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It is well known that in Lorentz-invariant quantum field theories in flat space the commutator of
spacelike separated local operators vanishes (microcausality). We provide two different arguments
showing that this is a consequence of the causal structure of the classical theory, rather than of
Lorentz invariance. In particular, microcausality holds in arbitrary curved space-times, where Lorentz
invariance is explicitly broken by the background metric. As illustrated by an explicit calculation on a
cylinder this property is rather nontrivial at the level of Feynman diagrams.
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I. PRELUDE: MICROCAUSALITY IN FLAT SPACE

One crucial property of any consistent relativistic quan-
tum field theory in Minkowski space is ‘‘microcausality.’’
Microcausality is the statement that the commutator of
local (Heisenberg-picture) observable operators evaluated
at spacelike separated points vanishes,

 �O1�x�;O2�y�� � 0 for �x� y�2 < 0; (1)

and it is an exact, nonperturbative statement about the
quantum theory. Its relation to causality is obvious: accord-
ing to quantum mechanics, if two operators commute
measuring one cannot have any influence on measuring
the other.

Microcausality holds as an operator equation. However
it is also instructive to consider its vacuum expectation
value (vev), since the vev of the commutator of two local
operators describes the causal response of the vacuum to
external sources. Indeed, it is the generalization of the
retarded Green’s function to an interacting theory.
Consider for instance a real scalar � with generic self-
interactions, coupled to a local external source J�x�, H �
H� �

R
d3xJ�. We can ask what is the vev of � at some

point y � �y0; ~y� if we start with the vacuum at t � �1
and we then turn on a localized source J for a finite period
of time. In the interaction picture, treating J� as the
interaction, this is

 h��y�iJ � h0j �Te
i
R
y0

�1
dtd3xJ���y�Te�i

R
y0

�1
dtd3xJ�j0i; (2)

where by T and �T we denote time-ordered and anti-time-
ordered products, respectively. The above formula can be
easily derived through Schwinger’s ‘‘in-in’’ formalism (see
Ref. [1] for a nice review). Expanding in the external
source J we see that at leading order the vev of the ��
commutator plays the role of a Green’s function for �,

 h��y�iJ �
Z y0

�1
d4xJ�x� � ih0j���x�; ��y��j0i � . . . (3)

If the�� commutator vanishes outside the light cone, then

the source can only generate a nonzero field inside its
future light cone. In the following by ‘‘microcausality’’
we will refer both to the more general operator statement
and to its vacuum expectation value.

Microcausality is crucial in making the S-matrix Lorentz
invariant. The S-matrix is constructed in terms of
T-ordered products of local field operators. The
T-ordering of fields evaluated at spacelike separated points
x and y is in principle not Lorentz invariant, since by a
Lorentz boost one can invert the time ordering of x and y. A
sufficient condition for recovering Lorentz invariance is
that field operators at spacelike distance commute.

For a Lorentz-invariant theory microcausality can be
proven in a variety of ways (see, e.g., Ref. [2]). One proof
makes use of the Källen-Lehmann representation. The
two-point function can be written as a sum over intermedi-
ate states,

 h0j��x���y�j0i �
Z 1

0
d�2���2����x� y;�2�; (4)

where �2 is the intermediate states’ invariant mass, ���2�
is the spectral density function, and ���x� y;�2� is the
free scalar two-point function for a particle of mass �:

 ���x� y;�2� �
1

�2��3
Z
d4p��p0�eip��x�y���p2 ��2�:

(5)

Then the causal properties of the full quantum two-point
function are the same as in a free theory. In particular

 h0j���x�; ��y��j0i �
Z 1

0
d�2���2�

	 h0j���x�; ��y��j0ifree; mass��; (6)

which vanishes for spacelike separated x and y.
Also microcausality follows directly from canonical

quantization of the theory. The system is quantized by
imposing canonical commutation relations at t � 0 and
then evolving forward and backward in time through the
unitary time-evolution operator defined by the Hamil-
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tonian. Canonical commutation relations are preserved by
the time evolution. If Lorentz boosts are a symmetry of the
theory, they are represented in the Hilbert space of the
theory through unitary operators. These too preserve the
canonical commutation relations. This means that field
operators at spacelike distance will commute, since by a
Lorentz boost spacelike separated points can be brought to
lie on an equal time surface, where the corresponding field
operators commute.

A less familiar argument which will be useful in the
following exploits the Euclidean continuation of the the-
ory. The vacuum expectation value of the �� commutator
is given by the imaginary part of the Feynman propagator,

 h0j���x�; ��y��j0i � isign�x0 � y0�

� Imh0jTf��x���y�gj0i: (7)

(More generally, ��;�� as an operator is given by the anti-
Hermitian part of Tf��g.) In the Euclidean theory the
Feynman propagator between two different points is real,
being a path-integral of manifestly real quantities,

 h0jTf��0���xE�gj0i �
Z

D�e�SE�����0���xE�: (8)

Of course we are assuming that the above path-integral can
be made sense of by the removal of all UV divergences
through the usual renormalization procedure. In this case
the only residual divergence we can have is in the limit
xE ! 0. Now, the Euclidean theory is obtained from the
Minkowskian one via the identification t � itE, with real
tE. If the theory is Lorentz invariant the propagator can
only be a function of the invariant combination t2E � ~x2 �
�t2 � ~x2. Therefore the invariant statement is not simply
that the Feynman propagator is real for real tE—that is for
t2E > 0. Rather, it is that the Feynman propagator is real for
positive �t2 � ~x2, i.e. outside the light cone. In other
words, when we talk about the Euclidean continuation of
a Lorentz-invariant theory we are automatically talking
about the region outside the light cone in Minkowski space.
The Euclidean origin corresponds to the whole light cone.
The analytic continuation back to Minkowski space can be
seen as a continuation into the light cone—leading to a
nonzero imaginary part of the propagator, as a result of the
i� prescription for circumventing the singularity localized
on the light cone ( � Euclidean origin). As long as we stay
outside the light cone the Feynman propagator is mani-
festly real, and thus Eq. (7) vanishes.

The point we want to stress here is that all these simple
arguments assume, and crucially rely on the exact Lorentz
invariance of the quantum theory. This is explicit in all the
derivations we sketched above, with the exception of that
based on the Källen-Lehman representation. There too,
however, Lorentz invariance is necessary in order to arrive
at Eq. (4) in the first place, that is, to write the full
propagator as a sum of free propagators. Also, without
making explicit use of Lorentz invariance it is extremely

hard to keep track of microcausality in the perturbative
expansion—for instance by checking whether loop cor-
rections to the Feynman propagator in real space give a
nonzero imaginary part outside the light cone (see, e.g., the
example in Sec. IV).

What happens then when we consider a local relativistic
quantum field theory (QFT) in a fixed curved space-time?
Such a theory is not Lorentz invariant. The fact that the
classical Lagrangian is locally Lorentz invariant tells us
that Lorentz invariance is going to be an approximate
symmetry of the theory at high momenta/short distances.
In particular the UV properties of the theory, like e.g.
renormalizability are not affected by the presence of a
curved background (see e.g. [3]). But certainly Lorentz
invariance will not be an exact global symmetry of the full
theory. Even for metrically flat but topologically nontrivial
spaces (e.g., tori) there are calculable IR effects that break
Lorentz invariance, the simplest example being the
Casimir effect. It is therefore not manifest whether micro-
causality is going to be a generic feature of QFTs in curved
space-times, or whether instead it may be impaired by
Lorentz-violating IR effects. Definitely all arguments men-
tioned above are not directly applicable to this case. Indeed
the possibility that microcausality be generically violated
in curved space-time has been the object of recent inves-
tigations [4,5], leading to the striking claim that QED itself
at one-loop level features microcausality violations.1

The purpose of the present paper is to show that micro-
causality does hold in curved space-time. We start in Sec. II
by reviewing the connection between causality and ana-
lytic dispersion relations, such as the Kramers-Kronig
relations between the real and imaginary parts of the
refraction index in classical electrodynamics. We explain
why the Kramers-Kronig relations are not applicable to
quantum corrections in a QFT and why instead a more
general set of dispersion relations have to be used in this
case. These are of course very well-known notions; the
main point we are stressing here is that to check the causal
properties of a theory via analytic dispersion relations one
needs to know the full off-shell structure of the propagator
in momentum space. One can easily get confused by
applying indirect criteria based on notions of group veloc-
ity or Kramers-Kronig relations for the on-shell refraction
index. Indeed, in the literature there is a rather extensive
discussion on ‘‘superluminal’’ effects in QED, e.g. [5–8].
To avoid these subtleties, we will focus directly on the
commutator in coordinate space.

We then give two general arguments for microcausality
in curved space-time, one based on the path-integral for-
mulation of the theory, the other on canonical quantization
(Sec. III). As we will see, the crucial result is that the causal
structure of the full quantum theory is the same as that of

1Note added:—The conclusions of these papers were reversed
in the revised versions and now agree with ours.
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the corresponding classical field theory. In particular, two
local field operators will commute outside the light cone
whenever the classical theory cannot propagate informa-
tion outside the light cone. Notice that from this viewpoint
the central role usually given to Lorentz invariance at the
quantum level in proving microcausality in Minkowski
space is somewhat misleading. Lorentz invariance may
be crucial in ensuring the relativistic causal structure of
the classical field theory, but from that point on micro-
causality is just a consequence of canonical quantization.

These arguments are implicitly known in the literature.
For example the formulation of the black hole information
paradox in terms of nice slices is closely connected with
our path-integral argument (see e.g. [9]). Still we felt it
useful to give a dedicated discussion on the subject.

The hypothesis that an interacting classical field theory
does not propagate information outside the light cone is a
highly nontrivial requirement, even in Minkowski space. A
theorem due to Leray (see e.g. [10] and references therein)
gives a general result for a system of partial differential
equations (PDE’s) that are linear in the fields’ second
derivatives and have the general form

 G���x;�i;r�i�r�r��j � Fj�x;�i;r�i�; (9)

where G�� is a globally hyperbolic effective metric,
smooth function of the space-time point x as well as of
the fields and their first derivatives, r is any derivative
operator, and the F’s are smooth functions. The theorem
states that in such a system the causal structure, i.e. the
causal dependence of solutions on initial conditions, is
determined by the light cones of the effective metric
G��. Information propagates inside or along such light
cones. Notice that the effective metric in general depends
on the field configuration, and so the causal structure will
in general depend on the solution. Now, for the classical
relativistic Lagrangians that define usual renormalizable
QFT’s, the classical field equations are of the form (9) with
G�� independent of the fields and their derivatives, and
given simply by the (flat or curved) space-time metric g��.
In this case the causal structure is given by the light cones
of g��, as expected. For nonrenormalizable Lagrangians,
however, even if the field equations have the form (9) the
effective metric G�� is generically different from g��, and
superluminal propagation of signals may appear at the
classical level about nontrivial field backgrounds, already
in Minkowski space [11]. However a nonrenormalizable
Lagrangian does not lead to a well-defined quantum theory,
unless of course it admits a renormalizable UV completion,
in which case such superluminal effects are absent. We can
therefore safely assume that the field theories we will be
interested in have classically a well-posed initial value
formulation with no superluminal propagation of signals.

As an example of microcausality in Lorentz-violating
space-times, we present an explicit one-loop computation
in a nontrivial background (Sec. IV). To keep things as

simple as possible, we consider a scalar field with �3 self-
interactions on a cylinder, i.e. on a D-dimensional
Minkowski space with one spatial dimension compactified
on a circle. Although such a space-time is metrically flat,
the compactness of one spatial direction explicitly breaks
Lorentz invariance, thus evading all traditional arguments
reviewed above based on Lorentz invariance. Indeed, at
tree level the two-point function is the sum over images of
the free two-point functions in Minkowski space (see
Fig. 1). Although not Lorentz invariant, it is at least causal
in the sense that the retarded tree-level propagator vanishes
outside the light cone—trivially, because the image con-
tributions are not helping in going faster than light (going
around the cylinder takes longer). At one loop, however, on
top of the sum over images of the one-loop flat-space
propagators, there are new contributions coming from
loops wrapping around the circle. We will show that this
effect cannot lead to any imaginary part of the Feynman
propagator outside the light cone.

We present our conclusions in Sec. V.

II. CAUSALITY, LOCALITY, AND ANALYTICITY

It is well known that causality and subluminality (as we
will discuss shortly, in general these are different proper-
ties) manifest themselves as certain analytic properties of
the Green’s functions in momentum space. To see how this
connection arises, let us consider a field � that satisfies an
equation of the following general form

 F�i@t; i@x���t; x� � j�t; x�: (10)

A generic solution to this field equation can be presented in
the form

 ��t; x� �
Z
dt0dx0G�t� t0; x� x0�j�t0; x0� � . . . ;

x

1 x1

x2x2

t

x

t

x

FIG. 1 (color online). Left: The tree-level propagator on the
cylinder is the flat-space tree-level propagator summed over all
images. The red (middle) line is the first topologically nontrivial
contribution. Right: At one loop, apart from the sum over images
of the one-loop propagators there are additional contributions
coming from loops ‘‘wrapping’’ around the circle.
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where G�t; x� is a solution of the field equation (10) with a
delta-function source at the origin ��t���x�, and dots stand
for the source-independent part of the solution. A system
described by (10) is called causal if its Green’s function
can be chosen to satisfy the boundary condition

 G�t; x� � 0 for t < 0: (11)

This property is just saying that the response of the system
to a source cannot show up before the source was turned
on, and clearly should hold for all physical systems, both
relativistic and nonrelativistic. Note also that this discus-
sion applies both to classical fields and to the vev’s of
quantum fields. In the latter case, as discussed in Sec. I,
G�t; x� is the commutator vev ��t�h���t; x�; ��0; 0��i.

Causality imposes strong restrictions on the possible
forms of the Green’s function G (and of the operator F).
To see this let us perform the Fourier transform of the
Green’s function with respect to time, and define

 G�!; x� �
Z
dtei!tG�t; x�: (12)

Causality (that is, Eq. (11)) implies that the integration
interval in (12) is actually t 2 �0;1�. If one furthermore
assumes that the system is stable, i.e. that the response to
the source grows slower than an exponent with time, then
G�!; x� is analytic in the whole upper half complex !
plane, Im!> 0. In principle, one can relax the last as-
sumption and consider systems containing tachyonic de-
grees of freedom leading to exponential instabilities with
instability rate �. In order to be causal the Green’s function
of such a system has to be analytic at Im!> �. For
simplicity, in what follows we assume that the system is
stable.

In order to see the implications of locality let us perform
also the Fourier transform with respect to the spatial var-
iables x, and consider

 G�!;p� �
Z
dtdx ei!t�ipxG�t; x� � F�!;p��1: (13)

A very mild notion of locality implies that this Fourier
transform exists at all real p, and combined with causality
it results in the analyticity of F�!;p��1 as a function of !
at all real p and at Im!> 0. Of course, usually by locality
one understands much stronger restrictions on the proper-
ties of the system, which in turn restricts more the analytic
properties of the function F�!;p��1. For instance, it is
reasonable to assume that at each moment t the response of
the system to the delta-functional source is nonzero only in
a finite region of space. In this case F�1 is an analytic
function of both ! and p at real p and Im!> 0.
Subluminality is a stronger version of the last property
which holds in all systems described by a relativistic
quantum field theory. It says that G�t; x� is causal and
vanishes outside the light cone, i.e. when t < jxj. This

translates into the analyticity of the function F�!;p��1

in the region Im!> jImpj.
An important thing to keep in mind is that to check what

the causal properties of a given system are in general one
needs to know the whole off-shell function F�!;p� de-
scribing the coupling to a local source as in Eq. (10). It is
not enough to know just the dispersion law for free waves,
i.e. the relation between ! and real p such that F is zero.
To illustrate this important point let us consider several
specific examples. Let us start with a function F of the
following form

 F�!;p� � n2�!� �!2 � p2: (14)

This kind of function appears, for instance, when one
considers the propagation of light in a dispersive medium
with n�!� being the refraction index of the medium. Indeed
precisely in this context the relation between analyticity
and causality was first exploited by Kramers and Kronig to
derive their famous dispersion relations [12]. It is instruc-
tive to see how the above F�!;p� appears in a field theory
language. Namely, a nonrelativistic medium can be
thought of as a set of decoupled localized degrees of free-
dom (atoms/molecules of the medium) which can interact
with the photon. For instance, approximating each degree
of freedom as a harmonic oscillator of frequency M, one
can write the following effective field theory action de-
scribing such a system

 L � 1
2�@�A�

2 � 1
2�

_X�2 � 1
2M

2X2 � gA _X; (15)

where X is a field describing local degrees of freedom and
A stands for the photon field (for simplicity, we are sup-
pressing all vector indices). By integrating out the X field,
one obtains the effective action describing the propagation
of the photon field with a kinetic function of the form (14),
with

 n2�!� � 1�
g2

M2 �!2 : (16)

This simple model actually provides an accurate descrip-
tion of the atomic contribution to the dielectric constant.

According to the above discussion, in order to describe a
causal system the function F�1 should be analytic at all
real p and Im!> 0. If F has the form (14) this condition
implies that the refraction index n�!� is also analytic.
Indeed, if it has an essential singularity, then clearly F�1

has an essential singularity as well. If n�!� has a branching
point!0, then in order for!0 not to be a branching point of
F�1, this should be a square root branching, i.e. in the
vicinity of !0, one has either n�!� 
 �!�!0�

1=2, or
n�!� 
 �!�!0�

�1=2. It is straightforward to check then,
that in the first case, F�1 has a pole in the vicinity of !0 at
small real p, while in the second case it has a pole in the
vicinity of!0 at large real p. Analogously, the existence of
a pole singularity of n�!� would lead to a pole of F�1 at
large real p. So the requirement of causality imposes very
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strong constraints on a kinetic function of the form (14). In
particular, in this case causality almost implies sublumin-
ality; the only extra conditions needed are that at short
scales the dispersion relation takes the relativistic form, i.e.
n! 1 when !! 1, and a certain positivity assumption.
Indeed, for the retarded propagator one has (for simplicity,
we are considering �1� 1�-dimensional space-time)

 G�t; x� �
Z
d!dp

e�i�!t�px�

n2!2 � p2 : (17)

Let us consider the case x > 0; then by closing the contour
of integration in the lower part of the p plane and perform-
ing the integral over p one obtains

 G�t; x� � �2�i�
Z d!

2n!
	e�i�!t�	n!x�; (18)

where

 	 � sign�! Im n�:

If 	 is positive everywhere on the real axis, then it can be
dropped from the integral (18). Then, at x > t the asymp-
totic condition n�!! 1� ! 1 allows to close the contour
of integration in the upper half-plane of ! and the analytic
properties of n discussed above imply that G�t; x� is zero
outside the light cone.

As another example let us consider a kinetic function of
the form

 F�!;p� � !2 � f�p2�: (19)

Clearly, in many cases this function can give rise to the
same dispersion law for free waves as Eq. (14); however, as
we will see now, it has completely different causal prop-
erties. Indeed, this kinetic function corresponds to a second
order differential equation in time, so that the existence of a
causal Green’s function is automatic, and causality does
not impose any constraints on the analytic structure of
f�p2�. As long as f�p2� is real and positive on the real
axis, the kinetic function (19) describes a stable causal
system. However, as we are going to show now, unlike in
the previous case the subluminality requirement is ex-
tremely powerful in this case—the only possible function
f that leads to a retarded propagator that vanishes outside
the light cone is the quadratic polynomial,

 f�p� � ap2 � bp�m2:

To see this, it is convenient to use the subluminality con-
dition discussed above, namely, that F�!;p��1 is an ana-
lytic function of both its arguments in the region
Im!> jImpj. This condition immediately implies that
the function f should be analytic in the whole complex
plane. It is slightly nonobvious that f cannot have a pole at
some p0, but it is straightforward to check, that in the
vicinity of the pole one could always find a point p� such
that Im f�p��1=2 > jImp�j, thus violating the subluminal-
ity condition. To complete the proof we will use only one

extra assumption. Namely, we will make use of the fact that
for reasonably local physical systems the Fourier transform
of the retarded propagator with respect to the spatial coor-
dinate, which is equal to

 G�t; p� �
sin�f�p�1=2t�

f�p�1=2

is an exponentially bounded function of the spatial mo-
mentum p. This implies that f cannot grow faster than p2

at infinity, and the only analytic function with this property
is the quadratic polynomial.

We see that the two kinetic functions (14) and (19)
describe systems with very different causal properties, in
spite of the fact that they can lead to identical on-shell
dispersion laws. As a very concrete example, let us con-
sider a kinetic function of the form

 F1 � !2 �
p4

p2 � 1
: (20)

According to the above discussion this kinetic function
corresponds to a perfectly stable and causal system, which
does not however possess a light cone. The on-shell dis-
persion law following from this kinetic function is the
same as that following from

 F2 �
1
2�!

2 �!
���������������
4�!2

p
� � p2: (21)

This kinetic function has the form (14), and it does not
describe a causal system due to the presence of the branch
cut in the upper half-plane of !. This somewhat counter-
intuitive result is easy to understand. The point is that it
does not matter which one of the functions F1;2 to put in
Eq. (10) as long as sources are absent, j � 0: the free
solutions are the same. However, the relation between the
two different sources that for the two different choices of
the kinetic function create identical field configurations, is
highly nonlocal. As a result the causal properties of the
system, in its response to local sources are very different in
the two cases. In other words, Eq. (10), apart from provid-
ing a free wave dispersion law, carries a physically very
important extra information—it describes how the system
is coupled to local sources. Without access to this infor-
mation one cannot decide about the causal properties of the
system.

Of course, the kinetic functions arising in relativistic
quantum field theories have neither the form (14), nor the
form (19). According to the above discussion, in order to
draw any conclusion about the causal structure of the
theory from the direct study of the analytic properties of
the kinetic functions, one needs to know the full off-shell
result. For instance, a recent work [5] discussed the fate of
(micro)causality in QED in curved backgrounds. At one
loop the kinetic function in general has the form

 F � !2 � p2 � 
f�!2; p2�:

However, the authors of [5] brought it into the form (14) by
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means of the tree on-shell condition, and it was found that
the resulting n�!� does not enjoy the conventional analyti-
cal properties, i.e. the Kramers-Kronig relations. Because
of the reasons explained above, this is not very surprising
and by itself does not indicate a breakdown of (micro)-
causality. Actually, the necessity to know the full off-shell
structure makes it somewhat unpractical to study the ana-
lytic properties of the propagator in momentum space to
check microcausality in curved backgrounds in perturba-
tive calculations. Instead, in what follows we will study the
issue directly in position space.

III. MICROCAUSALITY IN CURVED SPACE

In this section we will present two arguments that prove
microcausality without relying on Lorentz invariance. The
arguments are very similar in spirit, but use somewhat
different formalisms. Both of them show that the actual
content of microcausality is that the quantum theory in-
herits the causal structure present in the corresponding
classical theory.

A. Functional integral argument

We will now show that the commutator of two operators
O1;2 localized at any two points belonging to the same
spacelike hypersurface � vanishes. The essence of the
argument is that one can quantize the theory by choosing
the time coordinate in such a way that the surface �
corresponds to a constant time slice, see Fig. 2. With this
choice of coordinates we are dealing with an equal-time
commutator, �O1�t�;O2�t��, which is zero. Indeed, in ca-
nonical quantization

 O �t; x� � �Tei
R
t

�1
HO��1; x�Te�i

R
t

�1
H; (22)

so that
 

�O1�t; x1�;O2�t; x2��

� �Tei
R
t

�1
H�O1��1; x1�;O2��1; x2��Te

�i
R
t

�1
H � 0;

where the last equality holds just by the definition of the
canonical quantization. The only part of this argument that
requires extra justification is the starting point—namely
the statement that the result of the quantization does not
depend on the choice of the time coordinate. To prove this
desirable property it is convenient to use the functional
integral representation of the matrix elements. Suppose
that we quantized the system according to some time
slicing with time variable t, and let us consider the matrix
element

 M � h 1jO1�t1; x1�O2�t2; x2�j 2i; (23)

where j 1;2i are any two states.
By making use of (22), which determines the time

evolution of the Heisenberg operators, one can rewrite
M in the following form (for definiteness, we assume
here that t1 � t2, and the extension to the case t1  t2 is
straightforward),
 

M � h 1j �Te
i
R
�

�1
HTe

�i
R
�

t1
H
O1��1; x1�Te

�i
R
t1
t2
H

	O2��1; x2�Te
�i
R
t2
�1

Hj 2i; (24)

where � is an arbitrary moment of time later than both t1
and t2, � > t1;2. Now we can use the conventional repre-
sentation of the (anti)time ordered products in the func-
tional integral form and write (cf. e.g. [1])
 

M �
Z

D�LD�Re
�i
R
�

�1
dt�L��L��L��R��O1��R�t1; x1��

	O2��R�t2; x2�����L��� ��R����: (25)

Here the integral over (left) right fields��L�R represents the
(anti)time ordered exponents and the boundary conditions
at t � �1 are determined by the states j 1;2i in the matrix
element (24). For t1  t2 one obtains a similar formula, the
only difference being that operators O1;2 will depend now
on the ‘‘left’’ fields �L�t1;2�. The functional integral for-
mula (25) provides a representation of the matrix elements
that is totally independent of the choice of time slices used
to quantize the system. Consequently, to calculate the
commutator in the operator formalism one can canonically
quantize the system using whatever choice of the time
variable one finds convenient, as long as it provides a
consistent Hamiltonian description. In particular in field
theories with two-derivative kinetic terms in curved back-
grounds for any two operators belonging to a single space-
like hypersurface one can choose a time variable using this
hypersurface as one of the slices, as we did above to show
that the commutator vanishes. Notice that this procedure
fails if the two points are timelike separated—there can be
no consistent Hamiltonian evolution connecting a space-
like hypersurface with a timelike one. Indeed, in this case
somewhere in between the two slices the g00 component of
the metric vanishes, so that the equations of motion reduce
to nondynamical constraints and the Hamiltonian system
degenerates (see [11] for a related discussion).

t2

t1

t

x

τ

8

FIG. 2 (color online). For any two spacelike separated points
at different times �t1; t2� one can choose a set of coordinates such
that they lie on the same time slice.
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B. Canonical quantization argument

Now we give another argument for microcausality in
curved space-time entirely based on canonical quantiza-
tion. We will show that in curved space-time the causal
structure of a quantum field theory is the same as that of the
corresponding classical theory. More precisely, if the clas-
sical theory one starts with cannot propagate information
outside the light cone, then upon canonical quantization of
the theory commutators of field variables will vanish out-
side the light cone.

Let us start with a generic mechanical system. Suppose
we have a classical Hamiltonian system with canonical
variables �q1; . . . ; qN;p1; . . . ; pN�, collectively denoted
by �q; p�, and Hamiltonian H�q; p�. At equal times the
Hamiltonian variables obey canonical Poisson brackets,
fqi�t�; qj�t�g � 0, etc. But what about Poisson brackets of
variables at different times, for instance fq1�0�; q2�t�g?
These depend on the dynamics. Indeed by solving the
Hamilton equations

 _q i � fqi; Hg; _pi � fpi;Hg (26)

one can express all canonical variables at time t as func-
tions of the initial conditions �q�0�; p�0�� given at some
earlier time t � 0. So for example

 q2�t� �Q2�t; q�0�; p�0��: (27)

Then the Poisson bracket we are interested in is simply

 fq1�0�; q2�t�g �
@Q2�t; q�0�; p�0��

@p1�0�
: (28)

In particular, if for any dynamical reason the solution for q2

at time t does not depend on the initial condition p1�0�,
then the Poisson bracket between q1�0� and q2�t� will
vanish.

We now quantize the system by promoting all
Hamiltonian variables to operators—which we will denote
by ‘‘hatted’’ variables q̂, p̂—and imposing canonical com-
mutation relations. In the Heisenberg picture we can ask
again what is the commutator of canonical variables at
different times, e.g. �q̂1�0�; q̂2�t��.

The Hamilton equations now read

 i
d
dt
q̂i � �q̂i; H�q̂; p̂��; i

d
dt
p̂i � �p̂i; H�q̂; p̂��: (29)

By definition the quantum Hamiltonian H�q̂; p̂� has the
same functional dependence on the operators q̂, p̂ as the
classical Hamiltonian has on the classical canonical vari-
ables q, p. The only difference resides in possible ordering
ambiguities, which are absent in the classical theory
whereas in the quantum one they can lead to physically
different systems. Also the algebra of canonical commu-
tation relations in the quantum theory is the same as the
algebra of (i	 ) canonical Poisson brackets in the classical
theory. As a result of these facts the quantum canonical
variables q̂, p̂ satisfy operator Hamilton equations that are

functionally the same as the classical ones, again apart
from ordering issues. This property is often referred to as
‘‘the quantum variables satisfy the classical equations of
motion (e.o.m.) as operator equations.’’ As a consequence
the operator solutions to the quantum Hamilton equations
will be functionally the same as the classical solutions, in
their t-dependence as well as in their dependence on the
canonical variables at some earlier time t � 0. So, for
example, the operator q̂2 at time t will be

 q̂ 2�t� �Q2�t; q̂�0�; p̂�0��; (30)

where Q2 is exactly the same function appearing in the
classical theory, Eq. (27), with some properly chosen
ordering of the q̂’s and p̂’s2. This is somewhat the crucial
point of our proof, so we devote the appendix to clarifying
it.

We now can use the classical solutions to compute
commutators of variables at different times in the quantum
theory. So for example

 �q̂1�0�; q̂2�t�� � �q̂1�0�;Q2�t; q̂�0�; p̂�0���; (31)

where Q2 is the classical solution for q2�t�, with some
specific ordering. Now, the point is that if for any reason in
the classical theory the solution for q2 at time t is not
sensitive to the value of p1 at t � 0, then the above
commutator will vanish. This is because p̂1�0� is the only
canonical variable at t � 0 with which q̂1�0� does not
commute. But if the classical solution for q2�t� does not
involve p1�0�, the quantum solution for q̂2�t� will not
involve the operator p̂1�0�. In this case there will be no
p̂1�0� in the right argument of the commutator (31), and the
commutator itself will vanish. This is obviously the quan-
tum analogue of Eq. (28). Notice that in this respect order-
ing ambiguities are harmless: they cannot change whether
the solution depends or not on some of the initial
conditions.

It is now clear where we are headed. All the discussion
above applies unaltered to a field theory in curved space-
time, which is nothing but a Hamiltonian system with
infinitely many degrees of freedom—one at each point in
space. For any given time slicing of the space-time mani-
fold, we call �~x the classical field variables and � ~x their
conjugate momenta, with ~x being a set of spatial coordi-
nates parametrizing the time slices. By solving the
Hamilton equations one can in principle express the field
at time t and position ~x as a functional of the initial field
and momentum configurations given on some earlier time
slice, for instance at t � 0,

 �~x�t� � � ~x�t;��0�;��0��; (32)

2For nonpolynomial functions f�q; p�, one may define order-
ing by first presenting the classical f in Fourier integral form,
f�q; p� �

R
d
d�~f�
;��ei�
q��p�, and then turning the expo-

nent into an operator by using one’s favorite ordering
prescription.
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where by ��0�, ��0� we denote the field and momentum
configurations on the whole t � 0 slice. Then, as in
Eq. (28), the Poisson bracket of field variables at different
times is given by

 f�~x�0�; �~y�t�g �
�� ~y�t;��0�;��0��

�� ~x�0�
; (33)

where ��� � ��=��� � �� is a functional derivative.
The system is quantized by imposing canonical commu-

tation relations. We are then interested in the commutator
of field operators at different space-time points, e.g.
��̂~x�0�; �̂ ~y�t��. Then in this case Eq. (31) reads

 ��̂~x�0�; �̂ ~y�t�� � ��̂~x�0�;� ~y�t; �̂�0�; �̂�0���; (34)

where � ~y, is the same functional appearing in the classical
solution, Eq. (32). Now,

(i) if the points � ~x; 0� and � ~y; t� are spacelike separated,
and

(ii) if the classical theory cannot propagate information
outside the light cone,

then the classical field at � ~y; t� cannot depend on the initial
conditions given at the point � ~x; 0�. It can only depend
on initial conditions given inside the past light cone depart-
ing from � ~y; t�, see Fig. 3. Hence, the functional
� ~y�t;��0�;��0�� does not depend on � ~x�0�. This leads
to the vanishing of the classical Poisson bracket equa-
tion (33); but it also leads to the vanishing of the commu-
tator equation (34) in the quantum theory,

 ��̂~x�0�; �̂ ~y�t�� � 0; (35)

since �̂ ~x�0� is the only canonical variable at t � 0 with
which �̂~x�0� does not commute. In this precise sense the

causal structure of the quantum theory is the same as that of
the classical one.

These two arguments can be straightforwardly extended
to gauge theories as well. The key is to work in a gauge
with a well-defined Hamiltonian evolution. For instance, in
the first argument one can start by defining the matrix
element (23) in the A0 � 0 gauge, or in covariant form

 A�n
� � 0; (36)

where n� is the timelike normal vector to the selected set
of slices. In this gauge, one obtains a Hamiltonian system
with canonical variables �Ai; F0i� and a Gauss’s law con-
straint C, which generates the residual gauge transforma-
tions. Upon quantization this constraint is used to define
the physical states j i’s by imposing the condition

 C j i � 0: (37)

Now one can construct the functional integral representa-
tion of the matrix elements. The only difference with the
case discussed above is that naively this functional integral
depends on the choice of time slices through the vector n�.
However, integrals with different n�’s differ only in the
choice of the gauge fixing condition (36) so that by making
use of the conventional Faddeev-Popov trick one can show
that the matrix elements between physical states do not
depend on n�. Consequently, physical matrix elements do
not depend on the choice of the time slices used to quantize
the system, and one can run the argument as before.

Similarly, one can use the same gauge to run the ana-
logue of the second argument. In the classical theory all
solutions with the same initial data differ just by a gauge
transformation and, in particular, they are described by
pure gauge configurations outside the light cone. Cor-
respondingly, following the same logic as above, Poisson
brackets (and commutators in the quantum theory) are pure
gauge outside the light cone. Then the condition (37)
implies that their matrix elements between physical states
vanish.

Finally, it is worth mentioning that it is straightforward
to include fermions too, for instance the first argument
applies to systems with fermions without any
modifications.

To conclude this section, it is worth stressing that these
two arguments can be applied in more general contexts
because they do not rely at all on the Lorentz invariance of
the theory in flat background. They will go through for any
nonrelativistic theory allowing a Hamiltonian description
with a well-defined causal structure at the classical level.
As we already stressed their real message is that the causal
structure of the quantum theory is inherited from the
classical theory without any modifications. For example
in non-Lorentz-invariant theories with two-derivative
Lagrangians the commutator will vanish outside the light
cone of the field with the largest velocity. On the other hand
in theories with two time derivatives and higher order

(x, 0)
t = 0

t

(y, t)

FIG. 3 (color online). In a classical theory that does not admit
superluminal propagation of signals, the field at � ~y; t� can only
depend on initial conditions given inside the point’s past light
cone (shaded region). In particular, it cannot depend on the field
and momentum values at � ~x; 0�.
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spatial derivative terms one can see that subluminality is
lost both from the analyticity discussion in Sec. II and from
the fact that with a nontrivial choice of time slices also
higher time derivative terms are produced preventing the
definition of a Hamiltonian evolution.

IV. PERTURBATIVE EXAMPLE: ��3 ON THE
CYLINDER

The arguments we gave in the previous section, although
general and very intuitive, hide the nontriviality of the
result in general non-Lorentz-invariant backgrounds. In
particular they do not rely on perturbation theory and
Feynman graphs, the reason is simple—the cancellation
of the commutator outside the light cone is everything but
manifest when expressed in terms of Feynman diagrams. In
order to show this point and to give an independent check
of the arguments we present here an explicit one-loop
calculation of the commutator in a non-Lorentz-invariant
background. Consider �3 theory on a cylinder in D
space-time dimensions (namely on RD�1 	 S1). At tree
level the two-point function in coordinate space is just
the sum over images of the Lorentz-invariant free propa-
gator whose imaginary part vanishes outside the light cone,
namely

 Gfree
R �x; y� �

X1
n��1

Gfree
1 �x; y� Rn�;

Gfree
1 �x; y� �

�D�2

�2��D=2

KD=2�1��
����������������
x2 � y2

p
�

��
����������������
x2 � y2

p
�D=2�1

;

(38)

where � is the mass, R the size of the circle, x and y the

coordinates over RD�1 and S1, respectively, and K��s� is
the modified Bessel function. Since the commutator vev is
proportional to the imaginary part of the Feynman propa-
gator (see Eq. (7)), the former trivially vanishes too. At
higher loop orders, however, the two-point function on the
cylinder is not just the sum over images of the one-loop
two-point functions on the plane, since it receives also
contributions from loops wrapping the circle (see Fig. 1).
We present here the calculation of the commutator at one-
loop order to show how nontrivial the cancellation is. We
do not need to calculate explicitly the two-point function, it
is enough to show that its imaginary part vanishes. Should
we start the calculation directly in Minkowski signature we
would encounter many complex contributions, and for the
imaginary part to vanish one needs highly nontrivial can-
cellations between them. So it is highly advantageous first
to perform the computation in Euclidean space (where the
two-point function is real by definition) and then show that
one can analytically continue the result to Minkowski
space-time. The one-loop correction to the two-point func-
tion in position space is

 

�1-loopGR�x; y� � 2
Z
dD�1p

X
py

��p; py�

�p2 � p2
y ��

2�2

	 eipx�ipyy;

where here and in the following we suppressed all numeri-
cal coefficients and ��p; py� is the one-loop integral,
which after the introduction of the Feynman parameter
reads

 

Z 1

0
d�

Z
dD�1k

X
ky

1

�k2 � �ky � �py�2 ��2 � �p2 � p2
y���1� ���2

:

Applying the Poisson summation formula

 

X1
n��1

f�n� �
Z 1
�1

d�
X1

m��1

f���ei2�m�;

to the ky sum we get

 ��p; py� �
Z 1

0
d�

Z
dDk

X
m

eim�ky�py��R

�k2 � �ky�2 ��2 � �p2 � p2
y���1� ���2

:

Applying again the Poisson formula to the py sum we arrive at the following expression for the propagator

 �1-loopGR�x; y� � 2
Z 1

0
d�

Z
dDp

Z
dDk

X
n;m

eipxeipyy

�p2 � p2
y ��

2�2
eim�ky�py��R�inpyR

�k2 � k2
y ��

2 � �p2 � p2
y���1� ���

2 :

After evaluating the integral over k by introducing the Schwinger parameter we get
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Z 1

0
d�

Z
dDp

X
n;m

eipxeipy�y�nR��mR�

�p2 � p2
y ��

2�2
�jmjR�4�D

K2�D=2�jmjR
���������������������������������������������������
�2 � �p2 � p2

y���1� ��
q

�

�jmjR
���������������������������������������������������
�2 � �p2 � p2

y���1� ��
q

�2�D=2
:

Because the integral in p and py is the Fourier transform of
a function that depends only on p2 � p2

y, the propagator
will be a sum of terms that are functions of the combination
x2 � ~y2, where ~y � y� nR� �mR. Namely

 GR�x; y� � 2
Z 1

0
d�
X
n;m

Fm�x2 � ~y2�: (39)

By definition the propagator in Euclidean space (39) is
real. At x0 � 0 the Euclidean and Minkowskian 2-point
functions coincide, so the Minkowski propagator is also
real. As long as the analytic continuation of the propagator
to Minkowski space is free from divergences also the
propagator in Minkowski space will be real and the com-
mutator will vanish.

Notice that outside the light cone the following inequal-
ity holds:
 

�t2 � ~y2 � �t2 � �y� nR� �mR�2 >�m2R2��1� ��:

(40)

Indeed, the quadratic term in � is the same on both sides,
and it is then trivial to check that the inequality holds
outside the light cone at the boundary values � � 0, 1.
Points inside the light cone thus correspond to the hyper-
bolic shaded regions in Fig. 4. For �t2 � ~y2 > 0 no ana-
lytic continuation is needed—analogously to the Lorentz-
invariant case FMink

m �t; ~y� � Fm��t
2 � ~y2� and its imagi-

nary part vanishes. For �m2R2��1� ��<�t2 � ~y2 < 0
the proof needs one more step. If we analytically continue
x0 ! it the integrand in Fm for large p0 becomes

 

�mR�4�De�p0t�i ~p ~x�ipy~y�jmjR
��������������������������������
�2��p2�p2

y���1���
p

�p2 � p2
y ��2�2�jmjR

���������������������������������������������������
�2 � �p2 � p2

y���1� ��
q

��5�D�=2
;

in particular the leading exponential contribution reads

 e�p0t�jmjRjp0j
������������
��1���
p

:

When the integral is convergent, i.e. for3

 t2 <m2R2��1� ��; (41)

FMink
m �t; ~y� � Fm��t

2 � ~y2� is real and Lorentz invariant
with respect to the vector �t; ~y�. We can thus analytically
continue FMink

m everywhere outside the light cone
(Eq. (40)) using this invariance.

Therefore, for every point outside the light cone Fm (and
thus GR) can be analytically continued without incurring
into singularities, so that the Minkowski propagator is real
and the commutator vev vanishes. We see that microcau-
sality is indeed a highly nontrival property at the level of
the Feynman diagrams; even in this relatively simple ex-
ample one needs to follow the structure of the loop inte-
grals at a detailed level (such as the precise way in which
the Feynman parameter � enters into different expressions)
to see the required cancellations.

V. DISCUSSION

While Lorentz invariance is not necessary for micro-
causality to hold, it is usually exploited in the standard
proofs because it makes the vanishing of commutators
outside the light cone manifest. We gave two general argu-
ments that show why also in non-Lorentz-invariant back-
grounds microcausality is expected to hold. The first makes
use of path integrals and their manifest independence on

A

B

A

B

t

ỹ

FIG. 4 (color online). Plot of the �t; ~y� plane. The shaded
hyperbolic regions correspond to points inside the light cone
in the �t; y� plane (Eq. (40)). The shaded stripe is the region
where the Wick-rotated Fm integral converges (Eq. (41)). The
blue hyperbolas are constant t2 � ~y2 curves. Therefore for every
point outside the light cone (e.g. A or B) there exists a point (e.g.
A0 or B0, respectively) with the same value of t2 � ~y2 (and thus of
Fm) such that the integral converges.

3We are only interested in the m � 0 case, since the m � 0
part is the sum over images of the Lorentz-invariant one-loop
contributions, which respect microcausality.
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the coordinate choice. In this way two spacelike separated
points can be chosen to lie on the same time slice. This fact
together with the existence of a unitary evolution in any
given time slicing ensures microcausality. The second
argument instead is basically the statement that quantiza-
tion is the procedure that maps functions of classical
variables satisfying canonical Poisson bracket relations
into the same functions of operators satisfying canonical
commutation relations. In this way points that are causally
disconnected at the classical level (vanishing Poisson
brackets) are automatically causally disconnected also at
the quantum level (vanishing commutators). Let us discuss
some potential subtleties in the above two arguments. First,
in quantum field theory it may happen that, due to the
presence of the infinite number of degrees of freedom, the
commutators of operators are modified as compared to the
classical Poisson brackets, the most famous examples
being the anomalous violation of the chiral symmetries
and the central extension of the Virasoro algebra in string
theory. In the functional integral argument this subtlety
translates into the necessity to define a properly regularized
measure that does not modify the causal structure of the
nonregularized theory. We do not expect this subtlety to be
relevant in the case under consideration, as the quantum
anomalies arise due to UV effects and exhibit themselves
as localized terms in position space, while we are discus-
sing commutators of spacelike separated operators. For
instance, dimensional regularization in curved space-time
[13] does not modify the causal structure of the theory,
although care should be taken when applying it in
Lorentzian signature (other popular covariant methods of
regularization, such as point-splitting or adding higher
derivative terms in general do modify the causal structure
of the theory).

Another subtlety (present only in the functional integral
proof) is that it is not totally obvious that the impossibility
to connect two points by a timelike or null curve (which is
the most natural definition of spacelike separation) auto-
matically implies that there exists a smooth spacelike
Cauchy surface on which the two points both lie. It is
easy to check that this is true for some simple space-times
and would be interesting to understand under what con-
ditions these two properties are equivalent.

We also reported an explicit one-loop calculation of the
commutator in a nontrivial background, which shows that
even in the simple case where Lorentz invariance is broken
just by boundary conditions, checking microcausality in
the perturbative expansion may be rather cumbersome. The
fact that the vanishing of the commutator is not trivial in
non-Lorentz-invariant backgrounds may in principle pro-
vide a powerful tool to derive identities involving matrix
elements of operators and the spectrum in weakly as well
as strongly coupled QFTs. Consider, for example, a QFT
on the cylinder RD�1 	 S1; the Källen-Lehmann-like rep-
resentation for the commutator vev of two local operators

reads
 

h0j�Oy�x; y�;O�0; 0��j0i �
X
n

X


jh;m�n�; njO�0; 0�j0ij2

	 einy=R�D�1�x;m�n��; (42)

where the formal sum in  runs over all the states of the
theory with Kaluza-Klein (KK) momentum n=R (and in-
cludes the integral on the corresponding phase-space),
m�n� is the invariant (D� 1)-dimensional mass, and
�D�1�x;m�n�� is the (D� 1)-dimensional commutator
vev of a free field with mass m�n�. In principle we can
now use the fact that we know that the commutator van-
ishes outside the lightcone to get a nontrivial relation. For
instance we can integrate Eq. (42) with a generic function
f�t; y� outside the light cone (i.e. on the diamond } �
ft; y: t2 < �y� nR�2;8n 2 Zg) and get

 X


X
n

jh;m�n�; njO�0; 0�j0ij2
1

m�n�

	
Z
}
dy dt cos�2�ny=R� sin�m�n�t�f�t; y� � 0; (43)

in order not to get contributions from deltalike singularities
localized on the light cone we have to restrict to functions f
that vanish on the light cone. The above relation gives sum
rules involving the matrix elements and the spectrum of the
theory and that are nontrivial especially when the theory is
strongly interacting. It would be interesting to study
whether such relations could be used in similar contexts
like extra-dimensional models or QCD on the lattice. For
instance it was noticed in [14] that in string compactifica-
tions the mass of the lightest modulus is always parametri-
cally smaller than the KK scale. One might expect that
such inequality follows from microcausality in the com-
pactified space.
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APPENDIX A: EQUIVALENCE OF QUANTUM AND
CLASSICAL SOLUTIONS

Consider a classical Hamiltonian system �q; p� �
�q1; . . . ; qN;p1; . . . ; pN�, with time-independent Hamil-
tonian H�q; p�. Hamilton’s equations read

 _q i � fqi; Hg; _pi � fpi; Hg: (A1)

The solution with given initial conditions �q�0�; p�0�� can
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be constructed as a Taylor series in t by taking further time
derivatives of Hamilton’s equations. For instance, for qi

 �q i � ffqi; Hg; Hg; (A2)

 q::: i � fffqi; Hg; Hg; Hg; (A3)

 

..

.
(A4)

Then the solution is

 qi�t� � qi�0� � tfqi�0�; Hg �
1

2!
t2ffqi�0�; Hg; Hg � . . .

(A5)

Notice that, by definition of Taylor series, all Taylor co-
efficients above are to be computed at t � 0. That is, in
Eq. (A5) by H we mean H�q�0�; p�0��.

Upon canonical quantization, we can repeat exactly the
same derivation by formally replacing Poisson brackets
with �i times the commutator. Then for q̂i we get

 q̂ i�t� � q̂i�0� � t��i��q̂i�0�; Ĥ� �
1

2!
t2��i�2

	��q̂i�0�; Ĥ�; Ĥ� � . . . ; (A6)

where once again we have to evaluate Ĥ at t � 0. By
definition the quantum Hamiltonian Ĥ has the same func-
tional dependence on q̂, p̂ as the classical Hamiltonian
does on the classical canonical variables q, p, possibly
supplemented by some specific ordering choice. The alge-
bra of�i times commutators is the same as that of Poisson
brackets. The canonical variables obey canonical commu-
tation relations in the quantum theory, and canonical
Poisson brackets in the classical one. These algebraic

properties imply that, if we now compute all the Poisson
brackets and commutators in Eqs. (A5) and (A6) by ex-
plicitly writing the Hamiltonian as a function of q�0�, p�0�,
in the two cases we will get exactly the same function of t,
q�0�, and p�0�. For instance if H is a polynomial or can be
expanded in Taylor series, Eqs. (A5) and (A6) will yield
identical Taylor series in t, q�0�, and p�0�. Of course in the
quantum solution the ordering of each term will be
important.

Exactly the same conclusion holds for a time-dependent
Hamiltonian H�q; p; t�, which is the relevant case for a
QFT in curved space. The point is that on a solution the full
time dependence of the Hamiltonian is just its explicit time
dependence,

 

d
dt
H �

@
@t
H; (A7)

both in the classical and in the quantum case. Then the
above arguments still apply, with the minor complication
of keeping track of the explicit t-dependence of H. For
instance Eq. (A2) now becomes

 �q i � ffqi; Hg; Hg �
�
qi;

@
@t
H
�
: (A8)

The solutions will have a form very similar to Eqs. (A5)
and (A6), only slightly complicated by partial t-derivatives
ofH—this is nothing but the Taylor expansion of the usual
T-ordered exponential. However all canonical variables
will still be evaluated at t � 0. Once all Poisson brackets
and commutators are computed, the classical and quantum
expressions will lead to identical functions of t, q�0�, and
p�0�, thanks to the same algebraic properties we used
above.
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