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We dilate the scaling region of the lattice anharmonic oscillator at strong coupling by introducing the
parameter �. Performing expansion in �, the calculation of the mass gap in the continuum limit via the
series expansion effective at large lattice spacings is then studied. We show that the dilation on the mass
parameter M recovers the scaling behavior of the hopping parameter � and allows for precise
approximation of the mass gap.
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I. INTRODUCTION

Recently a new computational method is proposed to
improve the scaling behavior of strong coupling expansion
on the lattice [1]. By the use of the method, scaling
behavior of the N vector model at two dimension was
reinvestigated by studying the relation between � � 1

g (g:
bare coupling constant) and the square of the dimension-
less mass M defined in the lattice momentum space.

The new method starts with the series expansion gen-
erally available such as strong coupling expansion or hop-
ping parameter expansion. Specifically, � is expanded in
1=M such that � �

P
k�1

bk
Mk and the function is dilated

around M � 0 by the change of variable, M ! M�1� ��
(0 � � � 1). To access the continuum limit, the dilated �
at large M, ��M�1� ��� �

P
k�1

bk
Mk�1���k

, was expanded

also in the dilation parameter � and the value of � is tuned
to unity. Since the series of � is always truncated and
expanded in �, there appears no divergence even though
� is set to unity. Then, in a wide region of new M,
logarithmic scaling in accordance with the asymptotic
freedom was found in truncated 1=M series of dilated �
in the large N limit. At N � 1, rough scaling behavior of
Ising model was also found.

The proposed method has some similarities with the so-
called delta expansion [2,3]. The similarities become clear
when the method proposed in [1] is applied to the contin-
uum models with explicit mass term. Though the point of
view from the dilation is not mentioned in the existing
literatures, we thus use the term ‘‘delta expansion’’ to refer
to the method. However, we like to point out the following
differences between the two methods: In the conventional
delta expansion, the action S of interest is generalized by
introducing a parameter � to S� � S0 � ��S� S0�, where
S0 represents some solvable one. Here � is introduced as an
interpolation parameter of S0 and S. Physical quantities are
then expanded in � and nontrivial results emerge after the

substitution � � 1. However, in [1], � is introduced as the
parameter to dilate the scaling region of the system de-
scribed by S itself. Although the conventional delta expan-
sion requires a good choice of S0 and critical use of the
principle of minimum sensitivity [4], in the new delta
expansion, S0 is obsolete and the later plays a less impor-
tant role.

The purpose of the present paper is to apply the new
version of delta expansion to the anharmonic oscillator at
strong coupling. A detailed study is presented on the sub-
ject of calculating the mass gap in the continuum limit, the
gap energy between the ground state and the first excited
state, via the series expansion effective at large lattice
spacings. At strong coupling, the mass gap is generated
nonperturbatively since it depends on the quartic coupling
constant � as const� �1=3. Thus the present investigation
serves us a good testing ground of the new method.

II. ANHARMONIC OSCILLATOR AND HOPPING
EXPANSION

To focus on essential aspects, we confine ourselves with
the pure anharmonic case where the harmonic mass term is
absent from the action. The action S on the lattice with
lattice spacing a is given by

 S �
X�L

n�� �L

a
�

1

2

�
�n�1 ��n

a

�
2
�
�
4
�4
n

�
;

where n (n � 0;�1;�2; . . . ;� �L; L � 2 �L� 1) denotes a
lattice site and the real field� on the site n is written as�n.

The action can be simplified by rescaling field variables.
Let the rescaled field ’ be defined by

 ’n �
�
a�
4

�
�1=4

�n:

Then, the action takes the following form:

 S � �
X
�’2

n � ’n�1’n� �
X
’4
n; (2.1)

where [5]
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 � �
�

4

�a3

�
1=2
: (2.2)

Note that the parameter � is small when a or � is large.
For the purpose of the present work, we need expansion

of correlation length, or mass in momentum space in
powers of � and we use a technique of hopping expansion
[6]. As the first step, we divide the action into the ‘‘poten-
tial’’

P
V and the hopping term �

P
’n�1’n as

 S �
X
n

V�’n� � �
X
n

’n�1’n; V�’� � �’2 � ’4:

An average of � is then calculated as follows:
 

h�i �
1

Z

Z Y
i

	d’ie�V�’i�

Y
n

exp	�’n�1’n
�

�
1

Z

Z Y
i

	d’ie
�V�’i�


�
1�

X
n

�’n�1’n

�
X

m;n�m�n�

�2�’m�1’m��’n�1’n�

�
X
n

�2

2!
�’n�n’n�2 � � � �

�
�: (2.3)

Here Z denotes the partition function given by

 Z �
Z Y

i

d’ie�V�’i�
Y
n

exp	�’n�1’n
;

and Z may be expanded in powers of the hopping term.

A. Partition function to �8

Computation of expectation values includes the partition
function as the divisor and we first compute Z to 8th order

of �. The hopping expansion of Z to the first few orders
reads

 

Z �
Z Y

i

	d’ie�V�’i�

�
1�

X
n

�’n�1’n

�
X

m;n�m�n�

�2�’m�1’m��’n�1’n�

�
X
n

�2

2!
�’n�n’n�

2 � � � �

�
:

As shown in Figs. 1 and 2 it is convenient to use a graphical
representation of each contributions. To �8, we obtain

 

Z � hL0

�
1� L�2 �

2
1

2
� L�4

�
�2

2

24
�
�2

1�2

4
�
L� 3

12
�4

1

�
� L�6

�
�L� 4��L� 5�

�6
1

48
� �L� 4�

�4
1�2

8
� �L� 3�

�2
1�

2
2

48

�
�1�2�3

24
�
�2

3

720

�
� L�8

�
1

384
�L� 5��L� 6��L� 7��8

1 �
1

32
�L� 5��L� 6��6

1�2 �
1

192
�L� 5��L� 14��4

1�
2
2

�
1

96
�L� 2��2

1�
3
2 �

1

1152
�L� 3��4

2 �
1

48
�L� 4��3

1�2�3 �
1

48
�1�2

2�3 �
1

1440
�L� 12��2

1�
2
3 �

1

576
�2

2�4

�
1

720
�1�3�4 �

1

40 320
�2

4

�
�O��10�

�
; (2.4)

where

 h0 �
Z 1
�1

d’e�V�’�; �j �
1

h0

Z 1
�1

d’e�V�’�’2j �
1

h0

�
�

@
@�

�
j
h0:

To complete the expansion, we must expand �j in �. The result of the expansion is written in Appendix A and, using the
result (A1), we have the full expansion of Z in powers of �. Exponentiating the contributions, we thus obtain

FIG. 1. Basic building block in hopping expansion.

β 2

β 4

FIG. 2. The graphs contributing to the partition function to 4th
order in the hopping term.
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 Z � hL0 exp
�
L
�
�2�2

2
�

�
�3 �

�
4

�
�3 �

�
9�4

8
�

3�2

16
�

13

384

�
�4 �

�
�5

2
�
�3

8
�
�
16

�
�5 �

�
�

5�6

6
�

9�4

16
�

31�2

320

�
3

256

�
�6 �

�
�2�7 �

5�5

8
�
�3

120
�

5�
384

�
�7 �

�
�

91�8

64
�

21�6

64
�

2141�4

7680
�

233�2

5120
�

395

114 688

�
�8 �O��9�

��
;

(2.5)

where

 �: �
��3=4�

��1=4�
� 0:337 989 . . . :

The log of Z is exactly proportional to L, the total number
of cites.

B. Mass variables from the two point function at large
separation

To compute the mass gap in the continuum limit, we
must address to the relation between � and a variable
relevant to the mass. One of the quantities of our concern
is therefore the inverse of the correlation length � and it is
extracted from the two point correlation function, h’0’ni

at n� 1. We calculate the correlation function by the use
of the hopping expansion and, collecting the result to �n�8

in n, we obtain

 h’0’ni � ���1�
n�c0 � c1n� c2n2 � c3n3 � � � ��; (2.6)

where the coefficient ck�k � 0; 1; 2; . . .� is given in
Appendix B. By the exponentiation, we find that all terms
involving n in the logarithm of h’0’ni are linear in n.
Thus, the exponential decay at large n, h’0’ni 
const exp��n=��, is explicitly confirmed. Then we can
write h’0’ni  c0 exp	�log��1 �

c1

c0
�n
 at large n and

��1 � � log��1 �
c1

c0
. By expanding c1=c0 in � and �j,

we have the inverse of correlation length,

 

��1 � � log���1� � �
2

�
�2

1

2
�
�2

2

6�2
1

�
� �4

�
�

3�4
1

8
�
�2

1�2

4
�
�2

2

24
�

�4
2

24�4
1

�
�2

2�3

36�3
1

�
�2

3

120�2
1

�

� �6

�
5�6

1

12
�
�4

1�2

2
�
�2

1�
2
2

16
�

5�6
2

324�6
1

�
�1�2�3

24
�
�4

2�3

54�5
1

�
�2

3

720
�

�2
2�

2
3

2160�4
1

�
�2�3�4

360�3 �
�2

4

5040�2
1

�

� �8

�
�

35�8
1

64
�

15�6
1�2

16
�

35�4
1�

2
2

96
�
�2

1�
3
2

48
�
�4

2

384
�

35�8
2

5184�8
1

�
�3

1�2�3

12
�
�1�

2
2�3

48
�

5�6
2�3

432�7
1

�
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1�
2
3

120
�
�4

2�
2
3

288�6
1

�
�2

2�
3
3

6480�5
1

�
�4

3

9600�4
1

�
�2

2�4

576
�
�1�3�4

720
�
�3

2�3�4

540�5
1

�
�2�

2
3�4

2160�4
1

�
�2

4

40 320
�

�2
2�

2
4

7560�4
1

�
�2

3�5

14 400�3
1

�
�2�4�5

15 120�3
1

�
�2

5

362 880�2
1

�
� � � � : (2.7)

One can obtain full expansion of ��1 by expanding �j in � and the result reads
 

��1 � � log���� �
�

1

4�
� �

�
��

�
1

48�2 �
1

4

�
�2 �

�
1

48�
�
�
4
�

2�3

3

�
�3

�

�
�

5

6144�4 �
11

768�2 �
7

160
�

3�2

16
�

7�4

8

�
�4 �

�
�

3

10 240�5
�

23

4608�3 �
37

1920�
�

29�
480
�
�3

8
�

3�5

10

�
�5

�

�
�

43

663 552�6
�

41

36 864�4 �
33

7168�2 �
17

1920
�

91�2

960
�

9�4

16
� �6

�
�6

�

�
�

11

1 548 288�7 �
19

221 184�5
�

83

645 120�3 �
31

10 752�
�

5�
384
�
�3

160
�

5�5

8
�

15�7

7

�
�7

�

�
515

339 738 624�8 �
137

2 359 296�6
�

5771

8 257 536�4 �
15259

5 160 960�2 �
211

35 840
�

233�2

5120
�

719�4

2560
�

21�6

64
�

99�8

64

�
�8

�O��9�

� � log���� �
X1
k�1

zk�
k: (2.8)
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On the lattice, the inverse of the correlation length and
the mass in the momentum space are rather different
objects. Their relation can be known by using Fourier
representation. The Fourier representation of const�
exp��n=�� is given by const�

R
�
��

d	
2�

ein	
M�2�1�cos	� . By

computing the integral, we find that

 M � 2 cosh���1� � 2: (2.9)

Note that at large �,

 M ��2 (2.10)

as it should be. On the other hand, at small �, M
exp���1� and their mutual relation is quite different from
(2.10). This might cause a non-negligible difference in the
results obtained by the delta expansion as in the case of the
large N anharmonic oscillator [7]. The actual results in
the present case shall be discussed in the next section.

To make ready for the next section, we express 1=M as a
power series of � and then invert the series. From (2.8) and
(2.9), we find

 

1

M
� ���
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�
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�
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8

�
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�O��10�

�
X1
k�1

mk�
k: (2.11)

Inverting the above expansion, we arrive at

 

� �
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�
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�
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�

�
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17 575
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�
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M9 �O�M
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�
X1
k�1

bk
Mk : (2.12)

III. SCALING IN 1=M EXPANSION AND ESTIMATING THE MASS GAP

In this section, we first study the scaling behavior of � as a function of M. Then, we try to evaluate the mass gap in the
continuum limit via dilated 1=M series of �. Finally, we discuss the same subject by choosing various combinations of
variables relevant to the mass gap computation.
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A. Scaling and mass gap

Assume the scaling form

 � � AM�
�1� � � ��; (3.1)

where � � � stands for the correction which vanishes in the
M ! 0 limit. The constant A is dimensionless and directly
connected to the value of the mass gap as we can see
below: From the definition of �, we obtain for small
enough M

 A � 2��1=2a�3=2M
:

The right-hand side is independent of a and the quartic
coupling converges to its continuum value �� in the a! 0
limit. Now, let the dynamical mass m in the continuum
limit be defined conventionally by

 m � lim
a!0
��a��1: (3.2)

Then, since M ! ��2 m2a2 in the a! 0 limit,

 A � lim
a!0

2��1=2a�3=2M
 � 2�����1=2m2
lim
a!0

a�3=2�2
:

Thus, a should disappear and then

 
 � 3
4; (3.3)

and

 m �
�
A
2

�
2=3
����1=3: (3.4)

The result (3.3) is derived by assuming the generation of
the finite dynamical mass. We will show by applying delta
expansion that the assumption is actually confirmed in the
large M expansion of �. Then, we turn to the evaluation of
A which cannot be guessed by such a dimensional
argument.

B. Dilation and delta expansion with respect to M

To begin with, let us see the behavior of the 1=M series
of �. Figure 3 shows the plot of (2.12) at 2nd and 9th
orders. It is clear that the series breaks down aroundM 4
or so, and this implies the limitation of the 1=M series. The
delta expansion drastically improves the utilities of the
1=M series as we can see in the following.

We dilate the scaling region of M by introducing � via
M ! M�1� �� in the function ��M�. In the large M
expansion (2.12), this means simply the change M�k !
M�k�1� ���k in respective terms. As � approaches to
unity, M�k�1� ���k diverges to infinity, suggesting the
violation of the large M series. This is the point where the
expansion in � comes into play. We expand M�k�1� ���k

such that M�k�1� k�� k�k�1�
2! �2 � � � �� and truncate at a

relevant order of �. According to [1], we adopt a prescrip-
tion that �M�1�i�j is of order i� j and include it as a
contribution to the full order K as long as i� j � K. Then
we see that �1� ���k should be expanded to �K�k and, by

setting � � 1 which means the infinite dilation, we find
that M�k transforms as

 M�k !
K!

k!�K � k�!
M�k �

�
K
k

�
M�k: (3.5)

Thus, we obtain the delta expansion of
PK
k�1

bk
Mk � �K:

 �K ! D	�K
 �
XK
k�1

�
K
k

�
bk
Mk : (3.6)

Figure 4 shows the plots ofD	�K
 at K � 2 and 9 and their
asymptotic behaviors (shown by the dotted lines). The
asymptotic scaling behaviors plotted in Fig. 4 are obtained
as follows: First note that the maximum order of � in
obtaining (3.6) is �K�1. Accordingly, the leading term in
(3.1) should be expanded as M�
�1� ���
 � M�
�1�

�� � � �� and truncated at �K�1. Then we find by setting
� � 1,

 M�
 ! M�
ZK�
�; (3.7)

where

 ZK�
� �
��K � 
�

�K � 1�!��1� 
�
: (3.8)

Thus, the asymptotic behavior is also dilated and the
expansion in � gives

 D	�K
  AM�
 � ZK�
�: (3.9)

It would be clear from Fig. 4 that the powerlike behavior of
the correct exponent (3.3) is seen at some finite region of
M. For example at K � 9, scaling behavior has emerged at
the region ofM from2 to5. Note that the region where
the scaling is exhibited is not restricted to the neighbor-
hood of M � 0. This is a characteristic feature of dilated
functions. The reason that the position of the dotted line
shifts upwards as the order increases is that the factor
ZK�3=4� is produced by the delta expansion. The factor
grows with K as ZK�3=4�  K3=4=��1� 3=4�.

FIG. 3. Plots of � as a function ofM at 2nd and 9th orders. The
dotted line represents the scaling behavior at small enough M.
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Having confirmed the scaling behavior, we like to show
that the large M series allows us to estimate the exponent

. For straightforward evaluation, it is convenient to deal
with the function

 

@ log�
@ logM

� P�M�: (3.10)

From (3.1), we find at small M,

 P�M� � �
� � � � ; (3.11)

where � � � stands for the correction which tends to zero as
M ! 0. At large M we obtain from (2.12)
 

P�M� � �1�
�
�

1

4�2 � 3
�

1

M
�

�
�

1

6�4 �
5

2�2 � 12
�

�
1

M2 � � � �

� �1�
X1
k�1

pk
Mk : (3.12)

Now consider the dilation around M � 0 with the ampli-
fication factor �1� ���1. From (3.11), we find that
P�M�1� ��� tends to the constant �
 for all M as �
goes to 1. Hence, we examine whether the delta expansion
of (3.12) exhibits the stationary behavior with the correct
value of �
. Let us denote P in 1=M expansion to the
order M�K be PK. Then, D	PK
, the delta expanded series
of PK at large M, reads

 D	PK
 � �1�
XK
k�1

�
K
k

�
pk
Mk : (3.13)

Figure 5 shows the plot of D	PK
 for K � 2, 5, and 8. It is
clearly seen that D	PK
 indicates the correct value of 
.
Above orders 3 or 4, there appears a plateau and the width
grows as the order of expansion increases. This is a signal
that the delta expansion is successfully working.

The evaluation of 
 at even orders may be performed by
noting that a typical value of 
 indicated at respective
order is given by the stationary value of �D	PK
. The
results at K � 2, 4, 6, and 8 are

 0:771 86; 0:762 39; 0:758 68; 0:755 48: (3.14)

These are all close to the exact value, 
 � 3=4. Also at odd
orders, evaluation is possible by selecting values at the
minimum of �@D	PK
@M �

2.
We can also perform the evaluation of the constant A and

the mass gap m. For this purpose, it is convenient to
consider log�. The function behaves at small M

 log� � logA� 
 logM� � � � ; (3.15)

where � � � represents the correction and all terms in it
vanish in the M ! 0 limit. At large M, log� is written as
 

log� � � log��M� �
�
�3�

1

4�2

�
1

M

�

�
6�

1

12�4 �
5

4�2

�
1

M2 � � � � : (3.16)

By subtracting 
 logM from log�, we obtain the function
Q � log�� 
 logM which converges to logA in the con-
tinuum limit:
 

Q � � log�� �1� 
� logM�
�
�3�

1

4�2

�
1

M

�

�
6�

1

12�4 �
5

4�2

�
1

M2 � � � �

� � log�� �1� 
� logM�
X1
k�1

qk
Mk : (3.17)

logM, the leading term in Q, may be considered as the 0th
order in 1=M expansion. Hence, at the full order K, it is
natural to expand logM�1� �� to �K. Then, we obtain by
setting � � 1,

FIG. 4. Plots of D	�K
 at K � 2 and 9. Two dotted lines
represent the scaling behavior at each orders.

FIG. 5. Plots of D	PK
 at K � 2, 5, and 8. The horizontal
dotted line represents the value �
 � �3=4.
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 logM ! logM�
XK
k�1

1

k
:

Hence, denoting Q to the order K as QK,
 

D	QK
 � � log�� �1� 
�
�
logM�

XK
k�1

1

k

�

�
XK
k�1

�K
k

�
qk
Mk : (3.18)

We set 
 � 3=4 to evaluate the amplitude A. Figure 6
shows the plots of D	QK
 at K � 2, 5, and 8. At every
order D	QK
 has a plateau at which the values of the
function are around 0:8. For example, taking an extre-
mum value as a typical value, we obtain the following
values of logA at orders 1st, 3rd, 5th, and 7th, respectively:

 0:7903; 0:8080; 0:8137; 0:8162:

The width of the plateau grows as the order increases and
thus the delta expansion method is surely successful.
Taking typical values of logA as listed above, we obtain
from (3.4) the following approximation of the mass gap in
the continuum limit:

 

m

����1=3 � 1:066 96; 1:079 58; 1:083 76; 1:085 54: (3.19)

We can say that the approximation is in good agreement
with the rigorous value, m=����1=3 � 1:087 096 . . . [8].

C. The comparison of various choices of basic
parameter under the delta expansion

Up to now, we have argued the scaling behavior of� as a
function of M. There are other choices of two quantities
such that the mutual dependence at the scaling region gives
the mass gap in the continuum limit. Furthermore, the
choice of the basic variable to which the dilation is applied
gives additional variations in our approach. In this sub-
section, we report the results in other various cases.

One natural basic parameter is �, since it appears in the
action and is used as an expansion parameter in the hop-
ping expansion. Thus, we study the scaling of ��1 andM�1

as functions of �. Since �! 1 in the continuum limit, we
make dilation around � � 1 by shifting �! �=�1� ��.

First consider ��1���. We examine whether it scales as
��1  A1=2
��1=2
 � A2=3��2=3 by performing the delta
expansion. At small �, the delta expansion of ��1 to order
K reads from (2.8)

 D	��1
 � � log���� �
XK
k�1

1

k
�
XK
k�1

�
K
k

�
zk�

k: (3.20)

At large �, we note that D	��1
  A2=3��2=3ZK�
2
3� and the

scaling behavior of D	��1
=ZK�2=3� agrees with that of
��1. In Fig. 7, we have plotted the functions
D	��1
=ZK�2=3� at small � and the asymptotic scaling
behavior, ��1  A2=3���1�2=3. Though the functions show
rough scaling at the region of 1=�O�1�, they oscillate
around the rigorous scaling. In this case, we find small �
expansion of D	��1
=ZK�2=3� is not sufficient for further
quantitative use.

Next we study the scaling of M as a function of �.

From (2.11), we have D	M�1
 �
PK
k�1�

K
k
�mk�k at small

�. At large �, D	M�1
  A�1=
 � �1=
ZK�4=3� �
A�4=3�4=3 � ZK�4=3�. Plots of D	M�1
=ZK�4=3� at K �
3, 6, and 9 and the asymptotic scaling of M�1 are shown in
Fig. 8. From Fig. 8 it seems that the scaling behavior is
exhibited in small � series.

Then we turn to the evaluation of the exponent 1=
 �
4=3 as in the same manner of the previous subsection. Let
us define the function P� �

@ log1=M
@ log� and apply the delta

expansion to P�. Figure 9 shows the plot of D	P�;K
.
The result indicates the correct value of 1=
 � 4=3.

However, due to the oscillatory nature, the explicit evalu-
ation of the exponent is not a straightforward task. We

FIG. 6. Plots of D	QK
 at K � 2, 5, and 8. The horizontal
dotted line represents logA � 0:818 42 . . . which is taken from
[8].

FIG. 7. Plots of D	��1
=ZK�2=3� at K � 2, 5, and 8. The
dotted line represents the scaling behavior of ��1.
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conclude that considering ��1��� and M�1��� gives us
rough and good scaling, respectively, but they are not the
best choice for our approach.

As the last case, let us consider ����. To perform our
method, one needs to invert (2.7). This may be done by
expressing M�1 in terms of � and substituting the result
into (2.10). Then one finds that � is expanded as a series of
e�1=� such that � � 1

� e
�1=� � � 1

4�3 �
1
��e
�2=� � � 11

96�5 �

1
�3 �

3
2��e

�3=� � � � � . The expansion parameter becomes

e�1=� and the continuum limit is taken out in it giving
e�1=� ! 1. The divergence of the continuum limit appears
only in the whole series. In other words, expansion of � at
small � is like a ‘‘low temperature expansion.’’ Since the
new delta expansion has been applied only to the ‘‘high
temperature expansion’’ in basic parameter, we are in a
situation different from the previous cases. Then let us
proceed in a formal way. We dilate the region of � around
� � 1 by shifting �! �=�1� �� and then carry out
expansion in �. The result is, however, found to be poor
and ���� is not enough for the present purpose. We would
like to mention that this problem was also reported at the
large N anharmonic oscillator [7]. Thus, we conclude that
the choice of � as a basic parameter and considering ����
is not adequate in our approach.

IV. CONCLUSION

The mass gap in the continuum limit is investigated by
seeking the relationship between M and � or � and � at
scaling. In our study based upon the delta expansion, the
former pair is much more convenient than the latter. In fact,
the superiority of M over ��1 is apparent in the case of the
harmonic oscillator. The small � expansion of ��1 and M
reads, respectively,

FIG. 8. D	M�1
=ZK�4=3� at orders of 3rd, 6th, and 9th. At 9th
order, the amplitude of oscillation becomes very large at �� 1.

FIG. 9. Plots of D	P�;K
 at K � 6, 7, and 8. The horizontal dotted line represents P�j��1 � 1=
 � 4=3. The dotted line in each
graph represents the value 1
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 ��1 � � log
�
2
� ��

3

4
�2 �

5

6
�3 �

19

32
�4 � � � �

and

 M�1 �
�
2
:

Here note that � � 2
�am�2

, where m denotes the current

mass. For ��1 the expansion becomes an infinite series
and the inversion, too. On the contrary, for M�1, the
expansion terminates just at the first order of � and the
result is exact. Thus, our work suggests that the mass
variable in the momentum space is more suitable than
the correlation length defined on the lattice space.

To conclude the present work, we have applied the
dilation and expansion in dilation parameter to the anhar-
monic oscillator at strong coupling. The mass gap calcu-
lation was studied by choosing variables, the mass in the
momentum space, the correlation length and the hopping
parameter, as the parameter to which the dilation is ap-
plied. We found that the mass in the momentum space
produced the best performance and the scaling of ��M� at
small enough M was clearly seen in the �-expanded 1=M
expansion at a rather wide region of shifted M. The com-

putation of the mass gap in the continuum limit was also
successfully done.

APPENDIX A: EXPANSION OF �j

The expansion of �j in powers of � can be carried out as
follows: First consider the expansion of h0 given by h0 �R
1
�1 d’e

���’2�’4�. We expand e��’
2

as
P
1
l�0

����l

l! ’2l and
evaluate the integral,

 

Z 1
�1

d’e�’
4
� ’2l �

1

2
�
�
l
2
�

1

4

�
:

Thus, we have

 h0 �
X1
l�0

����l

2l!
�
�
l
2
�

1

4

�
:

Then, by using �j �
1
h0
�� @

@��
jh0, we obtain the expansion

of �j in powers of �. The results become simple if one
reduces the argument of � functions by the formula, ��z�
1� � z��z�. Actually, the coefficients of �l (l �
0; 1; 2; . . . ) are found to be written in ��3=4�=��1=4� � �.

To 8th order we need �j for j � 1 to 5. The results of the
expansion are summarized below:
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APPENDIX B: RESULTS OF ck

We have computed the expansion of the two point correlation function h’0’ni to the 8th order of the hopping term with
the help of the graphical representation. The total lattice size L is present in the numerator but all the contributions
dependent on Lm (m � 1; 2; 3; . . . ) are canceled by the contributions of the partition function. Thus, only the contributions
of the order L0 are left and they are collected in terms of n. The coefficients of nl (l � 0, 1, 2, 3, 4) are written below as a
series of the hopping parameter �:
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