0.35

0.3

0.25

0.2

rT [ T T T T [ T T T T [ T T T T [T T 17T
2 4 6 8 10

for2

FIG. 3 (color online). Rapidity of the collision ¥ = arctank(v)
Vs f%. The maximum gives a critical rapidity Y. For Y <Y, two
f% are possible, corresponding to two string configurations. For
Y =Y, only one f(z) is possible. The region Y > Y, cannot be
reached.
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L R? dt 5 [
s~ [ [y [Car

R2 dt( [ / 1% o0
2mad j?(j;o af V—EQ_L df) (16)

The second term corresponds to f' = oo, precisely the
straight string going in the z direction, which is the AdS
solution for a moving quark. Note that we have switched to
t, y coordinates, which does not change the form of the
string action (12). With this prescription, we calculated U
for solutions in both branches, which are compared in
Fig. 4. The solution with the lower potential has a chance
to be the stable one, while the higher potential one (with
large f(, or longer string) must be metastable.

Let us now comment on the small v limit of the scaling
solution. At large separation (realized at late time) the
quarks can be considered as quasistatic. At small v, or
large f3, the effective potential can be simplified to the
following form:

dSyeg/dt = —;:1, fdf(J% - 1>/z

R? 1\2v
- - —0.5991,/F, — 0.1780—) =~ (1
5 ,< 0.5991,/F; — 0 780f0>L (17)

T

and relate more simply the velocity and f,

0.5991  0.03115
v = - .
fo fo

(18)

-0.125

-0.15

-0.175

I
o
(M)

-0.225

-0.25

<
N T T T T T T T T T O B A O A OO
+

-0.275

FIG. 4. The potential V as a function of v for different
branches of solution. Circles for large-f3 branch, crosses for
small-f3 branch V is plotted in units of \/ﬁ /L The potential
from the large f3 branch is lower than that from the small f3
branch.
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Combining (17) and (18), we obtain the effective poten-
tial for small velocity and large separation to be

(1 + 0.6830v%)\/g°N
I .

V =0.2285 (19)
The coefficient in front (the leading term at v — 0) co-
incides with the well-known coefficient of static
Maldacena potential.

The second term is thus the velocity-dependent
“Ampere’s law” O(v?) correction to it. We are not aware
of any other previous calculation of this term, except for
the paper by Zahed and one of us [41] in which, based on
resummation of ladder diagrams via the Bethe-Salpeter
equation, the result was that the velocity dependence is

Uw)/U(w =0)=1—0,0,~1+0502+---. (20)

It is close but not the same [42].

Both branches of the scaling solution were also con-
firmed by solving the equation numerically, starting from
the middle point and scanning all values of f.

The applicability of the scaling solution for a particular
Y depends of course not only on availability of a solution,
but also on its stability; i.e., how does the scaling solution
evolve with time (7), given some perturbation at initial

1

time. Denoting the scaling solution g,(y) = 7y and per-

turbation as

g(r,y) = g,(y) + 8g(7,y), (21)

we want to know whether the perturbation will grow or
decay with time. The EOM for g(, y)

08\3 08\2d
—2— g 28) + 2rg(28) 28— 2r
or dy) ot

(1 y) = 78(7,y)

298 8’8
dy d7dy

9g\2 9> 9’g 9 d%g [0g\2
’g o8 —§+2T—§g2—g+72—§g o8
dy/) ot ay oT dy ot
] a2 9 ]
298 4——‘§g2+77g—g—3'rg3—g
dy dy ot aT
d0g\?2 0%g 0g\2
-3 2,21 S + 2 243 2+2 2( 76
Te (87’) T2 T8 "\or
02 dg dg 9*
+ 89802288 08 g (2
dy dy d1 d7dy

can be used by plugging (21) in (22), and keeping only
term linear in 8g(7,y) (consider only sufficient small
perturbation), we obtain the following linearized EOM
for the perturbation:

9 d 92 92 92
A+B—+C—+D +E—+F_—
oT aT dy

8g(7,y)=0
dy dTdy } 8(7.y)

(23)

with
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A=gllgl +6g, —4g) — gV

B = 1(2g,8% + 2g!g? + g, — 3g3)

(24)
C=—4g;, D= —-7(2gg)
E=r71(ggl+g) F=gl—g,
define 7 = In7 as our time, the EOM simplifies to
B _ 9 -9 N 2 B 82 B 82
ot dy dTdy ot dy
(25)
with
A=A B=B-—E, C=¢
. - . (26)
D = D, E=E, F=F.

[To make it easier to get all these functions, one can
approximate scaling solution g,(y) with some parametri-

zations: we found that (gg;)))3 + ()" = 1 fits all the scaling

solutions very well.]

We need to seek eigenfunction 8g(7, y) = e*7i(y) sat-
isfying (25) and boundary condition #(y = *Y) = 0. In
general, out of many eigenvalues A we should be interested
in those with a positive real part, which will allow us to
conclude when the solution is unstable.

The eigenfunction results in the following EOM:

0 02
|:C0 + C; ay + Czayz}/’(y) =0 27

with
Co = A%g,(g? + 1) + Mg,g? + 68, + 2g38f — 3g7)
+3g{g7 + 6g, — 4} — &V
Cr=-2g(Agi +2)  Cr=g,gi — 1)

Because of the symmetry y < —y of the problem, we
can solve it in the positive-y region, with boundary condi-
tion (Y) = 0, ¢'(0) = 0. To solve this Schrodinger-like
equation, we use the iterative method. Starting on one
boundary with ¢/(0) = 0, #(0) = 1, the second condition
only affects the normalization of ¢(y). With some initial
value of A, we can obtain the (Y) from the EOM. Then we
variate the value such that /(Y) converges to 0. The result-
ing A gives the eigenvalue. Without much difficulty, we
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FIG. 5. The evolution of eigenvalue A from ¥ = 0.48 to 0.18 in
the complex plane.

found the following set of eigenvalue for different Y,
shown in Table. I. We also plot the eigenvalue A in the
complex plane Fig. 5. The evolution trend of this set of
eigenvalues suggests that the transition from stable to
unstable occurs at Y, inside the 0.22—-.27 interval, which
is way below the critical value ¥ ~ 0.5 above which there
were no scaling solutions at all. This shows that we essen-
tially lose the scaling solution to instability for Y > Y,,: we
were not able to tighten this limit any further.

In summary, the scaling solution exists only for suffi-
ciently small rapidities Y <Y, ~ 0.5. Furthermore, we
were able to verify that it is classically unstable already
for Y >Y,, = 1/4. Therefore solutions other than the scal-
ing one are needed for large rapidity, which is more im-
portant for our purpose.

C. Falling strings: the nonscaling solutions

In this section we study generic solutions outside the
scaling ansatz. But before we do so, let us explain qualita-
tively why such a solution must fail as the rapidity of the
collision grows. The scaling solution, in which 7 and y

TABLE I. One set of eigenvalues for different rapidity.
A(1072) 4.2 +94.8i 3.3+ 126.7i 2.8 + 157.5i 2.0 + 188.5i
Y 0.48 0.45 0.42 0.40
A(1072) 1.2 +222.1i 0.78 + 265.7i 0.38 + 299.5i 0.12 + 346.4i
Y 0.37 0.33 0.30 0.27
A(1072) —0.27 + 404.2i —0.63 + 492.9i —0.80 + 569.8i
Y 0.24 0.21 0.18
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dependences factorize, means that one tries to enforce a
particular stable profile to a string. But as the rapidity gap
2Y between the walls grows, we, so to say, try to build a
wider and wider ‘“‘suspension bridge” out of the string: it is
going to break under its weight at some point.

We again use z(7,y) = 7g(7, y) and EOM (22). The
boundary condition is g(7,y = *Y) = 0. Because of the
symmetry of the problem, it is sufficient to solve the
dynamics of half of the string, with initial condition
g(7,Y) = 0 and 3% (7,0) = 0.

However, there are two potential problems in (22).
(i) The y derivative diverges on the boundary. (ii) The
partial differential equation (PDE) is highly nonlinear
and will show self-focusing of energy at certain ““corners,”
as we will see. These make it difficult to obtain a well-
behaved numerical solution [43], and to improve the per-
formance of the Maple PDE solver we used to function
h(7,y) = g(7, y)" as dynamical variable, with properly
chosen integer power n so that the y derivative is finite
on the boundary.

Figure 6 shows the dynamics of the string with ¥ = 0.6.

We start from the initial condition (%)3 +(3)*=1and

% (1, y) = 0. We choose the initial time 7 = 1 to avoid the
singularity at 7 = 0. n = 6 is used in solving the PDE. As
time grows, the string profile approaches a rectangular
shape with sharper and sharper turns at the corners.
Based on the numerical solution, we infer that in the 7, y
coordinates, any point of the string other than the boundary
will ultimately become free falling when time is suffi-

0.75

0.25 —

0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 6 (color online). The dynamics of the string (half) g(7, y)
with y = 0.6. The profiles from the innermost to the outermost
correspond to 7 =1 (solid red), 7 =2 (dotted blue), 7 =4
(dashed green), 7 = 8 (dot-dashed black).
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ciently large. This can be supported by the following
qualitative argument. Any tiny piece of string experiences
the AdS effective gravity and the drag from its neighbors.
Since in the nonscaling solution, the whole string keeps
falling, it is natural to expect any point of the string
approaching the speed of light asymptotically, ending up
with a rectangular profile. Therefore, we conclude the edge
of the profile is not important asymptotically. It can be well
approximated by a flat profile in y, which will be studied in
the next section.

D. Falling strings and membrane in AdS;

The falling string can be considered as a solution at the
center of the generic case considered above in the large
rapidity limit of the ends Y — oo, which makes z
y-independent. Ignoring all derivatives over y in the
EOM above, one gets an ODE problem with the following
equation:

—21+ 27— P37+ 7i7+2%1=0 (28)

which is similar but not identical to that of a falling
massive object (7): the difference comes from dimension-
ality of the object: 1/z% in the action (instead of 1/z),
because the string action is a 2-dimensional integral. It is
now explicitly depending on 7: there is no integral of
motion but one can straightforwardly solve the EOM for
different initial conditions numerically. We found at large
7, g tends to 1. Therefore we show in this extreme case that
the asymptotic solution is again z ~ 7.

Summarizing the falling of all string objects, they have a
universal asymptotic behavior z ~ 7. Therefore we may
model the falling particles/open strings by a membrane,
which is made of multiple strings and is flat in x,, x3, and y
coordinates

The coefficient in its Dirac-Born-Infeld action, the
membrane tension, is now proportional to the density of
charges in the colliding walls, and thus can be very large.
This fact would mean that the membrane should eventually
be considered heavy enough, so that its weight would
affect the metric itself. Since in this work we would not
attempt to solve this problem yet, we treat the membrane as
a test body falling in external AdS metric. In this case the
value of its tension does not matter, and the action is very
similar to Nambu-Goto string action except of the different
power of z (now 1/z%)

J1 — (&2)2
S~ f rdrdydx,dx; V——7"— (29)
Z

We parametrize the membrane with 7, y, x,, x3, and
z-coordinate is a function of 7 only, z = z(7). The EOM is
readily obtained, it is similar to the y-independent string
case (coefficients 2 change to 4 in two terms):
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27— 27+ 472 + iz — 47 =0. (30)

Its asymptotic solution is again z ~ 7.

IV. NEAR-HORIZON “BRAKING”
A. Stretching black holes

The JP solution we will now discuss addresses the first
case, d = 1. The main feature of the JP solution is that
these two variables enter the metric via one specific com-
bination,

b4

V= 3D
which simplifies Einstein’s equations and leads to a solu-
tion. JP have found that only for one particular power y =
1/3 there is no singularity at the horizon in one of the
invariants—the square of the 4-index Riemann curvature,
and argued that thus this solution should be preferred on
this ground.

However, it is not clear what the physical meaning and
significance of this singularity may be, in general.
Furthermore, in the ‘“membrane scenario” proposed in
this work, the JP-like metric only extends from the AdS
boundary until the falling membrane, while the would-be
singularity is in the second domain, where this solution is
not supposed to be used at all. It is, so to say, a “mirage
behind the mirror,” singular or not does not matter.

There is another reason why this particular power should
be selected: only in the y = 1/3 case such that the total
area of the horizon (3D object normal to time and z) is time
independent: the factor 7 (from stretching y,) is canceled
by the factor 1/z* from contracting z. Thus, this stretching
solution is area preserving, and thus potentially dual to the
entropy-conserving adiabatically expanding fireball.

The specific form of the JP metric is
ds? — — (1 - v*9)? dr? (1 N v4%> m2dy? ;L dx*

Z

+—. (32)

The horizon determined from g, (v) = Oisatv;, = (%)1/ 4

thus it is moving away from z = O (the AdS boundary) as
needed. The 4th power of v is related to the fact that its
expansion near z = 0 to the 4th order is responsible for the
stress tensor as observed on the boundary, which was tuned
to correspond to the Bjorken boost invariant solution of
ideal hydrodynamics [21]: the starting point for JP.

This metric provides an asymptotic (large 7) solution to
the Einstein equations

Ry = (R/2)guy = 68y = KTy, (33)

After this metric is substituted to the left-hand side, one
finds that all terms of the ‘“‘natural” order of magnitude
O(77%3) cancel out, with only the higher order terms
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remaining. More specifically, we found that only the terms

Ty, ~ 1/ 72 are present, with rather compact expressions
such as
4v
2Ty = ——— 34
T Gto? (34)
4 2
T A — (35)

@ 3 + v)(v — 3)?

(4v? — 15v — 63)
(v —3)°

Please note that those terms are not only subleading at
large 7 but also are much simpler than all the terms which
had canceled out. Also note that there is a significant
singularity at the horizon (v = 3 in these units) in this
stress tensor, which is again irrelevant because this metric
is not supposed to be used there.

7T, = (—4/9)2

(36)

B. Objects approaching the horizon

Before we discuss the JP metric, let us remind the reader
how this approach works in the usual black holes with the
Schwartzschild metric: it will be needed to emphasize the
difference between them.

Massless particle falling radially in the Schwartzschild
metric satisfies the ds? = 0 equation, which is

dr\2 _r_hZ
G-y

leading to exponentially fast “freeze-out,”
(r = r3,) ~ exp(=t/r}). (38)

The same is also true for other objects, of course.
We use the following rescaled coordinates:

z—cz T— CT, y—y X —Cxy

with ¢ = (3—0)3/ 8. The resultant metric is

, (1- Ti—%)z dr? 2\ T2dy* + dxi

I+55 2 Z

+ —. (39)

The massless particle moves according to ds> = 0, which
in JP metric is

1 - 45
d _ S (40)
dr 1+ =

7473

We have assumed that the particle always starts from out-
side the horizon: z < 7!/3. This EOM is solved numerically
for different initial conditions. [From here on, we always
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use 7 = 10 as initial time for numerical solution, since the
metric (39) is valid asymptotically 7> 1.]

To obtain the analytical form of the asymptotic behavior,
we define

4
Z
and the EOM becomes
1—u _1m'/3 1 ul/* 4
ETRR R 2

Note u — 1 as 7 — 0. Assuming the second term domi-
nates the first term on the right-hand side (rhs), we obtain
the asymptotic form u = 1 — */%72/ 3, which confirms our
assumption. In terms of z and 7, we have

z= 7‘/3<1 -— (43)

[y
ok )

Equation (42) is also solved numerically and compared
with the trajectory of the horizon in Fig. 7.

For massive particle, the action is given by S = m [ ds.
Similarly we focus on the case that particle moves in a
trajectory with constant y and x;: EOM follows from
variation on action. Let z = 7'/3f, then the function f
needs to satisfy the following equation:

N
3]

2.0

- -
o [$)]

bt
3

N
TN N N T T T T N O

T T T [ T T T T [ T T T T [ T T 171
10.0 12,5 15.0 17.5 20.0

time=tau

FIG. 7 (color online). Trajectories of massless particles, with
initial z coordinates: z(10) = 0.1 (solid red), z(10) = 0.5 (dash-
dotted blue), z(10) = 0.9 (dashed green) The horizon is also
plotted (dotted black) for comparison. The trajectories of the
massless particles approach each other asymptotically, but do not
seem to approach the moving horizon.
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— 277.2f16f2 — 6Tf17f + 187’2fo2 — 10872f12f2
—6f1* +4f10 + 5475 — S47f3f + 127ff
+10872f4f2 — 67f7f + 60 — 3f18 + 972 (17§
+972ff = 9743 — 18720 f — 126743 f12 + 974/3 f20
+ 2774316 — 277453 f4 4+ 1267438 — 2+ 972f2 = (.
(44)

It is again solved numerically, with initial conditions

satisfying 75 < 7-(1)/3 and  z(7y) <[1 — (23/7'3/3)]/

V1 +(28/ Té/ ?). Note that the free-falling massive object

will move with speed of light asymptotically. We expect
(43) to be the asymptotic solution. By plugging (43) in
(44), we get the ths: § 774/3, which tends to zero as 7 grows.

Furthermore, we compare the numerical solution with
the asymptotic solution in Fig. 8. The two solutions agree
well at large 7. This confirms (43) is the correct asymptotic
solution.

To study the falling string, we first parametrize the string
by z = z(7, y). Instead of solving it in this form, we recall
our experience with the nonscaling solution in AdS space.
At large enough 7, the edge of the string will be less
important, with most parts of the string falling freely.
Therefore we ignore the y dependence of z: z = z(7).

Defining f = -, the EOM follows straightforwardly

from the Nambu-Goto action with the metric (39). It is a

0.95

0.85

10.0 12.5 15.0 17.5 20.0
time=tau

FIG. 8 (color online). Trajectory of massive particles starting
with f = 0.8 and f = O (solid red) at 7 = 10. The trajectory is
indistinguishable from the asymptotic solution (dashed black) at
T~ 15.
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0.95

0.85

10.0 12.5 15.0 175 20.0
time=tau

FIG. 9 (color online). Trajectory of string with initial condition
f =028 and f =0 (solid red) at 7= 10. The trajectory is
indistinguishable from the asymptotic solution (dashed black)
at 7~ 15.

quite lengthy expression, which we choose not to show
here.
We expect the same asymptotic solution (43). By plug-

ging (43) in the EOM, we get the rhs: — % 7723, which

0.95

0.85

10.0 12.5 15.0 17.5 20.0
time=tau

FIG. 10 (color online). Trajectory of membrane with initial
condition f = 0.8 and f = 0 (solid red) at 7 = 10. The trajec-
tory is indistinguishable from the asymptotic solution (dashed
black) at 7 ~ 15.
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tends to zero as 7 grows. Figure 9 compares the numerical
solution with the asymptotic solution, which confirms it is
the correct asymptotic solution.

Now we proceed to our final case, a membrane falling in
JP metric. Let z(7, y, x5, x3) = 7'/3f(7): the EOM is again
quite lengthy and not shown here.

We have solved it with a number of initial conditions and
found that all extra terms are subleading near horizon, so
this EOM gives the same asymptotic solution as the other
cases, namely f = 1 — (ﬁ)*ﬁz/3

The numerical solutions are displayed in Fig. 10, which
confirm the asymptotic solution.

We found that in all cases studied—massless and mas-
sive particles, string and membranes—their late-time be-
havior can be approximated by the same asymptotic
solution:

(z = z4(7)) ~ [—6—357—1/3 +} (45)
V. SUMMARY

This is the first paper of the series, devoted to quantita-
tive formulation of the “gravity dual” to high energy
collisions of macroscopically large bodies (heavy ions).
In it we have formulated the setting in which the problem is
simplified sufficiently to be solvable.

Its central idea is that various debris from a collisions, in
the form of massless and massive particles or “stretching”
open strings, all fall toward the AdS center. Although
qualitatively such falling may look quite similar, the equa-
tions of motion and solutions are different for different
objects. The main result of this work is a systematic
demonstration of this statement in detail, both for initial
time (when the underlying metric is supposed to be close to
AdS) and at the late times (when the metric is close to JP
solution). As we will see in subsequent papers later, small
differences in falling lead to quite different holograms in
the form of stress tensor at the boundary.

One possible solution can be to unify all such debris as a
single massive membrane, falling under its own weight. As
shown first by Israel [33] long ago, in such a case one can
greatly simplify the gravitational aspect of the problem,
using two different solutions of the sourceless Einstein
equations inside both space-time domains, appropriately
matched at the hypersurface made by the world volume of
the membrane. Two solutions are subject to “‘junction
conditions” providing new EOM for the membrane itself.
We will discuss those issues elsewhere.

Let us now point out a few more specific results of this
work. In the study of longitudinally stretched strings we
have found that scaling solutions used previously for de-
termination of kink’s anomalous dimensions are not at all
adequate in Minkowski time. We found that while for wall
rapidity Y > Y,,,, = 1/2 these solutions are absent, and
there are two of them for smaller Y. We further studied
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stability of the solutions and have proven that at least for
Y > Y, ~ 1/4 they indeed are unstable.

Our main finding for generic nonscaling solutions
(which come from numerical solutions of PDEs) is that
while at small velocity of stretching there is the so-called
scaling solution, generically at high stretching one gets
instead an asymptotic approach to a rectangular solution,
consisting basically of two near-vertical strings and a
freely falling horizontal part.

Another result which was not expected is that all types of
objects—massless and massive particles as well as open
strings and membranes—approach the JP horizon in the
same universal way. Unlike in the textbook case of the

PHYSICAL REVIEW D 77, 085013 (2008)

Schwartzschild metric, this approach does not happen ex-
ponentially but only as a power 7~ of time. Note that
this power is the same as appears in subleading terms,
ignored by JP at late time. It remains a challenge to find
an appropriate vacuum solution to the Einstein equation
complementing the late-time JP metric.
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