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We study the properties of Wilson loops in three-dimensional noncompact U�1� gauge theories with
global Abelian symmetries. We use duality in the continuum and on the lattice to argue that, close to the
critical point between the Higgs and Coulomb phases, all correlators of the Wilson loops are periodic
functions of the Wilson loop charge, Q. The period depends on the global symmetry of the theory, which
determines the magnetic flux carried by the dual particles. For single flavor scalar electrodynamics, the
emergent period is Q � 1. In the general case of N complex scalars with a U�1�N�1 global symmetry, the
period is Q � N. We also give some arguments why this phenomenon does not generalize to theories with
a full non-Abelian SU�N� symmetry, where no periodicity in Q is expected. Implications for lattice
simulations, as well as for physical systems, such as easy-plane antiferromagnets and disordered super-
fluids, are noted.
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I. INTRODUCTION

Three-dimensional Abelian gauge theories have been a
subject of intense study ever since Polyakov’s demonstra-
tion of monopole induced confinement in compact electro-
dynamics [1]. The principal tool used to study confinement
properties is the Wilson loop, which corresponds to an
insertion of an external charge-anticharge pair into the
theory. Area law for the Wilson loop indicates linear
potential between distant charges and confinement.

Noncompact three-dimensional U�1� gauge theories
with matter fields exhibit a different interesting physical
phenomenon: existence of conformally invariant critical
points. The prime example of such a theory is the single
flavor scalar electrodynamics, the so-called Abelian Higgs
model. In a certain region of parameter space, this theory
exhibits a second order phase transition, which can be
understood as being due to spontaneous breaking of the
topological U�1�� global flux symmetry [2–5]. The order
parameter for this symmetry is the monopole operator
V�x�, which creates a Nielsen-Oleson vortex with flux
2�. In the Higgs phase of the theory vortex excitations
have a finite mass and the U�1�� flux symmetry is unbro-
ken. On the other hand, in the Coulomb phase of the theory
the flux symmetry is spontaneously broken, with the pho-
ton being the corresponding Goldstone boson. The phase
transition can thus be visualized as being due to prolifera-
tion of vortices. Since the U�1�� symmetry is the only
global symmetry broken as one crosses the critical point,
one might suspect that the phase transition in the Abelian
Higgs model is in the (inverted) XY universality class and
can be described in terms of a dual local theory of a
dynamical vortex field V�x�. This hypothesis is supported
by an exact duality between certain lattice versions of the
Abelian Higgs and XY theories [2,3].

The duality has been used extensively to study observ-
ables in the Abelian Higgs model, such as correlation
functions of monopole, as well as magnetic field, opera-
tors. However, the behavior of Wilson loops near the phase
transition has largely escaped theoretical attention. This is
not surprising: in the noncompact U�1� theory there is no
linear confinement between external charges, so the prime
motivation for studying the behavior of Wilson loops is
gone. Nevertheless, as we shall show below, absence of
confinement does not preclude interesting behavior of the
Wilson loop across the phase transition.

In this paper, we discuss how to incorporate Wilson
loops into the dual theory of the Abelian Higgs model
using both symmetry arguments in the continuum and
explicit duality transformation on the lattice. We find that
a Wilson loop of chargeQ in the direct picture gets mapped
into an infinitely thin external flux tube carrying flux 2�Q
in the dual picture.1 Since flux 2� is invisible, one imme-
diately concludes that the universal physics near the phase
transition is periodic in charge Q of the Wilson line, with
period Q � 1. This means that the behavior of integer
Wilson loops across the phase transition is nonuniversal:
the length over which integer external charges are screened
does not diverge as one approaches the critical point. We
note that the periodicity in the charge Q is emergent rather
than fundamental: short-distance physics of scalar QED is
certainly not periodic in Q.

In the second part of this paper, we generalize our
discussion to what we shall call the ‘‘planar’’ theory: scalar
QED with N flavors and aU�1�N�1 global symmetry under
independent phase rotations of scalar fields, as well as a
symmetry under permutations of the flavors. This theory
has N types of global vortices, which carry a fractional
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1This fact has been previously noted in Ref. [6], using an
argument slightly different from the one presented here; how-
ever, the consequences for critical properties of the Abelian
Higgs model were not discussed.
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magnetic flux 2�=N [7]. Near its critical point, the theory
is believed to be dual to a theory with N � 1 U�1� gauge
fields and N flavors of scalars, which represent global
vortices of the direct model [8–10]. We show that due to
the fractional charge of the vortices under the flux symme-
try, a Wilson line of charge Q in the direct theory gets
mapped to an external magnetic flux tube with flux 2�Q=N
in the dual theory. Thus, near the critical point, the physics
of the N flavor model is periodic in the charge Q of the
Wilson line with period Q � N.

The emergent periodicity in the charge Q can be explic-
itly tested by lattice simulations.2 We suggest one observ-
able for lattice simulations: the electric field produced by a
straight temporal Wilson line at the phase transition. Like
all universal observables, the electric field will be periodic
in the charge Q of the Wilson line. We also present some
explicit semiquantitative predictions for the coefficient of
the electric field based on the 1=M expansion of the dual
theory. In addition, we separately discuss the behavior of
small, lattice spacing size, Wilson loops (plaquettes) near
the critical point, which might be of interest for lattice
simulations. Unlike their macroscopic counterparts to
which the rest of the paper is devoted, such microscopic
Wilson loops do not exhibit any emergent periodicity in the
charge Q.

Finally, we would like to understand whether the phe-
nomena described above generalize to U�1� gauge theory
with N scalar flavors and a full SU�N� global symmetry.
We shall argue that the answer to this question is no: the
physics in the SU�N� symmetric model is not periodic in
the charge Q of the Wilson line. In contrast to the situation
in the theory with Abelian global symmetry, the candidate
dual degrees of freedom in the SU�N� symmetric model
cannot be associated with local fields charged under the
flux symmetry. As a consequence, no periodicity in the
charge Q emerges.

We would like to note that besides being of general
theoretical interest, the behavior of Wilson loops across
phase transitions in noncompact U�1� gauge theories is
important for a number of physical problems. For instance,
it is believed that the phase transition from an antiferro-
magnetic Néel state to a valence bond solid (VBS) state on
a square lattice is described by N � 2 scalar noncompact
QED [12,13]. The model with SU�2� flavor symmetry
corresponds to a spin-rotation invariant system, while the
model with an AbelianU�1� global symmetry describes the
so-called easy-plane antiferromagnet. The later model is
also believed to describe the phase transition from a su-
perfluid state to a disordered state in a theory of lattice
bosons [14]. A missing spin impurity in this class of
models is represented by a Wilson line in the gauge-theory

description [15]. We have applied the dual description of
the Wilson loops presented in this paper to study impurity
induced VBS susceptibility in easy-plane antiferromagnets
in Ref. [16]. The predictions of [16] may be explicitly
tested by lattice studies of phase transitions in antiferro-
magnets and possibly by STM experiments on cuprate
compounds.

This paper is organized as follows. In Sec. II we describe
how to incorporate Wilson loops into a dual description of
the Abelian Higgs model. In Sec. III we generalize this
description to a model with N flavors and aU�1�N�1 global
symmetry. A discussion of the curious periodicity in the
charge Q of the Wilson loop appears in Sec. IV. The
behavior of lattice spacing size Wilson loops is also noted
in this section. Section V contrasts the behavior of Wilson
loops in theories with Abelian and non-Abelian global
symmetry. Concluding remarks are presented in Sec. VI.

II. WILSON LOOPS IN THE ABELIAN HIGGS
MODEL

A. Duality and Wilson loops

It is well known that in three space-time dimensions,
near its critical point, noncompact N � 1 scalar electro-
dynamics is dual to a theory of a complex (pseudo)scalar
field with a global U�1� symmetry [2–5]. The Lagrangians
of these two theories are as follows,

 LQED �
1

2e2 F
2
� � j�@� � iA��zj2 �m2jzj2 �

g
2
jzj4;

(2.1)

 LXY � j@�Vj2 � ~m2jVj2 �
~g
2
jVj4: (2.2)

Here A� is a noncompact gauge field, F� � ����@�A� is
the magnetic field, and z and V are complex one compo-
nent fields. The duality is understood as being true for the
range of parameters where LQED has a second order phase
transition (which at weak coupling is believed to occur for
g=e2 sufficiently large). One way to understand the duality
is by noting that the phase transition in scalar QED is
driven by spontaneous breaking of flux symmetry U�1��,
which is precisely the global symmetry of LXY. The order
parameter for breaking of the flux symmetry is the mono-
pole operator V�x�—that is the dynamical field of LXY. As
we know, to each continuous symmetry there corresponds a
conserved current. In the case of flux symmetry of QED,
this pseudovector current is just the magnetic field F�,
which is trivially conserved in the absence of monopoles,
@�F� � 0. Let us introduce an external field H� that
would couple to this current,

 �LQED � iH�F�: (2.3)

Suppose we are calculating some correlation function with
insertion of a string of monopole operators fVqi�xi�g of

2In fact, there has been a recent lattice investigation which
found a very unusual behavior of Wilson loops as a function of
charge Q in the Abelian Higgs model [11].
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charge qi at points xi. The gauge field A� in the path
integral is then subject to the condition @�F� �P
i2�qi��x� xi�. Then under the transformation

 H� ! H� � @��; (2.4)

 

SQED ! SQED � i
Z
dx@��F� � SQED � i

Z
dx�@�F�

� SQED � 2�i
X
i

qi��xi�: (2.5)

Hence, by introducing the field H� we can enlarge the
global U�1�� symmetry to a fictitious local symmetry,
provided that the monopole operators transform as

 Vq�x� ! e2�iq��x�Vq�x�: (2.6)

The dual Lagrangian LXY has to possess this local sym-
metry. Hence, to introduce the field H� into the dual
Lagrangian we simply have to covariantize the derivative
of the dynamical monopole field V,

 @�V ! D�V � �@� � 2�iH��V (2.7)

in Eq. (2.2). Other ‘‘gauge invariant’’ operators can also be
added to LXY, e.g. H2

��; however, their contribution will,
generally, either cancel out in correlation functions or be
less singular near the critical point (see Sec. II C for a more
detailed discussion).

Thus, the dual Lagrangian in the presence of a back-
ground source field H� is given by

 LXY � j�@� � 2�iH��Vj2 � ~m2jVj2 �
~g
2
jVj4: (2.8)

The covariantization procedure (2.7) was explicitly writ-
ten down in Ref. [17]. Similar arguments for the case of a
constant imaginary H�, which physically represents an
external magnetic field in the QED language and translates
into a chemical potential for the flux symmetry in the XY
language, have been given in Ref. [18]. In the next section,
we shall also give an argument based on an exact duality
transformation on the lattice, which will support (2.8).

Having learned how to incorporate the source field H�

into the dual Lagrangian, it is now trivial to dualize Wilson
loops. Indeed, insertion of a Wilson loop W�C� into a
correlation function is equivalent to adding into the
Lagrangian the source term

 �L � iQ
Z
C
dx�A� � iQ

Z
S
dS�F� � i

Z
dxH�F�

(2.9)

where the surface S satisfies @S � C and

 H��x� � Q
Z
y2S

dS���x� y�: (2.10)

SoH� is a field that lives on the surface of the Wilson loop
and is directed perpendicular to this surface.

Another benefit of introducing the source fieldH� is that
by differentiating with respect to it we can compute corre-
lation functions of the magnetic field F�. For instance,

 h�iF��x�iH �
� logZ�H�
�H��x�

� �2�ih�VyD�V � �D�V�yV��x�iH:

(2.11)

Hence the topological flux current F� of QED gets mapped
into the Noether’s current associated with the global U�1�
symmetry of the dual model.

We have seen above that the Wilson loop W�C� in the
dual theory is specified by a surface S with @S � C rather
than by the contour C alone. Let us investigate the depen-
dence of the dual theory on the choice of this surface. If we
pick a different surface S0, with @S0 � C, then the fieldH�

undergoes a gauge transformation H� ! H0� �
H� � @�� with ��x� � �Q1x2V where V is the volume
bounded by the two surfaces S and S0. Hence,

 hV�x� . . .iH0 � e2�i��x�hV�x� . . .iH (2.12)

where ellipses denote some other operators. Thus, the
operator V�x� is invariant under changing the surface of
the Wilson loop if and only if Q is an integer. This is
nothing but Dirac’s condition expressed in the language of
the dual theory. However, a theory with arbitrary nonin-
teger Q is still sensible provided that we do not consider
monopole operator insertions, or more formally, confine
our attention to correlation functions of operators which
are invariant under the fictitious U�1�� local symmetry,

e.g. the magnetic field operator �iF� � �2�iVyD
$

�V. In
fact, if we are dealing with such gauge invariant operators
we do not necessarily have to use the precise form of H
given by (2.10); defining �� to be a field living on the
perimeter of the Wilson loop and directed along it,

 ���x� � Q
Z
y2C

dy���x� y�; (2.13)

we see that

 ����@�H� � ��: (2.14)

Then, by performing a suitable gauge transformation on
H� and V, we can choose H� to be any field with curl
given by ��. Thus, we see that the duality maps a Wilson
loop of charge Q in the QED language to an external
magnetic flux tube of flux 2�Q in the XY language. This
correspondence has been noted in Ref. [6], but the con-
sequences of this correspondence for the critical properties
of Wilson loops were not discussed.

Thus, we have to solve an Aharonov-Bohm–like prob-
lem for the dual field V. The question is simplest to analyze
with the original gauge choice (2.10). This ‘‘string’’ gauge
is equivalent to H� � 0 and the boundary condition

WILSON LOOPS IN NONCOMPACT U�1� GAUGE . . . PHYSICAL REVIEW D 77, 085011 (2008)

085011-3



 V�x�� � e2�iQV�x�� for x 2 S (2.15)

where x� denote points on opposite sides of the surface S
(x� � x� �n, for �! 0�, where n is a local normal to S).
So the Wilson loop imposes a twisted boundary condition
(2.15) in the dual theory. We observe that the physics is,
therefore, a periodic function of Q. For integer Q the
boundary condition (2.15) is trivial—there is no twist. So
our argument indicates that integral Wilson lines do not
affect the physics on distances of order of the correlation
length of the theory: screening of integral charges takes
place on length scale which does not diverge as one ap-
proaches the phase transition. This is certainly an unex-
pected result: we will discuss it further in Sec. IV.
However, first we would like to obtain further support for
this result by performing an explicit duality on the lattice,
which will provide additional physical insight into the
origin of the periodicity in Q.

Another interesting consequence of periodicity in Q is
the emergence of charge conjugation C and charge parity
CP invariance at points Q � �1=2. Indeed, the Wilson
line generally breaks both C and CP symmetries, which
map the charge of the Wilson line Q! �Q. However, due
to periodicity in Q, the points Q � �1=2 are identified, so
C and CP symmetries are effectively restored for half-
integer-valued Q.

B. Duality on the lattice

In Sec. II A we have given arguments on how to perform
the duality on QED3 with Wilson loop insertions. Our
arguments were very general, being based on the presence
of flux symmetry alone. In the present section, we would
like to support the arguments of Sec. II A by performing an
exact duality between lattice versions of QED and XY
models. In the process, we will obtain some insight into
the emergent periodicity in the charge of the Wilson line.

The lattice duality between noncompact QED and XY
models is very well known [2,3]. We start from the QED
lattice action,

 SQED �
1

2e2

X
�j�

��A�2�j� �
1

2g

X
j�

�d	� A� 2�n�2j�:

(2.16)

Here Aj� is a gauge field living on links of the lattice and
ei	 is a matter field, whose amplitude is frozen. The aux-
iliary variables nj� are integers living on the links of the
lattice, whose purpose is to ensure the 2� periodicity of the
variable 	. For our purposes it will also be useful to add
sources corresponding to monopole and Wilson loop in-
sertions into the action,

 

SQED �
1

2e2

X
�j�

��A� 2�r�2�j� �
1

2g

X
j�

�d	� A� 2�n�2j�

� i
X
�j�

H �j���A� 2�r� �j�: (2.17)

Here r �j� is an integer-valued source field representing
Dirac strings running from locations of monopoles to in-
finity, satisfying

 �r 	 r� �j � �s �j � �
X
i

qi� �j �ji (2.18)

where qi and �ji are correspondingly charges and locations
of monopole insertions. The field H �j� in (2.17) is a source
coupling to the physical magnetic field ��A� 2�r� �j� (i.e.
the magnetic field with the Dirac string subtracted). To
represent a Wilson loop of chargeQ, we can chooseH �j� to
be equal to Q on the surface perpendicular to the loop and
zero everywhere else. For integer Q, such a Wilson loop
will be independent of the choice of the surface, while for
noninteger Q it will depend on the choice of the surface if
monopole operator insertions are present.

Now, we perform the duality. First, we decouple the
kinetic term for the gauge field by introducing an auxiliary
field P �j�. We also Poisson resum the field nj� by introduc-
ing an integer-valued variable Jj�.

 SQED !
e2

2

X
�j�

P2
�j� �

1

2g

X
j�

�d	� A� 2�n�2j�

� 2�i
X
j�

nj�Jj� � i
X
�j�

�P�H� �j���A� 2�r� �j�:

(2.19)

After Poisson resummation, nj� becomes a free real vari-
able, so we can shift it, 2�n0�j� � �2�n� A� d	� �j�,

 SQED !
e2

2

X
�j�

P2
�j� �

1

2g

X
j�

�2�n0�2j� � i
X
j�

�2�n0 � A

� d	�j�Jj� � i
X
�j�

�P�H� �j���A� 2�r� �j�:

(2.20)

Now, performing the integral over 	j� we obtain a con-
straint

 r 	 J � 0: (2.21)

Physically, Jj� represents the world lines of ei	 particles. If
we were to integrate over all other fields in the problem, we
would see that these world lines interact with a long-range
1=r Coulomb interaction (there are also local interactions
between these world lines controlled by the coupling
strength g). We solve the constraint (2.21) in terms of an
integer-valued field b �j�,
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 Jj� � ��b�j�: (2.22)

Now, we rearrange our action slightly and integrate over
the n0 field,

 SQED !
e2

2

X
�j�

P2
�j� � i

X
�j�

���P�H� � J�j�Aj�

� 2�i
X
�j�

�P�H� �j�r �j� �
g
2

X
j�

J2
j�: (2.23)

Performing the integral over the A field, we obtain a
constraint,

 ��P�H�j� � Jj� � 0: (2.24)

Recalling (2.22) we can solve (2.24) by introducing a real
field ’,

 P�H� b �
d’
2�

; (2.25)

arriving at the action
 

SQED !
e2

8�2

X
�j�

�d’� 2�H � 2�b�2�j� �
g
2

X
j�

��b�2j�

� i
X
�j�

�d’� 2�b� �j�r �j�: (2.26)

Recalling that both b and r are integer valued, summing the
last term by parts and using (2.18),
 

SQED !
e2

8�2

X
�j�

�d’� 2�H � 2�b�2�j� �
g
2

X
j�

��b�2j�

� i
X

�j

’ �js �j: (2.27)

Equation (2.27) is the final form of the dual lattice action.
Temporarily setting g � 0, dropping all the source field,
we obtain the usual Villain form of the XY model, with ei’

being the XY field. As already noted, the role of finite g is
to introduce short-range interactions between ei	 particles,
that is, between vortices of the ’ field. This is also evident
from the dual action (2.27) as we can identify �b with the
density of ’ vortices. Since such vortices for e2 � 0 al-
ready interact with a long-range Coulomb potential, we
expect the phase transition at finite g to be in the same
(inverted) XY universality class as at g � 0.

Now, restoring the source fields into (2.27), we imme-
diately identify ei’, with the monopole field of QED.
Moreover, we also see that the source field H enters the
dual action by gauging the lattice derivative of the ’ field.
We have predicted this fact from symmetry arguments
alone in Sec. II A. Hence, we see that the action (2.8) is a
suitable continuum generalization of our dual action (2.27),
where we identify V 
 ei’.

Now, we come to the question that interests us most:
what is the influence of integral Wilson loops on our

theory. For a general nonintegral charge Q the Wilson
loop enters the dual theory as a highly nonlocal coupling,
as the source field H lives on the whole surface of the
Wilson loop, rather than on its perimeter. Nevertheless, for
an integral charge Q, we can perform a transformation

 b0 � b�H; (2.28)

as in this case H is integer valued. Hence, dropping the
monopole insertions,

 SXY �
e2

8�2

X
�j�

�d’� 2�b0�2�j� �
g
2

X
j�

���b0 �H��2j�

(2.29)

 �
e2

8�2

X
�j�

�d’� 2�b0�2�j� �
g
2

X
j�

��b0 � ��2j�; (2.30)

where we used ��H�j� � �j� with the Q-valued vector
field � pointing along the perimeter of the Wilson loop
(and being zero everywhere else). Thus, for integral Q the
coupling of the theory to the Wilson loop becomes local.
So we expect the physics of integer Wilson loops to be
drastically different from that of noninteger ones.

Moreover, we see that for the special value g � 0, the
coupling to the Wilson loop in (2.30) disappears altogether.
From the point of view of the direct theory (2.16) this fact
is not surprising: setting g � 0 forces A � d	� 2�n, so
that W�C� � 1. Thus, the theory possesses a limit in which
the insertion of integer Wilson loops is trivial, but as one
varies e2, a phase transition in the (inverted) XY universal-
ity class still occurs. As already noted, we expect the phase
transition at g � 0 to be in the same universality class as
that of g � 0, that is, g is in some sense an ‘‘irrelevant’’
coupling. Hence, one can argue that the physics of integer
Wilson loops is nonuniversal—their only effects appear on
distance scale of order of the microscopic cutoff of the
theory.

To illuminate this conclusion further, let us rewrite the
dual theory (2.27) in terms of magnetic vortex lines, (i.e.
world lines of the field ei’). We proceed by Poisson
resumming the variable b �j� by introducing an integer-
valued field l �j�,

 

SQED �
e2

8�2

X
�j�

�d’� 2�H � 2�b�2�j� �
g
2

X
j�

��b�2j�

� 2�i
X
�j�

l �j�b �j�; (2.31)

where we have dropped the monopole source s for sim-
plicity. Now, shifting 2�b0 � 2�b� 2�H � d’,
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SQED !
e2

2

X
�j�

b02�j� �
g
2

X
j�

��b0 � ��2j�

� i
X
�j�

l �j��2�b
0 � 2�H � d’� �j�: (2.32)

Integrating over the field ’, we obtain the constraint

 r 	 l � 0: (2.33)

Physically, lj� are just the magnetic flux tubes. We can also
integrate over the field b0, obtaining

 SQED �
1

2

X
jj0�

�2�l� �j�Djj0 �2�l� �j0�

� 2�i
X
jj0�

H �j��e
2Djj0 �l �j0� �

e2g
2

X
jj0�

�j�Djj0�j0�;

(2.34)

where the propagator Djj0 is given by

 Djj0 �
1

V

X
k

1

e2 � g
P
�

4sin2 k�a
2

eik�j�j
0� (2.35)

with a being the lattice spacing and V the number of sites
in the lattice. The last term in (2.34) does not couple to the
dynamical field l and, thus, is trivial. The first term in
(2.34) represents the short-range interaction between the
flux tubes. The second term,

 i� � 2�i
X
jj0�

H �j��e
2Djj0 �l �j0�; (2.36)

is the one that interests us in conjunction with the proper-
ties of Wilson loops. Indeed, we identify

 B �j� � 2�
X
j0
�e2Djj0 �l �j0� (2.37)

with the magnetic field produced by each flux tube. We see
that the magnetic field due to each flux line is short range,
as expected. Hence, if we take H to represent the Wilson
loop, (2.36) simply adds up the contribution of all flux
tubes to the flux through the loop. In the special limit g �
0, the propagator Djj0 is ultralocal, e2Djj0 � �jj0 , and the
flux lines become infinitely thin. Then, (2.36) simply
counts the number n of flux lines passing through the
loop (in other words, n is the linking number of the flux
tubes with the Wilson loop),

 i�! 2�iQn: (2.38)

We immediately see that for Q—integer, the term (2.38)
gives a trivial contribution.

Now, turning g back on, our flux lines obtain a finite
thickness rf. Then the expression for the flux (2.38) is
modified by contributions from flux tubes passing within
a distance 
rf from the boundary of the Wilson loop (that
is, flux lines, which are not entirely inside or outside the

loop). This contribution can be understood as a local
coupling to the Wilson line, which is expected to be less
relevant in the renormalization group sense than the non-
local term (2.38). In fact, in the next section, we will argue
that all such local, linelike coupling terms are irrelevant.

C. Perturbations local at the Wilson line

Another way to argue the nonuniversality of response to
integral external charges is to try to construct a relevant
perturbation of the continuum dual theory (2.8). Such
perturbations have to be invariant under the fictitious
U�1�� local symmetry discussed in Sec. II A. Moreover,
as discussed in Sec. II B, for integral Q, the perturbation
must be local to the Wilson line. There are plenty of
operators with correct symmetry properties, since in the
action (2.8) we included only the most relevant (in terms of
power-counting) terms. We count the source field H� as
having dimension 1. This is the canonical dimension of this
field. Taking into account C and P symmetry, the operators
of lowest dimension which we can write down are

 ������@�H��
2� � ��2

�� � 4; (2.39)

 ������@�H��
2VyV� � ��2

�VyV� � D� 2; (2.40)

 ���i����D�V
yD�V�����
@�H
��

� ���i����D�V
yD�V���� � D� 2; (2.41)

where we have included the canonical dimensions of the
operators in question. The first operator (2.39) does not
couple to the dynamical fields of the dual theory and,
therefore, its contribution is trivial. The other operators
are irrelevant by power counting. We particularly want to
draw attention to the operator (2.41), since it couples the
Wilson line �� to the vortex density operator,
�i����D�VyD�V. This is precisely the kind of coupling
that we have for integral charges in the dual lattice action
(2.30), namely, �b0�.

We note that the above argument might be too naive, as
the field strength �� � ����@�H� 
 �2� ~x� corresponding
to the Wilson line is very singular. For instance, it is not
clear how to interpret the �2

� term in (2.40). If one takes
�2
� 
 ��2� ~x��2 
�2�2� ~x�, then the extra factor of �2 up-

sets our power-counting scheme. Such singularities will
occur at all orders in field strength. So perhaps it is more
appropriate for integer-valued external charge to simply
write all operators in the dual theory, which live locally on
the Wilson line (of course, we then do not know the
dependence of the coefficients of these operators on charge
Q). The operator which would seem to be most relevant is

 �L � u
Z
d�VyV� ~x � 0; ��: (2.42)

Here u is some real coupling constant, and at the critical
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point its scaling dimension is determined following
Ref. [19], dim�u� � 1� dim�VyV� � 1� �3� 1=�� �
1=�� 2. Because � � 2=3 for the XY model, u is an
irrelevant perturbation. We, therefore, come to the curious
conclusion that it is impossible to construct a (weak)
perturbation localized on a one-dimensional line, which
would be relevant at the fixed point of the XY model.

III. WILSON LOOPS INN-FLAVOR MODEL WITH
U�1�N�1 SYMMETRY

In this section, we consider a theory with N flavors of
scalar fields z� (N does not necessarily have to be large),

 L �
1

2e2 F
2
� � j�@� � iA��z�j2 �U�z��: (3.1)

We refer to this theory as the planar model. Here,U is some
potential with the global U�1�N symmetry under indepen-
dent phase rotations of the z� fields. The singlet component
of this symmetry is actually gauged by the field A�,

 U�1�: z� ! ei	�x�z�; A� ! A� � @�	; (3.2)

while the nonsinglet components are true global symme-
tries of the theory,

 U�1�N�1: z� ! ei	
ata�z� (3.3)

where ta, a � 1 . . .N � 1 are the generators of the
U�1�N�1 symmetry satisfying

P
�t
a
� � 0. We require U

to have a symmetry under the permutation of labels of z�
fields. We choose U in such a fashion that, in the ‘‘con-
densed’’ phase of the theory, it favors nonzero expectation
values of all components of the z� field, so that the vacuum
manifold of the theory is a torus, �S1�N (here we tempo-
rarily forget that the singlet symmetry is gauged). For N �
2 the theory under consideration is believed to describe the
phase transition in the easy-plane antiferromagnet.

We would like to dualize the theory (3.1). Similar theo-
ries were dualized in Refs. [8–10], and here we will present
a related discussion aimed at incorporating Wilson loops
into the dual theory. An exact duality on the lattice appears
in the Appendix, but we can write down the form of the
dual action from very general considerations. Let us first
identify the dual degrees of freedom. We go to the con-
densed phase of the theory (3.1), where all hz�i � 0. Then,
we can have vortices in any component of the z� field.
Formally, the homotopy group �1��S

1�N� � ZN . So, we
have N types of vortices, which become the degrees of
freedom of the dual theory V�, � � 1 . . .N.

These vortices are global, rather than local. Indeed, let us
consider a vortex in the first component z1,

 z1� ~x� 
 vei��
~x�; z� 
 v; � � 1; j ~xj ! 1;

(3.4)

where �� ~x� winds from 0 to 2� as one goes around a
contour out at infinity surrounding the vortex. Then, this

vortex corresponds to a space-time dependent transforma-
tion of the vacuum (3.2) and (3.3), with 	� ~x� � 1

N �� ~x� and
	a� ~x�ta � �1� 1=N;�1=N; . . .� 1=N��� ~x�. Thus, our
vortex possesses a winding both in the local and in the
global symmetry group. The winding in the local U�1�
group will be canceled by the gauge field,

 A��x� � @�	�x� �
1

N
@���x�: (3.5)

Hence our global vortices carry a magnetic flux � �
2�=N. Therefore, under the flux symmetry (2.4), the fields
V� should transform as

 V��x� ! e2�i��x�=NV��x�: (3.6)

This fact will be crucial for the analysis to follow.
The winding in the global group will lead to a long-range

Coulombic interaction between our vortices. We will need
dynamical gauge fields in the dual theory to give rise to this
interaction. However, if we have a unit winding in each
component of the z field, our vortex becomes completely
local, and carries total flux 2�. We can think of such a local
vortex as a composite of N global vortices of different
types. The creation operator for this flux tube, therefore,
will be

 V �x� �
Y
�

V��x�: (3.7)

Since the local vortex carries flux 2�, we can also associate
the operator (3.7) with the monopole operator of the direct
theory. Indeed, given (3.6), under the flux symmetry (2.4),

 V �x� ! e2�i��x�V �x� (3.8)

which is the correct transformation law for the monopole
operator (2.6).

We expect local vortices to interact by short-range
forces. Therefore, the operator (3.7) should not be charged
under the emergent gauge fields of the dual theory.

We are now ready to write down the dual theory,

 L �
1

2~e2

X
i

�F���2 � j�@� � iB�� �
2�i
N
H��V�j2

� ~U�V��: (3.9)

Here B�� � Ba�t
a
�, a � 1 . . .N � 1, are emergent dual

gauge fields, which couple to the nonsinglet currents.
F� � ����@�B�� are the corresponding field strengths.
The dual potential ~U�V�� is chosen to have the same
properties as the direct potential U: it has a U�1�N sym-
metry under independent phase rotations of the fields V�
and a symmetry under permutation of labels of V� fields.
Moreover, it favors hV�i � 0 for all � in the condensed
phase of the dual theory. Thus, the theory (3.9) has a local
U�1�N�1 symmetry,
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 U�1�N�1: V��x� ! ei�
a�x�ta�V��x�;

Ba� ! Ba� � @��
a;

(3.10)

as well as the global U�1� flux symmetry of the direct
theory (3.6) (which we have promoted to a local symmetry
by introducing a nondynamical source field H�). As re-
quired, the monopole operator (3.7) is invariant under the
local U�1�N�1 symmetry of the dual theory (3.10).

The theory (3.9) also has a global U�1�N�1 symmetry
associated with conservation of fluxes of the N � 1 emer-
gent gauge fields. This topological symmetry can be iden-
tified with the Noether’s symmetry (3.3) of the direct
theory.

Now, we would like to apply the duality discussed above
to study the properties of Wilson loops. Recall that to
represent Wilson loops we must use a source field H�

given by (2.10). As discussed for the case of N � 1 theory,
the effect of such a source field on the dual action (3.9) is to
introduce a twisted boundary condition for the vortex
fields,

 V��x
�� � e2�iQ=NV��x

��; for x 2 S; (3.11)

where Q is the charge of our Wilson line. The physical
origin of the factor 1=N is the fractional charge 2�=N of
the vortex fields V� under the flux symmetry. Thus, we
come to the amazing conclusion that the universal physics
in the planar model is periodic in the charge Q of the
Wilson line, with period Q � N. This is a generalization
of the Q � 1 periodicity of single flavor QED discussed
before.

Similarly to the N � 1 case, a consequence of the
Q mod N periodicity is the emergence of the C and CP
symmetries for half-integer values of Q=N. As before, this
periodicity is due to the identification of C, CP conjugate
points Q=N � �1=2.

IV. DISCUSSION

We have argued above that noncompact QED with N
identical flavors and aU�1�N�1 global symmetry acquires a
Q mod N periodicity in the charge Q of the Wilson loop
near its critical point. In the particular case of the N � 1,
Abelian Higgs model, the period is Q � 1. It is important
to note that this periodicity is emergent, rather than funda-
mental. On shortest distance scales, QED in three dimen-
sions is perturbative; the electric field produced by an
external charge Q is simply Coulombic, E � Qe2

2�r , which
is obviously not periodic in Q.

One also should not confuse the emergent periodicity
with trivial screening of external charges by dynamical
fields. Such screening generically takes place in low-
dimensional Abelian gauge theories and is due to the
confining nature of the Coulomb potential (linear in one
spatial dimension and logarithmic in two), which leads to

binding of a dynamical particle by the external charge.3

However, this trivial screening typically (i) occurs on
distance scales r� , where  � m�1 is the correlation
length of the theory, and (ii) leads to a resulting period of
Q � 1. One classic example of this phenomenon is the
Q mod 1 periodicity of string tension in the massive
Schwinger model [20]. The phenomenon considered in
the present paper is clearly different since (i) the screening
occurs on distance scale r  (for strong coupling, e2 

�, the screening is actually expected to take place on short-
distance cutoff scale), and (ii) the resulting period is Q �
N rather than Q � 1. For N > 1, in the Coulomb phase of
the U�1�N�1 symmetric theory, we also expect the usual
screening on distances r�  with period Q � 1.

Physically, the periodicity discussed in this paper is due
to the fact that the degrees of freedom responsible for the
phase transition are local fields carrying a fixed magnetic
flux, �0 � 2�=N. The Wilson loop of charge Q is then
expressed through the linking number n of the world lines
of dual particles with the contour of the loop,

 W�C� � eiQ�0n; (4.1)

and is trivial for Q � 0 mod N. For the special case of
N � 1 this phenomenon is a manifestation of the fact that
the phase transition is driven by magnetic rather than
electric degrees of freedom.

The results presented in this paper can be explicitly
checked by lattice simulations. The simplest lattice coun-
terparts of the continuum theories under consideration are
actually discussed in this paper in Sec. II B and in the
Appendix. These lattice theories were previously simu-
lated in a number of studies [3,8,17,21].4 We have pre-
dicted that near the phase transition all physical
observables become periodic in Q. However, we have not
discussed specific observables. One observable that we
suggest for lattice simulations is the electric field produced
by a straight temporal Wilson line (we define the electric
field Ei � Fi3 � ��ijFj). At the critical point, the electric
field must have the form

 h�iEri � C�Q�
1

r2 : (4.2)

This form is dictated by the fact that the magnetic field
�iF� is a conserved current, which receives no renormal-
ization and hence has conformal dimension D� 1 � 2.
The coefficient C�Q� is a universal function depending

3In two-dimensional theories, an infinitely large Wilson loop
of charge Q is equivalent to a nonzero value of the topological 	
angle, 	 � 2�Q. So the large-distance periodicity in Q is
synonymous to periodicity in 	.

4It is curious that from a technical point of view, certain lattice
simulations are actually more easily performed using the dual
lattice formulation [22].
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only on the charge Q of the Wilson loop.5 We predict that
C�Q� must be periodic with period Q � N. In particular,
C�Q� vanishes for Q � 0 mod N. Moreover, due to the
emergence of C and CP symmetries at half-integer Q=N,
C�Q� actually vanishes for both integer and half-integer
Q=N. This does not mean that the electric field vanishes at
these special points. Rather it will be controlled by irrele-
vant couplings, e.g. one in Eq. (2.41), and will fall off as
some higher power of 1=r with a nonuniversal coefficient.

The present paper has concentrated on incorporating
Wilson loops into the dual Lagrangian and discussing their
general properties. Nevertheless, the dual Lagrangian can
also be used for explicit calculations of properties of
Wilson loops. Of course, the dual theory is still strongly
coupled in the infrared: we have mapped one difficult
problem onto another. However, in the case of the
Abelian Higgs model (N � 1), the dual theory is just the
three-dimensional U�1� symmetric scalar field theory
rather than a gauge theory. A wealth of numerical and
analytical information is known about the phase transition
in this theory (XY universality class). It is known that �
expansion and large-M expansion (whereby the dual field
V is promoted to have M components) produce accurate
results in this theory. This is in contrast to the � expansion
in the direct theory, which predicts the existence of a
critical point only for N > 182 (see Ref. [23]) [here the
field z is promoted to an N component SU�N� multiplet].
Likewise the large-N expansion of the direct theory when
extrapolated to N � 1 is known to produce results for
anomalous dimensions, which are numerically notoriously
inaccurate. Moreover, we shall argue below that the SU�N�
symmetric theory actually does not possess any periodicity
in the charge Q of the Wilson line and hence does not
capture the qualitative features of the N � 1 theory. Thus,
at least for the N � 1 case, there are clear advantages of
performing calculations in the dual, rather than direct
theory. In Ref. [16], we have used the large-M expansion
of the dual theory to explicitly compute the universal
function C�Q� of Eq. (4.2) at M � 1; see Fig. 1. The
coefficient A of the linear term of the expansion of C�Q� �
AQ for Q! 0 is actually related to the conductivity in the
XY model and is known numerically from Monte Carlo
simulations A � 0:29, as well as to O��2� in � expansion
A � 0:32, and to next-to-leading order in 1=M expansion
A � 0:25 (see [16] and references therein).

For U�1�N�1 symmetric theories with N > 1, the dual
theory is a gauge theory with N � 1 gauge fields (the N �
2 theory is actually self-dual). Thus, explicit calculations in
the dual theory are unlikely to be numerically accurate.
However, they may illuminate general features, which are
not immediately obvious in the direct theory.

We note that in the present paper we have only discussed
Wilson loops of size much greater than the microscopic

cutoff of the theory. Such operators are inherently non-
local, as is particularly evident from their dual representa-
tion in terms of a twisted boundary condition (2.15) and
(3.11). This nonlocality dominates the long-distance phys-
ics and leads to the response periodic in the Wilson loop
charge Q. On the other hand, one common observable in
lattice simulations is the ‘‘plaquette’’—a one-by-one lat-
tice spacing square Wilson loop, eiQ�A. Such a plaquette is
a local operator and will generally mix with all other local
operators in the theory allowed by symmetry. In particular,
the charge conjugation positive, real part of the plaquette
will mix with the relevant operator O driving the phase
transition (one may take O � jzj2 in the direct theory),

 Re �eiQ�A� ! b��Q�O: (4.3)

On the other hand, the charge conjugation negative, imagi-
nary part of the plaquette will mix with the magnetic field
F�,

 Im �eiQ��A��� ! b��Q�F�: (4.4)

The mixing coefficients b��Q� will not be periodic in the
charge Q of the Wilson loop.

Thus, we expect the behavior of the plaquette expecta-
tion value close to the critical point to be dominated by the
specific heat exponent � � 2� �d,

 

d
dt
hRe�eiQ�A�i 
 t�� � const; (4.5)

where t is the deviation from the critical point. For the N �
1 Abelian Higgs model, the duality implies that the ex-
ponent � is given by its XY model value, � � �0:015 (see
[24] and references therein). Correlation functions with
multiple insertions of plaquette operators can be analyzed
in a similar manner.

0.1 0.2 0.3 0.4 0.5
Q

0.02

0.04

0.06

0.08

C(Q)/M Coefficient C(Q) of the Electric Field

FIG. 1. Coefficient C�Q� of the electric field at the critical
point of the Abelian Higgs model, see Eq. (4.2), computed from
a 1=M expansion of the dual theory.

5C�Q� is a real valued function: the electric field is imaginary
as we are working in Euclidean space.
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V. WILSON LOOPS IN THE SU�N� SYMMETRIC
THEORY

It is interesting to ask whether the periodicity in the
charge Q of the Wilson loop generalizes to theories with
N flavors and a full SU�N� global symmetry. We shall
argue below that the answer to this question is no.

A powerful tool in the analysis of the SU�N� symmetric
model is the 1=N expansion, which allows one to study the
physics directly without performing any duality transfor-
mations. The 1=N expansion is typically performed in the
limit e2 ! 1, so that the bare kinetic term for the gauge
field is absent. One also usually replaces the short-range
repulsive interaction between scalar fields by a hard con-
straint,

P
�z
y
�z� �

1
g , which can be enforced by a local

Lagrange multiplier �. One then obtains the Lagrangian of
the CPN�1 model,

 L � j�@� � iA��zj
2 � i�

�
jzj2 �

1

g

�
: (5.1)

The behavior of Wilson loops withQ
O�1� in N is easily
captured by the 1=N expansion. For instance, at the critical
point of the theory one recovers the form of the electric
field (4.2), where to leading order in 1=N, C�Q� � 8Q

�N . The
SU�N� symmetric theory, thus, clearly does not display a
Q mod 1 periodicity of the single flavor theory. One might
not be too surprised by this fact, since we already saw that
the N-flavor theory with a U�1�N�1 symmetry has only a
Q mod N periodicity. Does the SU�N� symmetric theory
share this periodicity of its planar counterpart?

To answer this question we must take Q
O�N� in the
large N expansion. In this limit, the Wilson loop will
modify the saddle point of the expansion. For N � 1, at
the critical point, we should no longer expand around
A� � 0, � � 0, but rather around space-time dependent
A� and �. By dimensional analysis, a straight temporal
Wilson line placed at the origin will generate saddle-point
fields,

 iA��r� � ��0
a�Q�
r

; i��r� �
b�Q�

r2 : (5.2)

The coefficients a�Q� and b�Q� should be chosen in such a
way that saddle-point equations are satisfied,

 hJ��x�i � hz
yD
$

�z�x�i � �Q��0�
2� ~x�; (5.3)

 hzyz�x�i �
1

g
: (5.4)

The expectation values in (5.3) and (5.4) are to be com-
puted by finding the propagator of the z fields in the
background of the saddle-point fields (5.2). We have not
been able to find this propagator explicitly. Nevertheless,
the saddle-point equation (5.3) is not periodic in Q=N;
thus, we conclude that the SU�N� symmetric theory is
not periodic in Q.

One may ask, what makes the SU�N� symmetric theory
so different from its deformation with a U�1�N�1 symme-
try. Our results regarding the planar theory relied on re-
writing the problem in terms of dual degrees of freedom.
Such a duality transformation, either in the continuum or
on the lattice, is, so far, not known in the SU�N� symmetric
theory. Nevertheless, we would like to provide some spec-
ulations on the possible form of the dual theory and im-
plications for the properties of Wilson loops.

To construct the dual theory, we first need to identify the
dual degrees of freedom. For the planar theories considered
above, these are vortices: pointlike topological defects of
the two-dimensional reduction of the theory. Then the
three-dimensional theory is formulated in terms of vortex
loops, i.e. world lines of the two-dimensional defects. We
would like to follow the same procedure for the SU�N�
symmetric theory: as a first step we need to find two-
dimensional topological defects. Fortunately, classical de-
fects of the two-dimensional CPN�1 model are the very
well known instantons [25]. These instantons carry mag-
netic flux � � 2�q, where q is the integer topological
charge of the instanton. To make further connection with
the planar N-flavor model, we recall that all the solutions
with topological charge q are known exactly, and can be
parametrized in terms of Nq complex coordinates, a�i,
with i � 1 . . . q. For q > 0,

 w��s� � c�
Yq
i�1

�s� a�i�; (5.5)

 z��s� �
w��s�

�wyw�s��1=2
; (5.6)

where s � x1 � ix2. The coefficients c� specify the overall
orientation of the instanton in flavor space at infinity and
are not very important. The corresponding expressions for
q < 0 can be obtained by taking s! �s. We see that the
variables a�i are locations of vortices of fields z�. Thus,
just as in the case of the planar N-flavor model, the
instanton (vortex) with flux 2�q can be decomposed into
qN fractional instantons (vortices) to which we can assign
flux 2�=N.

However, there is one major distinction between the
planar and SU�N� symmetric models. For the planar model
the magnetic flux is concentrated in the core of the frac-
tional vortices, which are assumed to have some micro-
scopic size. On the other hand, for the SU�N� symmetric
model, there is no notion of the core size since the theory is
(classically) conformally invariant. The flux density of a
configuration of fractional instantons is not localized near
their positions ai�, but rather is smeared out in a distribu-
tion that depends in some highly complicated manner on
the ratios of distances between these constituents. An
instructive example is the instanton with charge q � 1,
where the flux produced by the fractional instantons always
clumps together into a rotationally invariant distribution.
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Thus, despite their similarity to fractional vortices of the
planar model, fractional instantons do not carry a local
flux, and upon transition to three dimensions, cannot be
promoted to local fields charged under the U�1�� symme-
try. The expression for the Wilson loop (4.1) in terms of the
linking number of vortices with the loop contour is, there-
fore, inapplicable for the SU�N� symmetric case, and no
periodicity in the charge Q of the Wilson loop appears.

VI. CONCLUSION

The purpose of this paper was to incorporate Wilson
loops into the dual description of critical noncompact
Abelian gauge theories in three dimensions. This goal
has been achieved for noncompact QED with N flavors
of identical scalar fields and a U�1�N�1 global symmetry.
The Abelian Higgs model corresponds to theN � 1 case of
our general construction. A remarkable property, which
follows from the dual description, is that the universal
physics close to the phase transition is periodic in charge
Q of the Wilson loop with period Q � N. In Sec. IV we
have provided a detailed discussion of this unexpected
result; here we repeat a few conclusions. We have argued
that the periodicity is emergent at the phase transition
rather than fundamental to the theory. We also claim that
this behavior is distinct from trivial screening of electric
charge in the Coulomb phase of low-dimensional Abelian
gauge theories. Moreover, we have argued that this peri-
odicity does not generalize to the theory with a full SU�N�
invariance. Thus, any attempt to understand the behavior of
Wilson loops at the phase transition of the Abelian Higgs
model through the 1=N expansion of its N-flavor, SU�N�
symmetric counterpart will fail to reproduce this qualita-
tive feature.

The predictions of the present paper can be explicitly
tested by lattice simulations. In Sec. IV, we have suggested
one observable: the electric field produced by a straight
temporal Wilson line at the critical point, to test the peri-
odicity discussed above on the lattice.

Finally, the application of results of the present paper to
the description of an impurity in a two-dimensional anti-
ferromagnet in the neighborhood of the quantum phase
transition to a VBS state is a subject of a separate work
[16]. It has been argued in [16] that a missing spin impurity
induces a vortex in the VBS order parameter. We hope that
such vortices will be observed by future STM experiments
on cuprate compounds.
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APPENDIX: DUALITY IN THE PLANAR THEORY
ON THE LATTICE

In this appendix, we discuss a lattice counterpart of the
conjectured continuum duality discussed in Sec. III. We
start from the action
 

SQED �
1

2e2

X
�j�

��A� 2�r�2�j�

�
1

2g

X
�

X
j�

�d	� � A� 2�n��2j�

� i
X
�j�

H �j���A� 2�r� �j�: (A1)

This is a generalization of U�1� lattice theory (2.17), in
which we have introduced N flavors of dynamical matter
fields ei	

�
, with corresponding integer-valued variables n�

that ensure the periodicity of 	� variables. As before, we
decouple the kinetic term for the gauge field by introducing
an auxiliary field P �j�, and we Poisson resum the fields n�j�
by introducing integer-valued variables J�j�,

 S!
e2

2

X
�j�

P2
�j� �

1

2g

X
�

X
j�

�d	� � A� 2�n��2j�

� 2�i
X
�

X
j�

n�j�J
�
j� � i

X
�j�

�P�H� �j���A� 2�r� �j�:

(A2)

Shifting 2�n0� � 2�n� � A� d	�,

 S!
e2

2

X
�j�

P2
�j� �

1

2g

X
�

X
j�

�2�n0��2j� � i
X
�

X
j�

�2�n0�

� A� d	��j�J�j� � i
X
�j�

�P�H� �j���A� 2�r� �j�:

(A3)

Performing the integral over 	�j� we obtain a set of con-
straints,

 r 	 J� � 0: (A4)

Physically, J�j� represent the world lines of ei	
�

particles.
The singlet combination

P
�J

� has a long-range 1=r
Coulomb interaction, while the nonsinglet combinations
have short-range interactions. We solve the constraints
(A4) in terms of integer-valued fields b��j�,

 J�j� � ��b
��j�: (A5)

Integrating over the n0� fields,
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SQED !
e2

2

X
�j�

P2
�j� � i

X
�j�

���P�H� �
X
�

J��j�Aj�

� 2�i
X
�j�

�P�H� �j�r �j� �
g
2

X
�

X
j�

J�2
j�: (A6)

Performing the integral over the A field, we obtain a
constraint,

 ��P�H�j� �
X
�

J�j� � 0: (A7)

Recalling (A5) we can solve (A7) by introducing a real
field ’,

 P�H �
X
�

b� �
d’
2�

; (A8)

arriving at the action

 S!
e2

8�2

X
�j�

�d’� 2�H � 2�
X
�

b��2�j�

�
g
2

X
�

X
j�

��b��2j� � i
X

�j

’ �js �j: (A9)

We now Poisson resum the field b� by introducing integer-
valued variables l�,

 S!
e2

8�2

X
�j�

�d’� 2�H � 2�
X
�

b��2�j�

�
g
2

X
�

X
j�

��b��2j� � i
X

�j

’ �js �j � 2�i
X
�

X
�j�

l��j�b
�
�j�:

(A10)

Now b� are not constrained, and it is convenient to change
variables to singlet and nonsinglet components b0 and ba,

 b� � b0t0� � bata� (A11)

where t0 and ta, a � 1 . . .N � 1, are normalized genera-
tors of singlet and nonsinglet symmetry groups, respec-
tively, i.e. t0� �

1���
N
p ,

P
�t
a
� � 0, and

P
�t
a
�t
b
� � �ab. We

also introduce singlet and nonsinglet combinations,

 l0 �
1����
N
p

X
�

l�; la �
X
�

l�ta�: (A12)

Note that l0 and la are generally not integer valued. Hence,
our action becomes
 

S!
e2

8�2

X
�j�

�d’� 2�H � 2�
����
N
p

b0�2�j� �
g
2

X
j�

��b0�2j�

� 2�i
X
�j�

l0�j�b
0
�j� � i

X
�j

’ �js �j �
g
2

X
a

X
j�

��ba�2j�

� 2�i
X
a

X
�j�

la�j�b
a
�j�: (A13)

Shifting 2�
����
N
p

b00 � d’� 2�
����
N
p

b0, and integrating over
’, we obtain

 S!
e2N

2

X
�j�

�b00 �
1����
N
p H�2�j� �

g
2

X
j�

��b00�2j�

� 2�i
X
�j�

l0�j�b
00
�j� (A14)

 �
g
2

X
a

X
j�

��ba�2j� � 2�i
X
a

X
�j�

la�j�b
a
�j�; (A15)

with the constraint

 �r 	 l0� �j �
����
N
p

s �j: (A16)

Moreover, performing a shift ba ! ba � d� in (A14) we
learn that the flavored components must satisfy

 r 	 la � 0: (A17)

The constraints (A16) and (A17) can be combined to give

 �r 	 l�� �j � s �j for all �: (A18)

Physically, l� corresponds to world lines of vortices of the
ei	� field. The singlet component of this field l0 corre-
sponds to local vortices, when ei	� have the same winding
for all �. Now, we can integrate the fields b00 and ba out in
Eq. (A14),
 

S �
1

2

X
jj0�

�2�l0� �j�D
S
jj0 �2�l

0� �j0�

� 2�i
X
jj0�

H �j��e
2DS

jj0 ��
����
N
p

l0� �j0� (A19)

 �
g

2e2

X
jj0
sjD

S
jj0sj0 �

e2g
2

X
jj0�

��H�j�D
S
jj0 ��H�j0�

� 2�ig
X
�j�

H �j��dD
Ss� �j� (A20)

 �
1

2

X
a

X
jj0�

�2�la� �j�D
f
jj0 �2�l

a� �j0�; (A21)

with the kernels

 DS
jj0 �

1

V

X
k

1

e2N � g
P
�

4sin2 k�a
2

eik�j�j
0�; (A22)

 Df
jj0 �

1

V

X
k

1

g
P
�

4sin2 k�a
2

eik�j�j
0�: (A23)

The first term in (A19) corresponds to a short-range inter-
action between singlet components of vortices. This is in
agreement with the expectation that local vortices should
have local interactions. On the other hand, as we see from
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(A21), nonsinglet components of l, i.e. global vortices,
have long-range interactions.

Now let us see how our vortices couple to the magnetic
source fieldHj�. This coupling is given by the second term
in (A19). Rewriting

 i� � 2�i
X
jj0�

H �j��e
2DS

jj0 ��
����
N
p

l0� �j0�

� 2�i
X
jj0�

H �j��e
2DS

jj0 �

�X
�

l�
�

�j0�
; (A24)

we observe that each vortex l� carries a flux equal to
2�e2DS�k � 0� � 2�=N. This is again in accordance
with our arguments in Sec. III.

Finally, for completeness we also discuss the terms in
Eq. (A20). These terms are not very important as they do
not couple to the dynamical variables l�. The first term in
(A20) corresponds to bare, short-range interaction between
monopoles, while the third term corresponds to the mono-
pole’s contribution to the magnetic flux.

Now, we would like to rewrite the action (A19) in a local
form. We consider the action
 

S �
1

2~e2

X
a

X
j�

��Ba�2j�

�
1

2~g

X
�

X
�j�

�
d’� � Bata� �

2�
N
H � 2�m�

�
2

�j�
(A25)

 �
t
2

X
j�

�X
�

�m�
�

2

j�
� i

X
�j

�X
�

’��j

�
s �j: (A26)

The first line, (A25), is the simplest lattice generalization
of the continuum action (3.9). We have a set of N � 1
dynamical gauge fields Ba which couple to nonsinglet
combinations of currents associated with a set of N matter
fields V� 
 ei’

�
. The integer variables m�

j� ensure the
periodicity of ’�. In the second line, (A26), we introduce
the monopole source field s which couples to the combi-
nation

P
�’

�, in accordance with our continuum guess
(3.7). Also, observe the coefficient 2�=N, corresponding
to the flux of a single vortex, in the coupling to the source
field H.

We have also introduced an additional term with cou-
pling constant t in Eq. (A26). This term gives local inter-
actions to the vortices of ei’

�
fields. We do not actually

expect this term to drastically modify the critical properties
of our theory (as we shall see, it will change some ultra-
local interactions into just local ones); nevertheless, we
have included it to make the similarity with the direct
theory more pronounced.

We would like to make the connection between actions
(A1) and (A25). As usual, we Poisson resum m� in (A25)
with the help of integer-valued variables l��j� and perform a

shift, 2�m0� � 2�m� � Bata� � d’�,

 

S �
1

2~e2

X
a

X
j�

��Ba�2j� �
�2��2

2~g

X
�

X
�j�

�
m0� �

1

N
H
�

2

�j�

�
t
2

X
j�

�X
�

�m0�
�

2

j�
(A27)

 � i
X

�j

�X
�

’��j

�
s �j � i

X
�

X
�j�

l��j��2�m
0� � Bata� � d’

�� �j�:

(A28)

By integrating over ’� we recover the constraint (A18).
Next, we go to the rotated variables (A12) and perform
analogous rotation on m0�. Then,

 S �
�2��2

2~g

X
�j�

�
m00 �

1����
N
p H

�
2

�j�
�
tN
2

X
j�

��m00�2j�

� 2�i
X
�j�

l0�j�m
00
�j� (A29)

 �
1

2~e2

X
a

X
j�

��Ba�2j� �
�2��2

2~g

X
a

X
�j�

�m0a�2�j�

� i
X
a

X
�j�

la�j��2�m
0a � Ba� �j�: (A30)

Integrating over m0a we obtain

 S �
�2��2

2~g

X
�j�

�
m00 �

1����
N
p H

�
2

�j�
�
tN
2

X
j�

��m00�2j�

� 2�i
X
�j�

l0�j�m
00
�j� (A31)

 �
1

2~e2

X
a

X
j�

��Ba�2j� ��i
X
a

X
�j�

la�j�B
a
�j�

�
~g
2

X
a

X
�j�

�la�2�j�: (A32)

We note that the above action, except for the last term in
Eq. (A32), is exactly the same as that in (A14) with the
identification m00 � b00, Ba � 2�ba, ~e2 � �2��2

g , ~g �
�2��2

e2N
, t � g=N. As for the last term ~g

2

P
a
P

�j��l
a�2�j�, it gives

rise to an ultralocal interaction between global vortices.
Since these vortices already interact with a long-range
potential (A23), we do not expect this term to alter the
critical properties of the theory. We also note that the
somewhat unusual term with the coefficient t in (A26) is
related to the coupling g in the singlet kernelDS (A22) [but
not in the flavored kernel Df (A23)]. Setting t � 0 would
make interactions between singlet vortices ultralocal in-
stead of just short range. Again, we do not expect such a
change to alter the critical properties of the theory.

Thus, we have argued that the lattice actions (A1) and
(A25) are equivalent, up to local interactions in the fla-
vored sector.
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