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Instituto Superior Técnico, Departamento de Fı́sica, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
(Received 25 September 2007; published 25 April 2008)

We consider a modified action functional with a nonminimum coupling between the scalar curvature
and the matter Lagrangian, and study its consequences on stellar equilibrium. Particular attention is paid
to the validity of the Newtonian regime, and on the boundary and exterior matching conditions, as well as
on the redefinition of the metric components. Comparison with solar observables is achieved through
numerical analysis, and constraints on the nonminimum coupling are discussed.
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I. INTRODUCTION

Modern cosmology faces two outstanding challenges,
namely, the existence and nature of dark energy and dark
matter. Many theories have been put forward to address
both issues: for dark matter, several candidates are avail-
able, such as weak-interacting particles arising from ex-
tensions to the standard model (e.g. axions, neutralinos),
etc.; for dark energy, ‘‘quintessence’’ models consider the
slow roll of a scalar field [1,2], amongst other candidates;
others suggest that the averaging of inhomogeneities at a
cosmological scale may yield an effective scalar field, thus
accounting for the dark energy component of the Universe
[3]. A possible unification of both ‘‘dark’’ components has
also been suggested, resorting to a scalar field model [4] or
an exotic equation of state, as featured by the so-called
modified Chaplygin gas [5].

A different approach assumes that no extra energy con-
tent is needed and that the fundamental laws and tenets of
gravitation may be incomplete, perhaps just a low-energy
approximation; as a consequence, modifications of the
Friedmann equation to include higher order terms in the
energy density � (see e.g. [6] and references therein) have
been proposed or, at a more fundamental level, changes to
the action functional. A rather straightforward approach
lies in replacing the linear scalar curvature term in the
Einstein-Hilbert action by a function of the scalar curva-
ture, f�R�; alternatively, one could resort to other scalar
invariants of the theory [7]. This has led to some success in
replicating the accelerated expansion of the Universe,
while comparison with its evolution throughout the differ-
ent ages has yielded some constraints and exclusions to the
form of f�R�; perhaps the most well-known proposal of
this type is the Starobinsky inflationary model, where a
quadratic term in the curvature is added to the usual linear
form (plus cosmological constant), f�R� � R��� �R2

[8]. Solar system tests could also bring further insight,
mostly arising from the parametrized post-Newtonian
(PPN) metric coefficients derived from this extension of

general relativity (GR). However, some disagreement ex-
ists in the community, with some arguing that no changes
are predicted at a post-Newtonian level (see e.g. [9] and
references therein); amongst other considerations, this
mostly stems from an approach based either in the more
usual metric affine connection (that is, where the affine
connection is taken a priori as depending on the metric), or
in the so-called Palatini approach [10] (where both the
metric and the affine connection are taken as independent
variables). As an example of a clear phenomenological
consequence of this extension of GR, it has been shown
that f�R� � f0R

n theories yield a gravitational potential
which displays an increasing, repulsive contribution, added
to the Newtonian term [11].

Notwithstanding the significant literature on these f�R�
models, few steps have been taken to address another
interesting possibility: not only that the curvature is non-
trivial in the Einstein-Hilbert Lagrangian, but also that the
coupling between matter and geometry is not minimum;
indeed, these are only implicitly related in the action func-
tional, since one expects that covariantly invariant terms in
Lm should be constructed by contraction with the metric
(e.g. the kinetic term of a real scalar field, g���;��;�). A
nonminimum coupling would imply that geometric quan-
tities (such as the scalar invariants) would explicitly show
in the action; aside from theoretical elegance, this could
have deep phenomenological implications: indeed, in re-
gions where the curvature is high (which, in GR, are related
to regions of high energy density or pressure), the impli-
cations of such theory could deviate considerably from
those predicted by Einstein’s theory [12]. Related pro-
posals have been put forward previously to address the
problem of the accelerated expansion of the Universe [13]
and the existence of a cosmological constant [14].

In this sense, the immediate question, posed in the title
of this work, is: what are the implications for the behavior
of matter under such conditions? Some work has been put
forward concerning this issue, namely, changes to geodetic
behavior [12], the possibility of modeling dark matter [15]
and the violation of the highly constrained equivalence
principle [16]. Perhaps the most important consequence
of the mentioned studies is that energy may no longer be
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covariantly conserved, that is, r�T�� � 0, where T�� is
the energy-momentum tensor of matter; this occurs be-
cause, due to the presence of extra terms in the equations
of motion, the Bianchi identities no longer imply in the
covariant conservation of the energy-momentum tensor.

This work addresses what we believe is the natural
proving ground for a nonminimally coupled gravity model:
regions where the density may be high enough, to evidence
some deviation from GR, although moderate enough so
that effects are still perturbative—a star. The results rely
upon and expand the methodology followed by the authors
in previous studies [17,18]. This paper is divided into the
following sections: first, we present the model upon which
the subsequent work is based; then, we develop the equa-
tions of motion, aiming at the modified Tolman-
Oppenheimer-Volkoff (TOV) equation, with due care taken
regarding the validity of the Newtonian regime and result-
ing modified hydrostatic equilibrium equation; afterwards,
we insert the polytropic equation of state into the latter, and
compute the necessary observables; a numerical session
follows, where profiles and bounds are computed for the
relevant quantities; finally, a discussion of our results is
presented.

II. THE MODEL

Following the discussion of the previous section, one
postulates the following action for the theory [12]:

 S �
Z �1

2
f1�R� � �1� �f2�R��Lm

� �������
�g
p

d4x; (1)

where fi�R� (with i � 1, 2) are arbitrary functions of the
scalar curvature R, Lm is the Lagrangian density of matter,
and g is the metric determinant. For convenience, the
contribution of the nonminimum coupling of f2 is gauged
through the coupling constant � (which has dimensions
��� � �f2�

�1). The standard Einstein-Hilbert action is re-
covered by taking f2 � 0 and f1 � 2��R� 2��, where
� � c4=16�G and � is the cosmological constant (from
now on, one works in a unit system where c � 1).

Variation with respect to the metric g�� yields the
modified Einstein equations of motion, here arranged as

 �F1 � 2�F2Lm�R�� �
1
2f1g��

� ���� � g�����F1 � 2�F2Lm� � �1� �f2�T��;

(2)

where one defines ��� � r�r� for convenience, as well
as Fi�R� � f0�R�, and omitted the argument. The matter-
energy-momentum tensor is, as usually, defined by

 T�� � �
2�������
�g
p

	�
�������
�g
p

Lm�

	g��
: (3)

As stated before, the Bianchi identities, r�G�� � 0
imply the non(covariant) conservation law

 r�T�� �
�F2

1� �f2
�g��Lm � T���r�R; (4)

and, as expected, in the GR limit �! 0, one recovers the
conservation law r�T�� � 0.

A. Scope of application

It is our stated purpose to arrive at the modified form of
the TOVequation, the relativistic version of the hydrostatic
equilibrium condition. From Eq. (2), it is clear that a full
treatment of the equations of motion is unattainable unless
some specific form for f1�R� and f2�R� is provided.
Furthermore, the presence of both the pure curvature and
nonminimum coupling, respectively, still constitutes a
daunting analytical challenge; hence, and since one is
mainly interested in the relevance of the effects within a
high curvature and pressure medium, where f2 should
overwhelm the modification of the pure curvature term,
f1 � 2�R (neglecting the contribution of the cosmological
constant), it appears sensible to discard the latter; a treat-
ment of the standard f�R� scenario with f2 � 0 may be
found in Ref. [19].

Mathematically, the chosen approximation reads as
 

1
2jf1 � �Rj 	 j�f2Lmj; jF1 � 2�j 	 2j�F2Lmj;

j���� � g����F1j 	 2j����� � g�����F2Lm�j: (5)

where the second and third inequalities indicate that this
regime stems not just from the comparison between con-
tributions to the action functional, but also those involved
in the modified Einstein equations (2); also, notice that the
perturbative condition �f2�R� 	 1 has not been enforced
yet. The last inequality is satisfied if the following stronger
conditions hold:

 

��������dF1

dr

��������	 2

���������d�F2Lm�

dr

��������;��������d
2F1

dr2

��������	 2

���������d
2�F2Lm�

dr2

��������:
(6)

This said, one considers the simplest form, f2 � R.
Also, one takes Lm � p, a natural choice for the
Lagrangian density of an ideal fluid [20]—characterized
by the standard energy-momentum tensor

 T�� � ��� p�u�u� � pg��; (7)

where p is the fluid’s pressure, � its matter-energy density,
and u its 4-velocity vector, with u� � �u0; ~0�, u

�
� � 1, so

that u0 � g1=2
00 . Inserting the above expressions for f2 and

Lm, the inequalities (5) become

 jf1j 	 2j��� �p�Rj; (8)

 jF1j 	 2j�� �pj; (9)
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��������dF1

dr

��������	 2j�p0�r�j;
��������d

2F1

dr2

��������	 2j�p00�r�j; (10)

where the prime denotes derivation with respect to the
radial coordinate. Clearly, if f1 � 2�R! F1 � 2�, these
are trivially satisfied. Also, notice that f2 � R implies that
��� � �f�1

2 � � �R�
�1 � M�2.

One must now ascertain the form of f1�R�. In Ref. [2], it
is shown that acceptable models with f1a � 2��R�
�R1�m� (�> 0, ��� � �Rm� � M2m and 0<m< 1 or
f1b � 2��R� �R2 ��� (with ��	 1 and ��� �
�R�1� � M�2) are cosmologically viable; the latter may
arise from the renomalizability of the theory near the
Planck scale, with �
M�2 and M � 1012 GeV [2]. For
the perturbative regime to be valid, one must have, for the
f1 � f1a case

 j�j � ��
�������� 1

Rmp

��������;
j�j � �1�m�m��

�������� 1

R1�mp0
dR
dr

��������;
j�j � �1�m�m��

�������� 1

R1�mp00

��������
��������d

2R

dr2 � �1�m�
�dRdr�

2

R

��������:
(11)

while, for the f1 � f1b case (which can be derived from
the above inequalities, setting m � �1, �! �� and
ignoring the cosmological constant term),

 j�j � ��
��������Rp

��������; j�j � 2��
�������� 1

p0
dR
dr

��������;
j�j � 2��

�������� 1

p00

��������
��������d

2R

dr2

��������:
(12)

B. Equation of motion

With the above choice for f1 and f2, the equation of
motion becomes

 �1� ap�R�� �
1

2
R�g�� � aT���

� a���� � g����p�
1

2�
T��; (13)

where one defines the parameter a � �=� � 16�G�, with
dimension �a� � M�4; accordingly, both ap and a� are
dimensionless quantities. In the above form, the physical
meaning of the proposed model is more transparent: aside
from a pressure-dependent term on the right-hand side, the
most interesting modification occurs on the left-hand side;
first, the contribution of the Riemann tensor is modified by
a factor 1� ap; second, the scalar curvature is coupled not
only to the metric g��, but also to the energy-momentum
tensor T��. One thus gets a clear picture of the matter-
geometry interaction, which occurs via scalar-tensor
combinations.

By taking the trace of the above equation, one obtains

 R � �
�3a��p� T

��2� a�T � 2p��
�

3p� �� 3a��p
��2� a��� 5p��

; (14)

having inserted T � T�� � �� 3p. Interestingly enough,
in the ‘‘strong’’ a! 1 regime it yields the asymptotic
result R � 3�p=��� 5p�: in this regime, a varying, low
density can give origin to extremely high curvatures, while
an almost uniform, even if a high density fluid might yield
a vanishingly small curvature.

C. Perturbative regime

Foreseeing a later comparison with solar observables,
which one knows are well predicted by GR, it is now
assumed that the effect of f2 yields only perturbative
corrections: in the approximation j�f2j � j�Rj 	 1, the
scalar curvature is given by R � �3p� ��=�, resulting in
j��=���3p� ��j � ja�3p� ��j 	 1; anticipating the
Newtonian approximation p	 �, this yields jaj�	 1
and jajp	 1. Inserting Eq. (14) in the Einstein equation,
one obtains, after some algebraic manipulation,

 

��2� a��� 3p��R�� � �3p� ��g�� � 2�1� ap�T��

� a��4��� � g����p; (15)

keeping only first-order terms in a. This shall be the main
tool for the derivation of the TOV equation.

III. STELLAR EQUILIBRIUM

A. Static, spherical symmetric scenario

Since one is dealing with an ideal, spherically symmetric
system, in which temporal variations are assumed to occur
only at the cosmological scaleH�1

0 , and hence negligible at
an astrophysical time scale, one considers the Birkhoff
metric (in its anisotropic form), given by the line element

 ds2 � e��r�dt2 � �e
�r�dr2 � d�2�; (16)

with d� � r2�d�2 � sin2�d�2�, so that
�������
�g
p

�

r2 sin�e���
�=2.
One can resort to the expression of the Riemann tensor

and Eq. (15) to obtain the following intermediary step (the
full algebraic derivation is shown in Appendix A):
 

��2� a��� 3p��
�

1

r2 � e
�

�

0

r
�

1

r2

��

� ��
ap
2
��� 3p� �

a�
2

�
5e���00

� 3e�
 � 2
���

r2

�
p: (17)

One now defines the parameter me, here called the
effective mass, to distinguish it from its identification
with the gravitational mass of the unperturbed GR sce-
nario, derived from the Schwarzschild metric; it is given by
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the usual expression

 e�
 � 1�
2Gme

r
; (18)

which yields

 

�
1

r2 � e
�

�

0

r
�

1

r2

��
�

2Gm0e
r2 ; (19)

where the prime denotes differentiation with respect to the
radial coordinate. Inserting the above in Eq. (17) and
solving for m0e, one gets

 m0e � 4�r2�
2� ap�1� 3p

� �

2� a��� 3p�
�
ar2

4G



�5e���00 � 3e�
�rr �

2
r2 ����p

2� a��� 3p�
: (20)

In the perturbative regime, one may take only first-order
terms in ap and a�, obtaining
 

m0e � 4�r2�
�

1� a
�
p�

�
2
�

3

2

p2

�

��

�
ar2

8G

�
5e���00 � 3e�
�rr � 2

���

r2

�
p; (21)

using 4G� � 1=4�. The above expression clearly shows
the perturbation to the purely gravitational mass, defined
by m0g � 4�r2�.

B. Newtonian limit

Before continuing the derivation, it is opportune to
address the issue of the validity of the Newtonian regime;
clearly, establishing this limit will enable many fruitful
simplifications in the calculations ahead. In the standard
derivation of the hydrostatic equilibrium equation, this
arises from a set of simplifications imposed on the relativ-
istic TOV equation; the later reads

 p0�r� � �
G

r2

���r� � p�r���me�r� � 4�p�r�r3�

1� 2Gme�r�=r
; (22)

and the Newtonian approximation is valid if the following
inequalities are satisfied:

 r� 2Gme�r�; ��r� � p�r�; me�r� � 4�p�r�r3;

(23)

yielding the nonrelativistic hydrostatic equation of state

 p0�r� � �G
��r�me�r�

r2 : (24)

Since it is assumed that the coupling between matter and
geometry will only produce a perturbative effect, leading
to the redefinition of mass through Eq. (21), it is clear that
no changes occur regarding the validity of the Newtonian
approximation. Hence, foreseeing the application of the
following results to the Sun, where such regime is valid,

one may simplify the intermediate calculations and, when
convenient, insert the inequalities (23) in order to simplify
a-dependent terms. By the same token, terms involving the
coupling between a-dependent quantities and any cova-
riant derivatives may be evaluated by taking their
Newtonian counterparts,

 �00p � �
e��


2
�0p0 � 0;

�rrp � p00 �
1

2

0p0 � p00;

���p � e�
rp0 � rp0:

(25)

Notice that this does not imply that one is directly deriving
the Newtonian hydrostatic equilibrium equation, since
leading order terms will not be approximated.

C. Tolman-Oppenheimer-Volkoff equation

By following a procedure similar to the one leading to
Eq. (17) (depicted in Appendix A), one obtains the follow-
ing equation:

 

��2� a��� 3p��
��

1�
2Gme

r

�
�0

r
�

2Gme

r3

�

� p�
ap
2
�p� �� �

a�
2

�
3e���00

� 5e�
�rr � 2
���

r2

�
p: (26)

Substituting by the expressions for the covariant deriva-
tives, one gets

 �
3e���00 � 5e�
�rr � 2

���

r2

�
p

� 5
�
1�

2Gme

r

�
p00 �

�
5
Gm0e
r
�

�
1�

2Gme

r

�
3�0

2

�
1

r

�
2�

Gme

r

��
p0: (27)

One now introduces the approximations discussed in the
previous subsection. Also, the approximation m0e � m0g �
4��r2 is taken, since the perturbative corrections would
produce second-order terms in a. One obtains, after a little
algebra,

 ��2� a��
�
�0

r
�

2Gme

r3

�
� p

�
1�

a
2
�
�
�
a�
2

�
5p00

�

�
5
Gm0e
r
�

3�0

2
�

2

r

�
p0
�
:

(28)

Solving for �0, one gets
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�0

2
� G

�2� a��me � 4�2� a���pr3

r�r� 2Gme��2� a���
3
4 rp

0��

� a
r2

r� 2Gme

5
4p
00 � �5�G�r� 1

2r�p
0

2� a��� 3
4 rp

0�
: (29)

When a � 0, one recovers the standard expression

 

�0

2
� G

me � 4�pr3

r2 � 2Gmer
: (30)

Linearizing with respect to a yields

 

�0

2
� G

me � 4�pr3

r2 � 2Gmer
� ah�p; ��; (31)

where the function h�p; �� is defined through
 

h�p;�� �
�
5

8
p00 � 4�Gp�

�
r�

�
5�
2
G�r2�

3

8

Gme

r
�

1

4

�
p0

�

�
5

8
p00 � 4�Gp�

�
r�

p0

4
; (32)

after considering the inequality r� 2Gme and also
5�G�r2=2	 1; taking the Sun’s maximum, central, den-
sity �c � 1:622
 105 kg=m3, and the radius R� �
6:955
 108 m, one gets 5�G�r2=2c2�4:57
10�4	1.

Before continuing, one can rewrite the expression for the
gravitational mass, obtained before, but imposing the limit
e�
 � e�� � 1, �0 � 
0 � 0, which yields

 �00p � 0; �rrp � p00; ���p � rp0: (33)

This approximation, together with p	 �, implies that

 m0e � 4�r2�� ar2

�
3p00

8G
�

p0

4Gr
� 2��2

�
: (34)

Similarly, one obtains

 R �
��� 3a��p00 � 2

r p
0�

��2� a��

� �
�
2�
�
a
2

�
3
�
p00 �

2

r
p0
�
�
�2

2�

�
: (35)

Although the expression for the scalar curvature R is
somewhat involved, one can approximate its derivative by
the unperturbed value R0 � ��0=2�, losing only terms of
order O�a2�; indeed, one could write
 

R0 � �
�0

2�
� aF��; p� ! �R0 � � ��0

2� � a�F��; p�

� �
a
2
�0 � a2 F��; p�

�
; (36)

with

 F��; p� � �
1

2

�
3
�
p00 �

2

r
p0
�
�
�2

2�

�
0
: (37)

To write the modified equation of hydrostatic equilib-
rium, one now resorts to the non(covariant) conservation of
the energy-momentum tensor, Eq. (4). The expression for
the covariant derivative is purely geometric; in order to
derive an expression for p0, one aims at the � � r compo-
nent of the above equation; with our choice of f2 � R and
Lm � p, one gets the modified TOV equation

 p0 �
�0

2
��� p� �

2�
1� �R

�
1�

2Gme

r

�
R0

! �
�0

2
��� p� � p0 �

2�p
1� �R

R0

� p0 � ap�0; (38)

dropping higher order terms and using R0 � ��0=2�.
Thus, one finally obtains a set of three differential

equations for the problem at hand:

 p0 � 2�pR0 � �
�0

2
��� p�; (39)

 m0e � 4�r2�� ar2

�
3p00

8G
�

p0

4Gr
� 2��2

�
; (40)

 

�0

2
� G

me � 4�pr3

r2 � 2Gmer
� a

��
5

8
p00 � 4�Gp�

�
r�

p0

4

�
:

(41)

Substituting Eq. (39) into (41), after some algebra one gets
the modified TOV equation,
 

p0 �G��� p�
me � 4�pr3

r2 � 2Gmer
� a

���
5

8
p00 � 4�Gp�

�
r

�
p0

4

�
�� p�0

�
: (42)

This yields the nonrelativistic hydrostatic equilibrium
equation,

 p0 �
Gme�

r2 � a
���

5

8
p00 � 4�Gp�

�
r�

p0

4

�
�� p�0

�
:

(43)

D. Polytropic equation of state

Realistic stellar models rely on four differential equa-
tions, together with appropriate definitions [21]; aside from
the mass conservation condition (40) and the hydrostatic
equilibrium equation (42) or (43), these express energy
conservation and transport, through

 L0�r� � 4�r2���r� (44)

and

 T0�r� � �
L�r�

4�r2�c
; (45)
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respectively. In the above, L�r� is the energy flow across a
sphere of radius r, � is the energy generation rate per mass
unit, and �c is the conductivity coefficient. For given � and
�c, which account for the processes ongoing inside the star,
one is left with five unknowns, m0e, p, �, T, and L; an
additional relation is needed, in the form of a suitable
equation of state p � p���.

Many candidate equations of state and solar models are
available, with varying degrees of sophistication, account-
ing for effects such as chemical composition, solar matter
mixing, discontinuities between layers, heat diffusion, etc.;
two outstanding examples are the Mihalas-Hummer-
Dappen and OPAL equations of state [22]. However, solv-
ing the above set of differential equations with a realistic
equation of state requires heavy-duty numerical integration
with complex code designs, and an analysis of the pertur-
bations induced by a nonminimum coupling between mat-
ter and curvature is beyond the scope of the present study.

Instead, one may resort to a very simplistic assumption,
the so-called polytropic equation of state. This is com-
monly given by p � K��n�1�=n

B , where K is the polytropic
constant, �0 is the baryonic mass density, and n is the
polytropic index [21,23,24]. The polytropic index n inter-
polates between the basic thermodynamical processes:
n � �1 for isobaric, n � 0 for isometric, and an infinite
polytropic index n for an isothermal sphere. Adiabatic
processes yield n � 1=�
A � 1�, with 
A � cp=cV the
adiabatic coefficient. Several crude approximations to rele-
vant astrophysical systems are also obtained: n � 3=2 may
model the degenerate star cores found in giant (gaseous)
planets, white or brown dwarfs, and red giants; a polytropic
index n � 5 yields a boundless system (that is, with non-
vanishing density everywhere), which was taken by
Schuster as the first candidate for a stellar system.
Finally, a polytropic equation of state was used by
Eddington in his proposal for the first solar model, with
n � 3; naturally, it does not offer an accurate description of
the solar interior, and has been deprecated by the following
advancements.

Nonetheless, the use of a polytropic equation of state is
still of interest, due to its simplicity and ease of manipu-
lation, which renders it a valuable tool in more theoreti-
cally driven studies, as is the present case [as an example,
the generalized Chaplygin gas is a polytrope with index
n � �1=�1� �� [18] ]. Clearly, more realistic assump-
tions regarding the structure of the Sun would improve
the final results; also, the procedure outlined in this work
could also be applied to more exotic bodies, either through
the use of an adequate polytropic index, or via a more
realistic equation of state, possibly yielding a more strin-
gent constraint on the coupling parameter �.

Recall that the effective mass me is defined in terms of
the energy density �, which appears in the energy-
momentum tensor; these two quantities are related through
� � �B � np, yielding the relation

 � �
�
p
K

�
n=�n�1�

� np: (46)

However, since one is interested in probing the Newtonian
regime which occurs in the Sun, the condition p	 �
holds; therefore, � ’ �B, and one may take the form p �
K��n�1�=n for the equation of state [25].

In order to transform the modified hydrostatic equilib-
rium Eq. (43) into a differential equation with a single
variable, one first rewrites Eq. (43) as
 

1

r2

�
r2

�

�
p0 � a

���
5

8
p00 � 4�Gp�

�
r�

p0

4

�
�� p�0

���
0

� �4�G�� a
�

3p00

8
�
p0

4r
� 2�G�2

�
; (47)

and inserts the polytropic equation of state, p � K��n�1�=n,
written as � � �c�n��� and p � pc�n�1���, with � �
r=r0 a dimensionless variable and r2

0 � �n�
1�pc=4�G�2

c. One obtains the perturbed Lane-Emden
equation for the function ����:
 

1

�2

�
�2�0

�
1� Ac�

n
��

5

8

�
�00 � n

�02

�

�
� Nc�

n�1

�
�
�0

�
3n� 1

4�n� 1�

���
0

� ��n
�

1� Ac

�
3

8

�
�00 � n

�02

�

�
�
�0

4�
�
�n

2

��
; (48)

where the prime now denotes derivation with respect to the
dimensionless radial coordinate �, and one has defined
Ac � a�c and Nc � pc=�c � 1:7
 10�6, for conve-
nience. Obviously, setting Ac � 0 one recovers the unper-
turbed Lane-Emden equation [21]

 

1

�2 ��
2�0�0 � ��n: (49)

One may try to solve Eq. (48) analytically around � � 0,
and compare with the solution of the unperturbed equation,
given (in the vicinity of � � 0) by [21]

 ���� � 1�
1

6
�2 �

n
120

�4: (50)

This calculation (outlined in Appendix B) yields

 ���� � 1� A�2 � B�4; (51)

with

 A �
1

6

�
1� Ac

13� 25n
12�n� 1�

�
; (52)

and

 B �
n

120

�
1� Ac

11

60

39� 59n
n� 1

�
; (53)

neglecting the Nc 	 1 term and taking the limit jAcj 	 1.
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Taking Ac � 0 gives back the unperturbed values A � 1=6
and B � n=120, as expected.

For n � 0 (a constant density model), one finds

 ���� � 1�
1

6

�
1�

11

6
Ac

�
�2: (54)

For n � 3 (the first proposed model for the Sun), one
obtains

 ���� � 1�
1

6

�
1�

11

6
Ac

�
�2 �

1

40

�
1�

99

10
Ac

�
�4: (55)

Finally, for n! 1 (an isothermal sphere), one gets

 ���� � 1�
1

6

�
1�

23

12
Ac

�
�2 �

1

40

�
1�

1837

180
Ac

�
�4:

(56)

E. Perturbative solution

Inspection of Eq. (48) shows that it is a third-order
equation, while the unperturbed Lane-Emden equation is
only second order. Thus, the initial conditions ��0� � 1
and �0�0� � 0 alone are not sufficient. Indeed, an extra
condition regarding the initial behavior of the second
derivative must be provided; this is derived from the series
expansion of � around � � 0 taken before, that is

 �00�0� � �
1

3

�
1� Ac

13� 25n
12�n� 1�

�
: (57)

In order to numerically solve the perturbed Lane-Emden
equation, one rewrites Eq. (48) (after a long derivation) as
 

�000 � �
8

5Ac�

��00 � 2
� �
0

�n
� 1

�
� n�n� 1�

�03

�2

�
24

5
Nc
�n�1

�
�

2

5

�
4

3n� 2

n� 1

�00

�
�

7n� 1

n� 1

�0

�2

�

�
4

5
�n
�

1

�
� 2�2n� 1�Nc�

0

�

� n
�0

�

�
3�00 �

8

5

3n� 2

n� 1

�0

�

�
: (58)

Clearly, when Ac ! 0, the first term blows up unless it is
compensated by the condition �00 � 2�0=� � ��n, which
is precisely the unperturbed Lane-Emden equation. By the
same token, the first term expresses the deviation from the
unperturbed case, and should be of order Ac, therefore
canceling out the divergence.

However, implementing the above third-order differen-
tial equation proves too computationally demanding; thus,
one must first approach the perturbed Lane-Emden equa-
tion and, given that one is searching for a perturbation,
expand it in terms of � � �0�1� Ac	�, where �0 is the
solution to the unperturbed Lane-Emden equation and 	 is
the (relative) perturbation, obeying jAcj		 1. Thus, one
may write, for n > 0,

 �n � �n0�1� Ac	�
n � �n0�1� nAc	�: (59)

If this expansion is introduced in the perturbed Lane-
Emden equation, and considering only terms of order Ac,
one obtains a differential equation for 	, with �0 as source:
 

	00 � 2
�
�00
�0
�

1

�

�
	0 � �n� 1��n�1

0 	

�
5n
2
��2n�2

0 �00 � �2n� 1�Nc��2n�1
0 �00

�
9n� 5

4�n� 1�
�2n�1

0 � 3Nc�
2n
0 �

5n�n� 1�

8
��n�3

0 �030

�
n�3n� 7�

4�n� 1�
�n�2

0 �020 �
1

2

�n�1
0 �00
�

: (60)

having eliminated the second derivative of the unperturbed
solution through Eq. (49). From Eq. (51), one concludes
that this differential equation is supplemented by the initial
conditions 	�0� � 0 and 	0�0� � 0.

Note that 	 does not depend on Ac: one must only find
the unique 	 (for each Nc and n); one aims at a simulta-
neous variation of the model’s parameter Ac and the poly-
tropic index n in the vicinity of the standard solar value
n � 3, enabling the plotting of an exclusion graph in the
�Ac; n� plane. For n � 3, the differential equation for 	
simplifies to
 

	00 � 2
�
�00
�0
�

1

�

�
	0 � 2�2

0	 � 3Nc�
6
0 � 2�5

0 � 7Nc��
5
0�
0
0

�
15

2
��4

0�
0
0 �

1

2�
�2

0�
0
0

� 3�0�
02
0 �

15

4
��030 : (61)

F. Mass budget and matching conditions

One now computes the deviation between the effective
mass me, defined in Eq. (21), and the gravitational mass,
defined by m0g � 4�r2�; some algebra yields

 m0e �m
0
g �

n� 1

G
AcNc�

2�n0

�
�

3n
8

�020
�0
�
�00
2�
�

7

8
�n0

�
;

(62)

which is explicitly written in terms of Ac � a�c, the
model’s dimensionless parameter, and Nc � pc=�c, the
ratio that measures the validity of the Newtonian regime.
One has also to eliminate 	000 through Eq. (49); one con-
cludes that not only is the above mass difference small (due
to the perturbative regime, jAcj 	 1), but that it is further
suppressed by the factor Nc 	 1.

Clearly, the model’s parameters should be adjusted to
the known observables: the star’s radius R� and mass M.
The issue of this identification is rather delicate; indeed, M
should not be identified with the gravitational mass
mg�R��, but with the total effective mass me�R��. Aside
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from the physical interpretation of the full energy content
of the star affecting geodetic motion around it, one can also
resort to the matching conditions of the inner metric with
the outer Schwarzschild metric; indeed, writing Me �
me�R��, Mg � mg�R��, M0e � m0e�R��, and M0g �
m0g�R��, one has
 


0��R�� � �2G
Me �M0eR�

R��R� � 2GMe�
;


0� � �2
GM

R��R� � 2GM�
;

�0��R�� � 2
GMe

R��R� � 2GMe�

�
a
4

�
5

2
p00�R��R� � p

0�R��
�
;

�0� � �

0
� � 2

GM
R��R� � 2GM�

;

(63)

where the � and � subscripts indicate inner or outer
boundary conditions. If one identifies M � Me, it follows
that M0e � 0, which implies

 

3p00�R��
2

�
p0�R��
R�

� 0; (64)

[after resorting to Eq. (21), with ��R�� � 0], and

 

5
2p
00�R��R� � p0�R�� � 0: (65)

Clearly, both conditions hold, since

 p0�R�� / �0��1��n��1� � 0;

p00�R�� / �
00��1����1�

n � n�0��1�
2���1�

n�1 � 0;
(66)

where �1 signals the star’s boundary, through ���1� � 0.

G. A solution for the divergence problem

Given the identification M � Me � me�R��, one can
now deduce the perturbation to the central density �c,
which is a model-dependent parameter. However, before
using Eq. (48) to evaluate the perturbation 	 and extract
relevant quantities, it should be noticed that, by inspection,
it is clear that 	 diverges when �0 approaches zero. Hence,
one cannot extend the perturbational approach to the full
range of the star, and should instead deal with the full
differential equation for the perturbed �.

In order to circumvent this issue, recall that there is a
pronounced deviation between the predictions of the poly-
tropic model and the realistic standard solar model, for r >
Rr � 0:713R�; this reflects the crossing from the radiative
zone, where the n � 3 polytrope is a good approximation
for the Sun, and the convection zone, where this approach
fails. Hence, the irregular behavior of 	 near �1 may be
safely disregarded, since the fundamental equation for � is
not valid there. Instead, one shall consider only the range
0 � r � Rr or, equivalently, 0 � � � �r � 0:713�1. In

doing so, one is of course neglecting the contribution of
the latter for all relevant quantities: however, although the
density and pressure are still significant at that point, both
the polytropic and the standard solar model show that up to
99.1% of the Sun’s mass is located within the radiative
zone.

Also, it can be numerically shown that the boundary
condition ���� � �0����1� Ac	���� � 0 does not shift
significantly from the unperturbed �0��1� � 0 case, so
that no problem arises from neglecting any changes to
the scale factor r0 (which, recall, relates the dimensionless
coordinate � with the physical distance to the center r).
Furthermore, the matching of the inner and outer deriva-
tives of the metric should not be taken as a realistic
condition, but merely a consistency check for the devel-
oped model.

H. Model-dependent parameters

One proceeds with the calculation of the total mass of
the Sun or, more accurately, the mass of the radiative zone:
for the unperturbed case, one has (see Appendix C for the
derivation of the following results)

 M � �4�
R3
r

�r
�c0�

0
0r ! �c0 � �

M
4��00r

�r
R3
r
; (67)

where one defines �00r � �00��r� and �c0 is the unperturbed
central density (that is, obtained from M, R and the nu-
merical results for the unperturbed solution �0).

In the perturbed case, one obtains
 

M � �4�
R3
r

�r
�c�00r

�
1�

Ac
�2
r�00r

Z �r

0
�2�n0

�
n	�

3n
8

�020
�0

�
�00
2�
�

7

8
�n0

�
d�
�
: (68)

Notice that there are two Ac-dependent contributions:
one arising from �0 and its derivatives, since including the
perturbation 	 would only amount to second-order terms
O�A2

c�, and the other involving the integral of 	.
Since the total mass M does not change (only its inter-

pretation as a purely gravitational mass or a sum of gravi-
tational plus ‘‘active’’ components), one gets

 1�
�c0

�c
�

Ac
�2
r�
0
0r

Z �r

0
�2�n0

�
n	�

3n
8

�020
�0
�
�00
2�
�

7

8
�n0

�
d�:

(69)

Clearly, taking Ac � 0 yields �c � �c0. Also, notice
that �r is not perturbed: this would reflect a change in �1

(since �r � 0:713�1), which has already been ruled out.
Also, notice that the denominator affecting the integral is
equal to �2

r�00r �
R�r

0 ��
2�00�

0 � �
R�r

0 �n0 : thus, one can
interpret this integral as the volume averaging of the ex-
pression in brackets within the integrand, with the density
as weighting function, that is, �n / �.
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From the polytropic equation of state, one gets � /
Tn�1, which enables writing
 

1�
�
Tc0

Tc

�
n�1
�

Ac
�2
r�
0
0r

Z �r

0
�2�n0

�
n	�

3n
8

�020
�0

�
�00
2�
�

7

8
�n0

�
d�: (70)

IV. NUMERICAL RESULTS

The above results allow us to construct an exclusion plot
for the central temperature on the �n; Ac� parameter space,
by imposing the constraint 1� Tc=Tc0 � 0:06�6%�, the
uncertainty of the central temperature of the Sun. Solving
numerically the differential equation for 	 for a varying n,
and computing all relevant quantities for varying Ac, and
defining the absolute perturbation � � �0	, so that � �
�0�1� Ac	� � �0 � Ac�, one obtains the results shown in
Figs. 1–7.

First, notice that, from Fig. 1, the absolute perturbation
� is fairly insensitive to the value of n; clearly, given that
the profile of �0 for varying n differs more sharply as �!
�r (as seen in Fig. 1), an approximately constant � trans-
lates into a relative perturbation 	 that also exhibits this
behavior, as can be seen from Fig. 2. Furthermore, notice
the indication of the divergence of the relative perturbation
	 in Fig. 2 (which does not depend on n, since �0 ! 0 and
�! const yields 	! 1, as previously discussed); as
stated before, this divergence is avoided by dealing only
with the radiative region r � Rr.

Also, as can be seen from Fig. 2, the relative perturba-
tion 	 peaks at j	jmax � 1:1 (for n � 2:9, and a smaller
value of j	jmax � 0:8 for n � 3); hence, the perturbative
condition jAcj		 1 translates to jAcj 	 1, leading to the
chosen (extreme) interval for simulation �1 � Ac � 1.
Hence, according to Figs. 4–6, no relative deviation of
the central temperature above the experimentally deter-
mined level of 6% is attained. However, the values found,

of the order of 1%, indicate that any future refinement of
the experimental error of Tc could yield a direct bound on
the parameter Ac.

The above results show that Ac is presently uncon-
strained by solar observables, aside from the perturbative
condition jAcj 	 1! j�j 	 �=�c; taking � �
c4=16�G � 2:41
 1042 kg m=s2 and �c � 1:622

105 kg=m3, this yields j�j 	 1:48
 1037 m4=s2 or, in
natural units, j�j 	 4:24
 1033 eV�2. However, this
study assumes that the effects arising from the nontrivial
matter-geometry coupling supersede those from the non-
linear curvature term in the modified Hilbert-Einstein ac-
tion (1), as expressed by the inequalities (8), (11), and (12).
Having numerically determined the perturbative solution
	, one can now reevaluate these conditions. For this, one
first replaces R by its unperturbed value (with the
Newtonian approach �� p), R � ��=2�, since correc-
tions would amount to second-order terms in �.

Considering the scaling laws, � � �c�n��� and p �
pc�n�1���, and the inequalities (11) and (12), some algebra
(see Appendix D) yields, for the f1 � f1a � 2��R�
�R1�m� case,

FIG. 1. Profiles for the unperturbed solution �0 (top) and
absolute perturbation � � 	�0 (bottom), for 2:8 � n � 3:2.
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FIG. 2. Profile of the relative perturbation 	 for 2:8 � n � 3:2.
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�

2�
�c�n

�
m�1 �

2Nc�
;

j�j �
n

n� 1

�
2�
�c�

n

�
m�1 ��1�m�m

2Nc�
;

j�j �
n

n� 1

�
2�
�c�

n

�
m�1 ��1�m�m

2Nc�
Cn;m���;

(71)

while, for the f1 � f1b � 2��R� �R2� case,

 ��
�

2Nc�
; ��

n
n� 1

�
Nc�

;

��
n

n� 1

�
Nc�

Cn;�1���;
(72)

where one defines the quantity

 Cn;m��� �
���������1� nm��

02��� � ��00���

n�02��� � ��00���

��������: (73)

One can plot the function Cn;m��� by evaluating � by the
unperturbed solution �0, using Eq. (49) and taking n � 3.

One obtains

 Cn;m��� �
���������
0
0��1� 3m��00 �

2
� �0� � �

4
0

�00�3�
0
0 �

2
� �0� � �4

0

��������: (74)

Varyingm in its domain 0<m< 1 (for the f1 � f1a case)
and m � �1 (for the f1 � f1b case); its profile is depicted
in Fig. 8. One concludes that jCn;mj & 1:5, for both the
f1 � f1a case (0<m< 1) as well as the f1 � f1b case
(m � �1). This, together with the constraint ���� * 0:1
(as can be seen from Fig. 1) and the quantity Nc �
pc=�c � 1:7
 10�6 yields, for the f1 � f1a case,

 j�j � 2:8
 1043�8:48
 1036�m�1�m�m� eV�2�1�m�;

(75)

while, for the f1 � f1b case,

 j�j � 6:6
 106�: (76)

Using the previously discussed value, � � �1012 GeV��2,
which arises from the Planck-scale renormalization of the

FIG. 5. Relative deviation of the central temperature Tc=Tc0 �
1 as a function of Ac and n.
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FIG. 7. Mass profiles, for n � 3 and Ac � �1, 0, and 1.
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theory, one gets

 j�j � 6:6
 10�36 eV�2 � �3:9
 108 GeV��2: (77)

Also, a recent paper has reported a relation between the
coefficient of the quadratic term in f1 and the PPN pa-
rameter 
 [26],

 � �
1

2�

�������������������������������� 1� 

2
� 1

��������
s

: (78)

Hence, the current experimental constraint 
� 1 �
�2:1� 2:3� 
 10�5 [27] yields

 � � 0:17M�2
Pl � �3:0
 1019 GeV��2; (79)

where MPl �
������������
@c=G

p
� 1:2
 1019 GeV is the Planck

mass. This yields

 j�j � 7:4
 10�51 eV�2 � �1:2
 1016 GeV��2: (80)

Clearly, the f1 � f1b case does not impose any signifi-
cant bound on �, with the above value laying many orders
of magnitude below the upper bound, j�j 	 4:24

1033 eV�2, arising from the perturbative treatment.

Notice that the above inequalities (71), (72), (75)–(77),
and (80) are not to be considered as restrictions on the
parameters, but as conditions for the validity of the regime
where the effects of the matter-geometry coupling super-
sede those of the nonlinear curvature term in Eq. (1).

V. DISCUSSION

In this work we have examined a model where the usual
Einstein-Hilbert action is modified, not only by allowing
nonlinear curvature terms to appear, but by also enabling
an explicit, nonminimum coupling between the curvature
and the Lagrangian of matter fields. We first assume that
this matter-geometry coupling is linear in curvature and its
effect allows the nonlinear curvature terms to be ne-

glected—an assertion that is qualified in the end of the
study, for two relevant nonlinear f�R� models.

We then proceed and perform the necessary calculations
to ascertain the effect of the latter in the hydrostatic equi-
librium of an n � 3 polytrope such as the Sun. We assume
a perturbative regime to the usual Tolman-Oppenheimmer-
Volkoff equation, and take into consideration the validity
of the Newtonian regime in this modified theory, as well as
the redefinition of relevant quantities, which are computed
numerically and compared with Solar observables. This
goal is achieved through the use of the (nonrelativistic)
polytropic equation of state p � K��n�1�=n

B : as stated be-
fore, this is a very simplistic description of the complex
behavior of solar matter, and has been superseded by much
more elaborate equations of state; we use it in our study so
to better illustrate the effects of the matter-curvature cou-
pling on an easily understandable, closed model. However,
we should remark that this restrictive treatment, although
advantageous from the theoretical point of view, might
conceal some of the more intricate phenomenology found
in stellar systems, which could affect our results. Clearly, a
subsequent study should consider a more realistic solar
model.

The results allow us to conclude that no strong con-
straints on the matter-geometry coupling from the com-
parison between the model’s predictions and current
experimental sensitivity, aside from the perturbative ap-
proach �f2�R� � �R � ��=���c 	 1, which yields
j�j 	 4:24
 1033 eV�2. However, the numerically ob-
tained results show that a slight increase in accuracy would
allow an upper bound to be placed on �; this closeness
between the prediction of the perturbative model and ex-
periment also seems to validate the latter.
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APPENDIX A

Given the line element (16), one first writes

 g00R00 � grrRrr � e�

�0 � 
0

r
: (A1)

Resorting to Eq. (15), one gets
 

2��2�a���3p���g00R00�grrRrr�

�2�1�ap��g00T00�grrTrr��4a��g00�00�grr�rr�p

!��2�a���3p��e�

�0 �
0

r
���p�ap���p��4a��e���00�e�
�rr�p; (A2)
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FIG. 8. Profiles of C3;m, for m � �1, 0, 1, superimposed on
the profile of �0 and �00, with n � 3.
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since the terms depending on the metric cancel out (that is, g00g00 � g
rrgrr � 0).

Next, compute

 

2��2� a��� 3p��
R��
r2 � �3p� ��

g��
r2 � 2�1� ap�

T��
r2 �

a�

r2 �4��� � g����p

! 2��2� a��� 3p��
�

1

r2 � e
�

�

0 � �0

2r
�

1

r2

��

� �� 3p� 2�1� ap�p� a�
�

4

r2 ��� ��

�
p! ��2� a��� 3p��

�
2

r2 � e
�

�

0 � �0

r
�

2

r2

��

� �� p� 2ap2 � a�
�

4

r2 ��� ��

�
p: (A3)

Adding Eqs. (A2) to (A3), one obtains Eq. (17)
 

��2� a��� 3p��
�

1

r2 � e
�

�

0

r
�

1

r2

��

� ��
ap
2
��� 3p� �

a�
2

�
5e���00

� 3e�
�rr �
2

r2 ���

�
p; (A4)

with � � e���00 � e
�
�rr � 2���=r

2.
By subtracting Eqs. (A2) from (A3), and substituting

Eq. (18), one gets Eq. (26)
 

��2� a��� 3p��
��

1�
2Gm
r

�
�0

r
�

2Gm

r3

�

� p�
ap
2
�p� �� �

a�
2

�
3e���00 � 5e�
�rr

�
2

r2 ���

�
p: (A5)

APPENDIX B

In order to obtain an approximation to the solution of the
Lane-Emden equation (48) in the vicinity of � � 0, one
writes ���� � 1� A�2 � B�4. Inserting this in Eq. (48)
yields, after some algebra and expanding up to fourth order
in �,
 �

20�
Ac

4�n� 1�
�A�4Nc�n� 1��2n� 1� � An�13� 21n��

� 10B�13� 21n��
�
�4

�

�
�1� Ac

2� 5A
4

�
�2 �

�
An� Ac

�
An
�

1�
11

4
A
�

�
11

2
B
��
�4: (B1)

Equating second- and fourth-order terms, one gets

 A �
1

6

�
1� Ac

13� 25n
12�n� 1�

�
; (B2)

and

 B �
n

120

�
1� Ac

11

60

39� 59n
n� 1

�
: (B3)

APPENDIX C

In the unperturbed case, the total mass M is purely
gravitational, and hence defined as usual:
 

M � 4�
Z Rr

0
r2�dr � 4�r3

0�c0

Z �r

0
�2�n0d�

� �4�r3
0�c0

Z �r

0
��2�00�

0d� � �4�r3
0�c0�

2
r��
0
0����r

� �4�
R3
r

�r
�c0�00r; (C1)

defining �00r � �00��r�; hence, the (unperturbed) central
density �c0, a model-dependent parameter, is given by

 �c0 � �
M

4��00r

�r
R3
r
: (C2)

In the perturbed case, one first uses Eq. (62) to define, for
clarity,

 ���� � �
3n
8

�020
�0
�
�00
2�
�

7

8
�n0 : (C3)

In the above, �0 is used instead of �, since � is coupled to
Ac, so that including the perturbation 	 would only amount
to second-order terms O�A2

c�. Using the definitions Nc �
pc=�c and r2

0 � �n� 1�pc=4�G�2
c, one gets
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M �
Z Rr

0
m0edr � 4�

Z Rr

0
r2�dr�

n� 1

G
AcNc

Z Rr

0
�2�n0�dr � 4�r3
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0
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�
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r
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0
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r

�r
�c�00r

�
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r�00r

Z �r

0
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: (C4)

Notice that there are two Ac-dependent contributions: one arising from �0 and its derivatives (embodied in �), and other
involving the integral of 	.

APPENDIX D

By considering the scaling laws � � �c�n��� and p � pc�n�1��� and using Eq. (11) one gets, for the f1 � f1a case,

 

j�j �
2m��1�m

�mp
�

�
2�
�c

�
m�1 �

2Nc�n�1�m��1
; j�j � 2m�1�m�m��1�m

�������� �0�r�

�1�mp0

��������� n
n� 1

�
2�
�c

�
m�1 ��1�m�m

2Nc�n�1�m��1
;

j�j �
2m�1�m�m��1�m

�1�mp00

���������00�r� � �1�m��
02�r�
�

���������
�
2�
�c

�
m�1 ��1�m�m

2Nc�n�1�m��1

���������1� nm��
02��� � ��00���

n�02��� � ��00���

��������; (D1)

while, for the f1 � f1b case, Eq. (12) yields

 ��
�

2Nc�
; ��

n
n� 1

�
2Nc�

; ��
n

n� 1

�
2Nc�

���������1� n��
02��� � ��00���

n�02��� � ��00���

��������; (D2)

where the prime denotes differentiation with respect to � (the factors r0 arising from changing derivation with respect to r
to derivation with respect to � � r=r0 cancel out).
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